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Abstract—Subjective responses from Multimedia Quality As-

sessment (MQA) experiments are conventionally analyzed with

methods not suitable for the data type these responses represent.

Furthermore, obtaining subjective responses is resource intensive.

Thus, a method that allows the reuse of existing responses

would be beneficial. Applying improper data analysis methods

leads to difficulty in interpreting results. This increases the

probability of drawing erroneous conclusions. Building upon

existing subjective responses is resource friendly and helps

develop machine learning (ML) based visual quality predictors.

In this work, we show that using a discrete model for ana-

lyzing responses from MQA subjective experiments is feasible.

We indicate that our proposed Generalized Score Distribution

(GSD) properly describes response distributions observed in

typical MQA experiments. We also highlight interpretability of

GSD parameters and indicate that the GSD outperforms the

approach based on sample empirical distribution when it comes

to bootstrapping. Furthermore, we provide evidence that the

GSD outcompetes the state-of-the-art model both in terms of

goodness-of-fit and bootstrapping capabilities. To accomplish the

aforementioned objectives, we analyze more than one million

subjective responses from over 30 subjective experiments. Finally,

we make the code implementing the GSD model and related

analyses available through our GitHub repository: https://github.

com/Qub3k/subjective-exp-consistency-check.

Index Terms—Discrete distribution, generalised score distribu-

tion, GSD, subjective experiments, quality of experience.

I. INTRODUCTION

T
HERE are phenomena that require gathering opinions
from a panel of people. One significant example here

is the notion of Quality of Experience (QoE). Contrary to the
Quality of Service (QoS), the QoE also depends on how a user
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of a system perceives its performance (with the word perceives
assuming the greatest significance here). Although technical
factors do influence the QoE, ultimately, it is a subjective
opinion of a user that represents the most direct indication
of the QoE. (Refer to Sec. 2.2.2 of [1] for a formal definition
of the QoE.)

Multimedia Quality Assessment (MQA) is a sub-field of the
QoE related research activities. It focuses on understanding
how people perceive quality of multimedia content as well as
the effects of its processing and performance of multimedia
services. It is a common and recommended [2][3] practice to
organize experiments in which a panel of observers provides
its opinion on the quality of multimedia materials presented.
We refer to such experiments as subjective experiments and to
the opinions provided by the panel of observers as subjective
responses. Importantly, we narrow our discussion down to sub-
jective experiments in which participants judge the technical
reproduction quality of stimuli presented only. In other words,
we do not take into account subjective experiments, where
observers voice their opinions regarding the content of stimuli
(e.g., plot of a story or artistic properties of an image).

Lack of access to ground truth information is an inherent
feature of subjective experiments. Put differently, we observe
subjective responses, but have no way of directly measuring
the quality of a given stimulus. One solution to this problem
is gathering a large number of responses per stimulus. By
doing so, we are able to ensure that any summary statistic we
use to estimate stimulus quality adequately reflects population
level opinions. An increasing number of researchers are fol-
lowing this intuition and switching from small scale controlled
experiments to large scale crowdsourcing experiments [4].
Unfortunately, switching to crowdsourcing experiments usu-
ally corresponds to less precise measurements. On the other
hand, organizing large scale controlled subjective experiments
is money- and time-intensive. For these reasons, we want to
draw as many learnings as possible from limited information
controlled subjective experiments provide.

To fully use the information that controlled subjective exper-
iments provide, we cannot merely rely on summary statistics
only (among which the Mean Opinion Score or MOS is the
most popular [2][3]). Instead, we need to construct models
that try to capture the underlying, unobservable structure of
subjective responses and understand how this structure maps to
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quality. To construct such models, we use various assumptions
based on domain knowledge and experiences gathered from
previous subjective experiments.

There are better and worse models. Likewise, there are tools
to assess how well a model performs. We claim that using
models reflecting data type that subjective responses represent
is a better approach than assuming that continuous models can
be applied to discrete data. For one thing, models reflecting
underlying data type generate interpretable results. Increased
interpretability makes it easier to understand the result, thereby
protecting against ill posed conclusions.

A. Problem Statement and Contributions

Subjective responses from Multimedia Quality Assessment
(MQA) experiments are conventionally analyzed with methods
not suitable for data type that these responses represent. In
particular, continuous models are used even though subjective
responses are discrete in most cases [5][6]. Furthermore,
obtaining subjective responses is money- and time-intensive.
Thus, a method that allows the reuse of existing responses
would be beneficial.

Applying improper data analysis methods may lead to
results that are difficult to interpret. This, in turn, may result
in erroneous conclusions. Liddell and Kruschke provide a
convincing overview of mistakes that arise when data is
analyzed using an improper model [7]. One of our goals is
to protect researchers analyzing responses from MQA exper-
iments against the mistakes Liddell and Kruschke mention.

In terms of building upon existing subjective responses, the
approach is especially important if it is used to generate large
samples from small real-life samples. This procedure is also
referred to as bootstrapping. Properly applied bootstrapping
allows for the production of sample sizes sufficient for devel-
oping machine learning (ML) visual quality predictors. Nat-
urally, reusing existing subjective responses is also resource
friendly.

We show that it is feasible to use a discrete model for the
data analysis of responses from MQA subjective experiments
is feasible. We also present benefits stemming from this ap-
proach. Specifically, we indicate that our proposed Generalized
Score Distribution (GSD) properly describes response distribu-
tions observed in typical MQA experiments. We also highlight
interpretability of GSD parameters. This GSD feature makes
it possible to easily describe and intuitively understand non-
trivial dependencies between various response distributions.
Finally, we point out that the GSD outperforms the traditional
approach based on a sample empirical distribution when it
comes to bootstrapping.

Our work is novel in two respects. First, to the best of
our knowledge, the GSD is the first two-parameter discrete
distribution proposed in the field of MQA that properly models
per stimulus response distribution. Second, we are the first
ones to demonstrate that our subjective response modelling
approach (i.e., the GSD) outperforms the standard approach
based on empirical distribution in regard to bootstrapping.

Being more suitable for bootstrapping than sample empirical
distribution, the GSD can generate a large data set of responses

by taking advantage of only a small data set of real-life
responses. In turn, large data sets generated this way may
allow for the creation of next generation ML based perceptual
visual quality predictors. This is because ML based solutions
are data hungry by nature, and typical MQA experiments
are capable of gathering only few dozens of responses per
stimulus. Moreover, knowing a correct data model (which we
show the GSD is for typical MQA experiments) allows for the
proposal of a parametric hypothesis testing framework. Using
such a framework results in higher power (when compared
to conventionally used here non-parametric methods), thus
allowing the reduction of costs related to organizing subjective
experiments. This is because more powerful statistical methods
allow the detection of smaller effect sizes, while keeping
the sample size constant. Finally, interpretability of GSD
parameters makes it easier to summarize subjective responses
and perform non-misleading intuitive inferences based on this
summary.

With this work, we put forward the following contributions:
• We evidence that analyzing subjective responses from

MQA experiments with a discrete model (specifically, the
GSD) is feasible and brings easy to interpret results.

• We indicate that the GSD properly describes responses
from typical MQA subjective experiments.

• We show that the GSD outperforms empirical distribution
when it comes to bootstrapping for responses from MQA
subjective experiments.

• Finally, we demonstrate that the GSD outperforms the
state-of-the-art model when it comes to bootstrapping and
goodness-of-fit testing.

The main main objective of this paper is to convince the
MQA research community that using the GSD model to ana-
lyze subjective responses is better than following current rec-
ommendations and the practices put forward in the literature.
Specifically, we want to demonstrate that the GSD outperforms
non-disrete models used in the literature and that the GSD
also performs better than the standard approach based on a
sample empirical distribution when it comes to bootstrapping.
To make it easier for others to use our work, we invite
everyone to visit our GitHub repository (https://github.com/
Qub3k/subjective-exp-consistency-check). There, we provide
a code that allows the analysis of subjective responses with
the use of the GSD model and to reproduce a significant part
of results presented in this paper.

B. Related Works

There is a trend in the MQA community to favour response
distribution analysis over relying on summary statistics (e.g.,
the MOS) only. An important recent contribution in this topic
is the work by Seufert [8]. There, he highlights fundamental
advantages of considering response distributions over sum-
mary statistic-based evaluations. Hoßfeld et al. take this idea
further and show how to approximate response distributions
given a QoS-to-MOS mapping function [9]. Our work follows
the trend of response distribution analysis. At the same time,
we indicate that interpretable GSD model parameters can serve
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as summary statistics by adequately describing underlying
response distribution.

Modelling individual responses generation process is an-
other important thread of MQA research focusing on re-
sponse distribution analysis. The idea was first proposed by
Janowski and Pinson and termed subject model1 [10]. Li
and Bampis took on the approach and proposed an extended
subject model [5]. In their formulation of the model, they
considered subject bias, subject inconsistency and stimulus
ambiguity. Reference [6] proposes an updated, simpler ver-
sion of the same model. Authors of [6] convincingly show
that their model addresses the shortcomings of subjective
data analysis methods presented in several MQA-related ITU
recommendations. Our work extends this arc of research.
We model individual responses generation process with the
Generalized Score Distribution (GSD) model. The model was
introduced in [11], where we showed how it could be applied
to check subjective responses consistency. Recently, we also
made available a paper formally describing the GSD family
of distributions [12]. There, we highlighted and provided
mathematical proofs of a few important properties of the GSD
family. There, we also revealed the details underlying the GSD
parameter estimation procedure.

We are not the first ones to notice that subjective responses
modelling approach should reflect data it operates on. Specifi-
cally, both [13] and [14] propose models that take into account
ordinal nature of subjective responses coming from MQA
experiments.

Compared to our other works on the GSD [11], [12], this
paper puts forward a series of new contributions. Unlike [12],
it specifically targets practitioners from the MQA community.
It thus focuses on GSD properties relevant for this community.
This paper also compares the GSD to a state-of-the-art model
from the MQA community and checks GSD’s performance
on data going beyond typical MQA experiments. Both those
analyses are novel when compared to [12]. Unlike [11], this
paper focuses on the general applicability of the GSD to MQA
data analysis (instead of showing only one applicability area
of the model). Overall, this paper concentrates on the broad
consequences of using the GSD to model MQA data, rather
than limiting itself to presenting the GSD as a tool that resolves
one particular problem [11] or focuses on a formal description
of the model [12].

II. METHODOLOGY

In this section, we describe the methodology we use to
substantiate the claims made in the introduction. Section II-A
elucidates our idea of treating subjective responses from MQA
experiments as realizations of a discrete random variable.
Section II-B shows how we test the goodness-of-fit of the
models that we take into account. It also presents how we
interpret resulting p-values. Section II-C highlights the data
sets that we use to test the GSD on real data. Finally, Sec. II-D
details the procedure that we use to test GSD’s performance
when it comes to subjective responses bootstrapping.

1The word subject refers to subjective experiment participant.

A. Subjective Response as a Random Variable
We propose to think about responses from MQA subjective

experiments as realizations of a discrete random variable
U . Since we focus on responses expressed on the 5-level
Absolute Category Rating (ACR) scale (cf. Sec. 6.1 of [15]),
U can take values from the {1, 2, 3, 4, 5} set. To make the
distribution of U practically useful, we need to parametrise
it. Our experiences show that distributions with one parameter
do not properly fit real data. Thus, we focus on two-parameter
distributions. The following shows a general formulation of
such distributions

U ⇠ F (�, ✓), (1)

where F () denotes a cumulative distribution function, � is a
parameter describing central tendency of the distribution and
✓ expresses distribution spread. Importantly, we assume that
F () reflects the response distribution of each stimulus in a
subjective experiment. Per-stimulus values of � and ✓ define
the exact shape of F ().

Now, there are at least two approaches to proposing the
exact formulation of F (). The first one (which is more popular
in the MQA literature) is to assume that subjective responses
follow a continuous normal distribution. The second one
(which we take in this paper) is to assume that responses fol-
low a discrete distribution and, more precisely, the Generalised
Score Distribution (GSD).2

The approach assuming that subjective responses follow
continuous normal distribution is best described by introducing
an intermediate continuous random variable O ⇠ N (µ,�2

),
where µ describes the mean and �2 is the variance of the
normal distribution. Since U is discrete and O is continuous,
we need to introduce a mapping between the two. In other
words, O must be discretized and censored as follows:

P (U = s) =

Z
s+0.5

s�0.5

1

2⇡�
e�

(o�µ)2

2�2 do (2)

for s = {2, 3, 4} and

P (U = 1) =

Z 1.5

�1

1

2⇡�
e�

(o�µ)2

2�2 do, (3)

P (U = 5) =

Z 1

4.5

1

2⇡�
e�

(o�µ)2

2�2 do. (4)

Such a construct (i.e., a thresholded cumulative normal distri-
bution) is quite popular in latent variable analysis [16]. Thus,
we follow the appropriate nomenclature and refer to this model
as Ordered Probit.

1) Generalized Score Distribution: Our approach to mod-
elling subjective responses does not require any mapping
between an intermediate random variable and U . This is
because the GSD already is a discrete distribution. Thus, we
can directly write U ⇠ GSD( , ⇢), where  expresses the
so called true quality and ⇢ expresses responses spread. The
true quality parameter  can be intuitively understood as a
mean response for a given stimulus, if we were to ask for the
opinion of the complete population of observers. Contrary to

2Although GSD’s name refers to scores, we use the word “responses” to
refer to opinions formulated by observers taking part in a MQA experiment.
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Ordered Probit’s µ,  reflects the 5-level ACR scale and is
bounded to the [1, 5] range.3 The other GSD’s parameter, ⇢, is
a linear function of V (U) (i.e., variance of U ). Furthermore,
⇢ is bounded to the [0, 1] interval and expresses what portion
of possible variance is present in realizations of U . Please
note here that any discrete distribution with a limited domain
(e.g., U ⇠ F (�, ✓)) has its mean value E(U) and variance
V (U) bounded (cf. Fig. 2). One more important property of
⇢ is that it represents responses confidence. Put differently, it
is inversely proportional to the variance observed in responses
(the higher the observed variance, the lower the value of ⇢).
Yet another way to put it is to say that the greater the value
of ⇢, the closer to  observed responses are. Importantly, the
GSD is able to model the complete range of possible variances
for a given M -point scale (with M 2 N : M > 2). For more
details regarding the GSD, we refer the reader to [12].

To further concretize GSD’s description, let us take a look
at its internal structure. We start by showing a more detailed
form of the U ⇠ GSD( , ⇢) expression:

U ⇠  + ✏, (5)

where ✏ expresses uncertainty regarding the mean response
represented by  .  is one constant number estimated for a
stimulus of interest. Notice that  = E(U). ✏, on the other
hand, follows a distribution parameterized with a single param-
eter ⇢. Furthermore, ✏’s distribution satisfies the following two
criteria: (i) its mean equals zero and (ii) its variance is a linear
function of ⇢. In Appendix A (see the supplemental material),
we show the exact formulation of ✏’s distribution. Here, we
only mention that this distribution is a mixture of the following
distributions: binomial, beta-binomial, and one- or two-point
distribution (whether one- or two-point distribution is used
depends on the value of  ). Importantly, we reparameterize
the distributions in the mixture to make them satisfy the
two criteria that ✏’s distribution must follow. As a result, the
reparameterised distributions in the mixture depend only on a
single parameter ⇢.

Fig. 1 illustrates various realisations of the GSD for different
values of  and ⇢. Please notice how flexible the GSD is.
For example, in Fig. 1c, for the case of ⇢ = 0.38, the GSD
takes the form of a distribution with two modes (one mode
at response 1 and another at response 5). Apart from this ex-
treme example, GSD’s shape follows common sense intuition
regarding the response distributions observed in typical MQA
subjective experiments. (For an in-depth discussion regarding
response distribution shapes acceptable by the GSD, we refer
the reader to [11].)

B. G-test and P–P Plot
In order to validate if a distribution (or a model) fits specific

data, we need to perform a two-step procedure. The first step
is to estimate distribution parameters for a sample of interest.
The second step is to test a null hypothesis stating that the

3To make the discussion easy to comprehend, we limit ourselves to the
version of the GSD reflecting a 5-level scale. However, the GSD can describe
any discrete process with domain of size M , where M is a natural number
greater than 2.

sample truly comes from the assumed distribution (GSD or
Ordered Probit in our case), given the parameters estimated in
the first step. We use a standard likelihood ratio approach to
test the goodness-of-fit (GoF) of the two models (the GSD and
Ordered Probit). More precisely, we use the so called G-test
of GoF (cf. Sec. 14.3.4 of [17]). We do not use the asymptotic
distribution for calculating the p-value because sample sizes
we consider are predominantly small. On the contrary, we
estimate the p-value utilising a bootstrapped version of the G-
test. Please refer to Appendix B in the supplemental material
to learn exactly how we use the G-test of goodness-of-fit. (For
broader theoretical considerations on the topic, please take a
look at [18].)

Since each MQA subjective experiment that we analyze
contains multiple stimuli, we need to perform the G-test
multiple times (as many as there are stimuli in the experiment).
The result of each G-test is a p-value. This means we get
a vector of p-values for each experiment that we take into
account. To be able to efficiently draw conclusions regarding a
vector of p-values, we use p-value P–P plots (where P–P stands
for probability–probability) [19]. For a detailed discussion
regarding p-value P–P plots for the GSD, we refer the reader
to [11].

C. Data Sets

To test the GSD in practice, we make use of more than
one million individual subjective responses (to be precise,
1 183 696). We take into account the responses coming from
33 subjective experiments that assess quality (or other traits)
of more than nine thousand stimuli (exactly 9 290). Table I
presents an overview of data sets we use. Importantly, we
classify data sets into three types: (i) typical, (ii) broadly
understood, and (iii) non-MQA. The types reflect how much
a given data set follows best practices and recommendations
regarding organizing MQA experiments. Typical experiments
tightly follow best practices and recommendations. Broadly
understood experiments follow these best practices and recom-
mendations generally, but deviate from them in some aspects.
Finally, non-MQA experiments are not MQA experiments at
all. We include these to check GSD’s performance on data
outside of GSD’s intended application scope. Please note that
one data set may correspond to multiple experiments (cf. the
“No. of Exp.” row of Table I). For example, the MM2 data
set consists of 10 separate experiments. Thus, although we use
data from 11 data sets, they amount to 33 experiments.

We do not provide detailed descriptions of the data sets
here. Instead, we link to references describing each data set in
Table I. The only exception to this rule is the NFLX data set.
Since its description has not yet been published, we describe
the data set briefly.

Experiments included in the NFLX data set investigated
the influence of per-scene quality changes on the opinions
of human observers. Two hundred observers assessed quality
of 320 stimuli.4 Ten seconds long video clips (without audio)
were used as stimuli. The clips had a resolution of 1920x1080
pixels. Quality degradations were applied solely through video
compression. However, since per-scene compression was used,
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Fig. 1. Realizations (in the form of probability mass functions) of the GSD for a 5-point scale and various values of parameters  and ⇢. Notice how the
growing value of ⇢ corresponds to more responses accumulating close to the value of  .

TABLE I
AN OVERVIEW OF DATA SETS WE USE TO TEST THE GSD ON REAL DATA

Study ITU
[20]

HDTV
[21]

MM2
[22]

14-505
[23]

ITS4S
[24]

NFLX ITERO
[25]

ITS4S2
[26]

Naderi
[27]

MovieLens
[28]

Personality
[29]

Year 1995 2010 2012 2014 2018 2018 2019 2019 2020 2003 2018
No. of Exp. 1 6 10 1 2 4 3 1 3 1 1
Total No. of
Stimuli

176 1 008 600 114 1 025 720 330 1 429 170 3 708 10

Total No. of
Responses

4 224 24 192 12 780 7 076 26 926 36 000 25 080 22 864 22 511 1 000 209 1 834

Type typical typical typical typical typical typical bu bu bu non-MQA non-MQA
Stimulus type speech video av video video video video image speech mr mr

Exp. stands for experiments; av stands for audiovisual; mr stands for movie recommendation; bu stands for broadly understood.

quality switches occurred during playback as well. Contents
spanned a wide range of categories and were taken from Net-
flix’s catalogue. This made the experiments more ecologically
valid, but also meant that the clips could not be publicly
shared. The clips were displayed on either a TV or a tablet
(both with the native resolution of 1920x1080 pixels). More-
over, some participants were asked to provide their opinions
during the video playback. They were encouraged to use a
software slider displayed at the bottom of the screen. In total,
four experiments were performed: (i) with the TV and the
software slider, (ii) with the TV and without the slider, (iii)
with the tablet and the slider, and (iv) with the tablet and
without the slider. Participants were recruited through a tem-
porary working agency. Care was taken not to over-represent
the 18 to 25 age group. All four experiments were carried
out in a controlled environment and were generally following
the provisions of Rec. ITU-T P.913 [2]. The experiments were
performed in accordance with the Absolute Category Rating
with Hidden Reference (ACR-HR) method (cf. Sec. 7.2.2 of
[2]). Thus, participants provided their responses using the 5-
level ACR scale.

D. Bootstrapping
To compare GSD’s generalizability to that of the empirical

distribution (which is typically used for resampling), we

4In Table I we write about 720 stimuli in this data set, since we treat each
of the four experiments as separate. Because each of the four experiments
investigated 180 stimuli, we end up with 720 stimuli in total.

introduce the following procedure. We start by generating MC
(e.g., MC = 10 000) bootstrap samples from the empirical
probability mass function (EPMF) of the large sample. Impor-
tantly, we generate bootstrap samples with significantly fewer
observations than those in the large sample (e.g., n = 24

observations in each bootstrap sample for N = 200 obser-
vations in the large sample). Next, we fit the GSD to each
r-th bootstrap sample. This yields estimates of each response
category probability (q̂r1, q̂

r

2, q̂
r

3, q̂
r

4, q̂
r

5). We use those estimates
to calculate the likelihood function for the large sample Lr

GSD
.

We repeat the procedure for each bootstrap sample, but use the
EPMF of the bootstrap sample this time to find the response
category probability estimates (v̂r1, v̂

r

2, v̂
r

3, v̂
r

4, v̂
r

5). Having the
likelihood for both the GSD (Lr

GSD
) and empirical distribution

(Lr

e
), we introduce a statistic Wr based on the quotient of

the two values. In other words, we introduce a statistic based
on the likelihood ratio: Wr = ln (Lr

GSD
/Lr

e
). Value of the

quotient signifies which approach better describes the large
sample. (Note that there are as many quotients as there are
bootstrap samples.) Now, we use the quotients to estimate
the probability pGSD that the GSD model-based estimates of
response category probabilities in the large sample yield a
higher likelihood function value (LGSD) than the likelihood
function value we get if we use the EPMF-based estimates
(Le). We also do the same for the empirical distribution
and estimate the probability that the EPMF-based estimates
yield a higher likelihood function value than that yielded by
the GSD model-based estimates and denote this probability
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by pe. We then calculate the 95% confidence interval for
pGSD � pe = P (Wr > 0)� P (Wr < 0) and denote its lower
(or left) bound as L and upper (or right) bound as R. If L > 0,
then the GSD performs better than the empirical distribution.
If R < 0, then the empirical distribution performs better. If
[L,R] contains zero, there is no significant difference between
the GSD and empirical distribution. We provide the precise
description of the aforementioned procedure in Appendix C
(refer to the supplemental material).

Since we use the subsample to make inferences about the
large sample, there is a risk of overfitting. Put differently,
by fitting any model too precisely to the subsample, we are
confronted with the risk of finding model parameter estimates
that are suboptimal from the point of view of the large sample.
This is because the subsample represents only limited informa-
tion about the large sample. Intuitively, we should not entirely
trust the data that we observe in the subsample. To address
this issue, we apply parameter estimation modification that
prevents probability estimators we use from yielding response
category probabilities equal to 0 (for any response category).
In other words, we expect that, at the population level, there is
no response category that would be assigned no observations
(even if the estimation result for the subsample suggests
something else). This results in modified estimation procedures
for both the GSD and empirical distribution. The detailed
estimation correction procedures that we use are described in
Appendix C-A (refer to the supplemental material).

III. RESULTS

Here, we present the results reflecting our contributions
mentioned in the introduction. Sec. III-A puts forward the ev-
idence supporting the claim that the GSD has easy to interpret
parameters. Sec. III-B shows that the GSD properly describes
response distributions from typical MQA experiments. It also
indicates that GSD does not perform well for atypical MQA
and non-MQA experiments. Sec. III-C reveals that the GSD
outperforms empirical distribution when it comes to subjective
responses bootstrapping. Finally, Sec. III-D evidences that the
GSD outperforms the state-of-the-art model both in terms of
goodness-of-fit testing and bootstrapping.

A. Interpretable Parameters
Fig. 2 presents how Ordered Probit model parameters map

to the E(U) and V (U) space. In other words, the figure shows
how the parameters of the Ordered Probit model that we use
to describe observed data (cf. Fig. 2a and Fig. 2e) map to
summary statistics computed directly on these observed data
(Fig. 2b and Fig. 2f). Intuitively, Fig. 2a and Fig. 2e illustrate
how the Ordered Probit model “sees” observed data. Fig. 2b
and Fig. 2f show us how observed data actually look like in
terms of two basic summary statistics (i.e., mean E(U) and
variance V (U)). Put differently, any point along any line in
Fig. 2a or Fig. 2e corresponds to a fixed pair of Ordered Probit
parameters. The Ordered Probit model with these parameters
is then used to generate discrete responses (being realizations
of the random variable U ). Summary statistics (i.e., E(U)

and V (U)) computed on these generated responses yield a

single point in Fig. 2b or Fig. 2f, respectively. (Note that
these generated responses can be thought of as representing
individual responses that we observe in real subjective ex-
periments.) Importantly, plots in Fig. 2 should be analyzed
in pairs, row-wise. In other words, the leftmost (red) line in
Fig. 2a corresponds to the same data series as the leftmost (red)
line in Fig. 2b. The same is true for Fig. 2e and Fig. 2f, and
so on. When analyzing Fig. 2, please also keep in mind that
E(O) = µ and V (O) = �2 (cf. Sec. II-A for more context).

We want model parameters to accurately reflect phenomena
occurring in observed data. For example, we naturally asso-
ciate the µ parameter with the central tendency of observed
data and the � parameter with their variance. Thus, if we keep
µ constant and increase the value of �, we expect this should
correspond to E(U) staying constant and V (U) to increase.
However, this is not the case. Instead, keeping µ constant
and increasing � corresponds to changes in both E(U) and
V (U). This can be observed by following same-colored lines5

in Fig. 2a and Fig. 2b. Specifically, let us take the leftmost
(red) line from Fig. 2a. It corresponds to Ordered Probit’s µ
fixed at a value slightly larger than zero. Moving vertically
upwards along this line, µ stays constant and � increases. If
we were to stop at various points along this line and generate
discrete responses (being realizations of the random variable
U ) from the Ordered Probit model with µ and � parameters
fixed, we expect each such sample to have a constant and same
expected value E(U), but a changing variance V (U). The
corresponding leftmost (red) line in Fig. 2b shows the E(U)

and V (U) we actually observe when generating responses
from the Ordered Probit model. As shown in the figure, the
samples generated do not have a constant expected value. On
the contrary, it changes in rather unexpected ways, as we move
along increasing the values of �. (The only exception to this
rule is when µ = 3.) This property of Ordered Probit model
parameters makes them counter-intuitive. Unfortunately, this is
not the only limitation of Ordered Probit’s parameterisation.
Another one relates to how changes in µ correspond to changes
in E(U). Looking at Fig. 2e and Fig. 2f, we see that the same
range of µ values maps to different ranges of E(U) values
as the � parameter changes. For example, let us compare the
topmost pink curve (� = 8) with the second topmost green
one (2 < � < 4). In Fig. 2e they both span the same range
of µ values. However, in Fig. 2f, the pink curve corresponds
to a much narrower range of E(U), in comparison to the
green curve. This leads us to another limitation of Ordered
Probit’s parameterisation. Although subjective responses that
we take into account here span the range from 1 to 5, the µ
parameter takes values exceeding the 1–5 range. Practically
speaking, although it is tempting to treat µ as an MOS-related
measure, µ can and will exceed the 1–5 range (which the MOS
never does). Thus, µ should not be intuitively interpreted as
MOS counterpart for the Ordered Probit model. To ensure
completeness, we mention that the Ordered Probit model is
able to describe the complete ghost-like area shown in Fig. 2b
and Fig. 2f. However, this is only possible if we allow its

5The ordering of lines in Fig. 2a and Fig. 2e is the same as the ordering
of lines in Fig. 2b and Fig. 2f. Thus, the figure can be interpreted in black-
and-white print as well.
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Fig. 2. Mapping of Ordered Probit parameters to the E(U) and V (U) space (plots (a), (b), (e) and (f)). Mapping of GSD parameters to the E(U) and
V (U) space (plots (c), (d), (g) and (h)). The violet area marks all possible (E(U), V (U)) pairs for a discrete process with values {1, 2, 3, 4, 5}. The violet
bar below plots (a), (c), (e) and (g) shows the 1–5 range (reflecting the range of values of random variable U ).
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Fig. 3. Mean response (E(U)) and response variance (V(U)) pairs of all
stimuli from the typical MQA experiments shown along with (a) the lines with
constant µ parameter of the Ordered Probit model for varying � parameter
and (b) the lines with constant � parameter for varying µ. To understand the
meaning of the curves in the plot, please refer to Fig. 2.

parameters to change without bounds. In other words, when
(µ,�) 2 (�1,+1)⇥ (0,+1).

The right hand side of Fig. 2 is GSD’s counterpart of
Ordered Probit plots on the left. Fig. 2c and Fig. 2g present
GSD parameters space. Fig. 2d and Fig. 2h present the E(U)

and V (U) space. (Note that there is an inverse relationship
between ⇢ and V (U).) As can be readily seen, the GSD is not
fraught with problems inherent to the Ordered Probit model.
In particular, keeping the  parameter constant and changing
⇢ parameter’s value, we keep the E(U) constant and vary
V (U) only. This means that GSD’s parameterisation allows
for treating  as observed data’s central tendency and ⇢ as
a measure of their variability. Following same-colored lines
in Fig. 2c and Fig. 2d evidences how keeping  constant
corresponds to constant E(U). Notably, the same range of
 values for different values of ⇢, always corresponds to the
same range of E(U). We can take a curve of any color from

Fig. 2g and Fig. 2h, and see that it always spans the entire
range of E(U). Although the bumpy shape of multiple curves
in Fig. 2h may initially seem counter-intuitive, it reflects an
important property of ⇢. The ⇢ parameter expresses what ratio
of available variance for a given mean is present in observed
data. Thus, to keep this ratio constant across different mean
values, the curve has to follow the bottom part of the E(U) and
V (U) space. Thanks to its properties, ⇢ = 0.5 means that we
deal with data being at the midpoint between minimum and
maximum possible variance. Finally, GSD parameters cover
the entire space of E(U) and V (U), while staying in the well
defined bounds. Specifically, ( , ⇢) 2 [1, 5]⇥[0, 1]. Practically
speaking,  can be regarded as GSD’s counterpart of the MOS.

Here, it is noteworthy that both models share one limitation.
Even when data variability related parameter (� or ⇢) stays
constant and the central tendency related parameter (µ or
 ) changes, V (U) changes across different values of E(U).
Ideally, V (U) should follow the variability related parameter
and stay constant across chaning E(U). However, since we
are dealing here with a discrete, limited domain process (only
values {1, 2, 3, 4, 5} can be observed), the mean is naturally
coupled with variance. In other words, changes to the mean
inherently influence variance.

In order to show that problems with model parameters
interpretability do apply to real data, we overlay on top of
Fig. 2b and Fig. 2f (E(U), V (U)) pairs of real response
distributions. Specifically, we take all stimuli from typical
MQA experiments (cf. Tab. I). Then, we compute per stimulus
mean response (E(U)) and per stimulus response variance
(V (U)). Finally, we place each (E(U), V (U)) pair on top
of the ghost-like shapes shown in Fig. 2b and Fig. 2f. Fig. 3
presents the end result.

Looking at Fig. 3, we can make a few observations. First, it
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is clear that the (E(U), V (U)) pairs cover the entire range (1
to 5) of possible mean responses. Second, the pairs correspond
mostly to variances in the interval 0 to 1.5 (although there
are points corresponding to variance almost as high as 3).
However, the most important observation is that the data
cloud in Fig. 3a covers the area where the vertical curves
bend. For example, looking at the second left-most (blue)
curve, it becomes evident that there are data points that fall
along this curve. Please recall that this curve corresponds to
a constant Ordered Probit’s µ with a value of roughly 1.2.
Although µ stays constant, points falling along the blue curve
correspond to varying values of mean response. This indicates
that problems with Ordered Probit’s parameterisation do apply
to real data as well. Please also note that since the data
cloud in Fig. 3 covers the entire range of mean responses,
the Ordered Probit model is forced to use µ exceeding the
1 to 5 range (cf. Fig. 2a). Again, this confirms that applying
Ordered Probit’s parameterisation in practice is problematic.
Finally, we observe that the problems with Ordered Probit’s
parameterisation described in this paragraph do not apply
to GSD’s parameterisation. In other words, GSD’s  never
exceeds the range of 1 to 5, and the data points corresponding
to different values of E(U) also correspond to different values
of  .

B. Good Description of Typical MQA Experiments

Fig. 4a shows the results of applying a bootstrapped G-test
of goodness of fit to responses from typical MQA experiments,
as modelled by the GSD or by the Ordered Probit model. If any
of the two models truly reflects response distributions observed
in real data, a related p-value histogram should resemble the
uniform distribution (or any other nonincreasing distribution)
in the region of low p-values (roughly between 0 and 0.2) [11].
It can be clearly seen that the histogram for the Ordered Probit
model does not resemble the uniform distribution. The most
important indication of this fact is the height of the leftmost
bar, which is significantly greater than that of the second
leftmost bar. GSD’s histogram does resemble the uniform
distribution for the p-values region of interest. However, to
decisively assess GSD’s performance, we need to resort to
p-value P–P plot (cf. Fig. 5). Since all GSD-related data
points fall below the black diagonal line, we can safely infer
that the results do not contradict the null hypothesis of the
GSD truly reflecting response distributions observed in real
data. In other words, the GSD adequately reflects response
distributions observed in typical MQA experiments. However,
the same is not true for the Ordered Probit model. This is
indicated by all Ordered Probit related data points falling
above the black diagonal line. Put differently, the Ordered
Probit model does not properly reflect response distributions
observed in typical MQA experiments.

If we now also consider MQA experiments that do not
strictly follow international recommendations (let us call them
broadly understood MQA experiments), we see that the per-
formance of the both models deteriorates (cf. Fig. 4b). This
is best indicated by the height of the leftmost bar. On both
histograms, its height is significantly greater than the reference

height corresponding to approximately 279 stimuli or 5% of all
stimuli investigated. We do not show a related P–P plot since
it simply reaffirms that both models do not reflect response
distributions observed in real data.

We also investigated how the GSD and Ordered Probit
models would perform on a data set unrelated to MQA
experiments. To this end, we chose two data sets popular in
the movie recommendation systems research community: (i)
MovieLens 1M [28] and (ii) Personality 2018 [29]. Although
the two data sets are outside of MQA, they use the 5-level
Likert scale to collect subjective responses. Our hypothesis
was that since the GSD performed well on MQA data using
the 5-level Liker scale, then it would probably also perform
well on these data sets. However, looking at Fig. 4c, we can
clearly see that both the GSD and Ordered Probit models do
not reflect response distributions observed in the data. In other
words, neither the GSD nor Ordered Probit model properly
describe response distributions observed in data concerning
movie recommendation systems.

C. Better Than Empirical Distribution

It is interesting to determine whether the GSD brings any
advantage if it comes to generalizability. We define generaliz-
ability as the ability of a model to capture large sample phe-
nomena when observing only a subsample of the large sample.
In particular, we would like to ascertain whether the GSD
better captures large sample’s distribution shape in comparison
to the empirical distribution of the subsample. Put differently,
we would like to check whether the GSD is better suited for
bootstrapping than the empirical distribution. If this proves
to be the case, then the GSD could be used for resampling.
One important consequence of this would be an opportunity to
build better machine learning (ML) models aimed at predicting
subjectively perceived multimedia quality (which is a difficult,
important and still open challenge). It is often the case in the
field of Multimedia Quality Assessment (MQA) that only up
to 30 responses per stimulus are available. If one wants to
create an ML model, this may prove insufficient and therefore,
resampling must be applied to generate more responses per
stimulus. Should the GSD prove to be better for bootstrapping
than the empirical distribution (which is typically applied in
this context), the GSD could be used to generate more reliable
samples during resampling.

To test GSD’s generalizability capabilities in practice, we
use data from four MQA studies: (i) MM2 [22], (ii) VQEG
HDTV Phase I [21], (iii) NFLX (cf. Section II-C to learn more
about this study) and (iv) ITERO [25]. From these studies,
we extract responses for selected stimuli. More precisely, we
select stimuli with at least 144 responses. This way, we get
234 stimuli. The number of responses per stimulus spans from
144 to 228. There are only four unique numbers of responses
per stimulus. Table II shows the four numbers of responses
and the count of stimuli with a given number of responses.
Furthermore, it shows the study from which a given set of
stimuli was taken.

One may wonder why we use only selected experiments and
not all experiments given in Tab. I. This is attributed to the
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Fig. 4. p-Value histograms for the GSD (upper) and Ordered Probit (lower) models. p-Values come from the G-test of goodness-of-fit applied to stimuli from
(a) typical Multimedia Quality Assessment (MQA) experiments, (b) typical and broadly understood MQA experiments and (c) non-MQA experiments. The
thick vertical line marks the 0.05 significance level.
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Fig. 5. p-Value P–P plot for typical MQA experiments. p-Values come
from the G-test of goodness-of-fit applied to the GSD, Ordered Probit and
Simplified Li2020 (SLI) models, fitted to responses from typical MQA
experiments. CDF stands for cumulative distribution function and ECDF for
empirical cumulative distribution function.

TABLE II
DISTRIBUTION OF RESPONSES AMONG THE FOUR STUDIES USED IN THE
BOOTSTRAP ANALYSIS. HDTV CORRESPONDS TO VQEG HDTV PHASE

I STUDY.

No. of Responses No. of Stimuli Study
144 24 HDTV
200 40 NFLX
213 60 MM2
228 110 ITERO

fact that for the analysis presented in this section, we need
experiments with a high number of responses per stimulus.
Typical MQA experiments gather roughly between 12 to 50
responses per stimulus. Since we focus on the bootstrapping
capabilities of a model in this analysis, we need significantly
more observations per stimulus than the standard 12 to 50
range. We decide to use a slightly arbitrary threshold of 100
responses per stimulus. In other words, we take into account
only those experiments that provide at least 100 responses per
stimulus. Most of the experiments listed in Tab. I do not satisfy

this requirement at all or satisfy it only under some special
assumptions. Overall, in this section, we use the experiments
coming from the four studies listed above (i.e., MM2, VQEG
HDTV Phase I, NFLX, and ITERO). The following paragraphs
describe a few special assumptions we had to make in order
to include these experiments in the analysis.

The NFLX study contains responses given to stimuli dis-
played on one of the two display devices—tablet and TV.
In principle, responses for different display devices shall be
analyzed separately. However, since the responses for the two
devices are highly correlated and since the same visual content
was presented to participants during the sessions with each
device, we decide to include the combined responses from the
two display devices in this analysis.6

If it comes to the HDTV Phase I study, we only focus on
responses provided to the so called common set of stimuli. The
stimuli from the common set were presented to participants in
all the six experiments that were part of the HDTV Phase
I study. Although the six experiments were conducted by
different research teams and used different display devices,
the experimenters declared that actions were taken to make the
six experiments similar to each other. Specifically, all video
stimuli were displayed with the same resolution and in a room
conforming to guidelines of Rec. ITU-R BT.500-11. Follow-
ing experimenters declaration, we combine responses for the
common set stimuli. That is, we treat the six experiments,
with 24 participants each, as one large experiment with 144
participants. This way, we end up with 24 stimuli (that many
are in the common set), each having 144 responses.

The MM2 study is a set of ten experiments. Responses in
the experiments were collected by six laboratory teams from
four countries. Different subject pools and environments were
used in each experiment. The common denominator of all
the experiments was the same set of 60 audiovisual stimuli
and a very similar test procedure. According to the authors

6The exact correlation between mean responses for the two display devices
is 0.988. The scatter plot of mean responses is shown in Fig. 8 in App. D
(see the supplemental material).
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of [22], the experiments were highly repeatable. Thus, we
combine responses from the ten experiments. This yields 213
responses (that many participants in total took part in the ten
experiments) for each of the 60 audiovisual stimuli.

The ITERO study collected responses from 27 subjects, who
rated the same set of 110 stimuli. The study was carried out by
three research teams. The experiment design was atypical of
how MQA experiments are usually conducted. Subjects were
instructed to repeat the experiment ten times. In total, 110
stimuli were assigned 228 responses each (however, not all
subjects repeated the experiment ten times). Although these
subjects were allowed to repeat the experiment at their leisure
and the majority of them did not use the same display device,
we combine the responses from the ten repetitions. In other
words, we treat the responses as though they come from one
large subjective experiment with 110 stimuli and 228 subjects
(wherein each subject rates the same set of 110 stimuli).

We utilize three small sample sizes, i.e., n = {12, 24, 50}.
This allows us to observe how the GSD performs (when com-
pared to the empirical distribution) for different fractions of the
large sample information available. Intuitively, we expect the
empirical distribution’s performance to improve as the small
sample size increases. If the GSD proves to perform differently
than the empirical distribution, we would observe how the
increasing small sample size influences the difference between
the two approaches. Here, we emphasize that the increasing
small sample size always favors the empirical distribution. On
the other hand, the performance of the GSD depends on how
well it fits to the distribution of responses observed in the
large sample. If the fit is good, the increasing small sample
size also favors the GSD. On the other hand, if the fit is poor,
the increasing small sample size does not necessarily improve
GSD’s performance.

Fig. 6a presents the results of the analysis. They take the
form of three histograms. These histograms visualize proba-
bility differences p̂GSD � p̂e for the three investigated small
sample sizes (i.e., 12, 24 and 50). Now, greater probability
mass to the right of 0 indicates that the GSD performs
better than the empirical distribution. Greater probability mass
to the left of 0 corresponds to the opposite situation, i.e.,
empirical distribution outperforms the GSD. To simplify this
analysis, in the plot, we show red hatched bars that indicate
for how many stimuli the GSD outperforms the empirical
distribution (the red hatched bar on the right) and for how
many the empirical distribution performs better than the GSD
(the red hatched bar on the left). Blue-colored parts of the
bars represent statistically insignificant probability differences.
When assessing which approach performs better, these blue
parts of the bars are discarded.

Clearly, the GSD outperforms empirical distribution for all
three small sample sizes. The effect is most clearly visible for
the small sample size of 12. As expected, as the size of a small
sample grows, empirical distribution’s performance improves
as well. Nevertheless, even for as many as 50 observations per
small sample (which rarely happens in typical MQA subjec-
tive experiments), the GSD still significantly outperforms the
empirical distribution.

According to the results, the GSD is a better choice than the

empirical distribution (which is typically used in this context)
when it comes to the resampling of subjective responses from
MQA studies. This opens up an opportunity to train better ML
models for the MQA applications, without having to organize
large subjective experiments (i.e., experiments with a large
number of participants). This result is yet another indication
of GSD’s superiority over methods typically used for MQA
data analysis.

D. Comparison With the State-of-the-Art Model

To the best of our knowledge, the GSD is the first two-
parameter discrete distribution proposed in the field of MQA
that models per stimulus subjective responses. Thus, there are
no state of the art solutions that could be directly compared
with the GSD. Existing solutions either rely on discretizing
continuous probability distribution [6], [30], require more data
than per stimulus subjective responses only [6], [13], or use
a multinomial distribution to model subjective responses [30],
[13].

The problem with solutions discretizing a continuous prob-
ability distribution is that their parameters are difficult to
interpret. Such models suffer from a similar set of problems
as the Ordered Probit model does (cf. Sec. III-A). If it comes
to solutions that require access to more data than responses
for a stimulus of interest only, these cannot be directly
applied to our goodness-of-fit and bootstrap capabilities testing
frameworks. In fact, such solutions are fundamentally different
from the GSD in the sense that they try to model the entire
subjective experiment, rather than a response distribution of
a single stimulus. Finally, solutions that utilize a multinomial
distribution can be practically equated to using an empirical
distribution of a sample of interest. For example, if we were to
extract from [30] and [13] just the part of the model describing
the per stimulus distribution, we would get a four-parameter
multinomial distribution. Since the data set on which we
operate in this paper consists of subjective responses expressed
on the five-level ACR scale, the empirical distribution of per
stimulus responses always takes the form of a four-parameter
multinomial distribution. In other words, models based on a
four-parameter multinomial distribution do not bring about any
reduction in the number of parameters. Thus, in principle,
they do not confer any advantage over using the empirical
distribution of a sample.

Another challenge that we confront when trying to compare
the GSD with other similar solutions is that we would have to
modify the existing solutions first. Put differently, to the best
of our knowledge, there are no existing models that could
be used as a drop-in replacement for the GSD. We argue
that comparing the GSD with a modified version of existing
solutions would be unfair and provide very limited information
regarding GSD’s performance.

To avoid modifying existing solutions, we could follow the
methodology proposed by Gao et al. in [31]. There, they take
several continuous probability distributions (among others,
Gaussian, half normal and Weibull distributions) and discretize
them before comparing them with their solution. We claim that
following this methodology would not be a good idea as well.
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(a) (b) (c)

Fig. 6. Histograms depicting the distribution of probability differences p̂GSD � p̂e in (a), p̂SLI � p̂e in (b), and p̂GSD � p̂SLI in (c). Three small sample
sizes are considered: 12, 24 and 50. Blue-coloured parts of the bars represent statistically insignificant probability differences. (There are so few insignificant
results that they are barely visible.) Red bars with the hatching indicate the sum of probability differences to the right and to the left of zero (excluding
insignificant results).

First, we do not know exactly how to discretize the continuous
distributions selected for comparison. Specifically, it is unclear
how to divide the probability mass of continuous distributions
to map it to a discrete domain that is of our interest.7 Second,
even if we discretized a continuous distribution, we would
end up with a distribution with difficult to interpret parame-
terisation (cf. the discussion about the Ordered Probit model
in Sec. III-A). Finally, the authors of [31] show that even the
best performing discretized continuous distribution is able to
properly model only 44.4% of the response distributions that
they consider. As discussed in Sec. III-B, the GSD is able
to properly model all response distributions originating from
typical MQA experiments (assuming the 5% significance level
for the goodness-of-fit hypothesis testing).

Notwithstanding the discussion above, we do compare the
GSD with a modified version of one model from the literature.
More specifically, we compare the GSD with a modified ver-
sion of the solution presented in [6]. To make the description
easier to comprehend, we refer to the model from [6] as
Li2020 model. Although we need to modify the Li2020 model
(before it could be compared with the GSD), we decide to
use it anyway. This is primarily due to the Li2020 model’s
popularity in the MQA community. Suffice to say that, to the
best of our knowledge, the Li2020 model is currently the only
candidate for ITU standardization if it comes to modelling of
subjective responses from MQA experiments.

The GSD operates only on responses given to a single
stimulus. In other words, the GSD needs to know only about
these subject responses that were assigned to a single stimulus
of interest. The Li2020 model requires information regarding
all responses of all subjects that scored the stimulus of interest.
Put differently, even though we are interested in responses
assigned to a single stimulus, we need to know about all
responses assigned by a given subject to all other stimuli in
the experiment to estimate the model parameters. Neither the
bootstrapped G-test nor the bootstrapping effectiveness test we

7Unfortunately, the authors of [31] provide very few details regarding
their methodology to be able to reproduce their method of discretizing the
continuous distributions that they consider.

use satisfy Li2020 model’s requirements. Both tests rely on the
assumption that responses assigned to the single stimulus of
interest are sufficient for the model.

Not to abandon the comparison between the GSD and
Li2020 models completely, we simplify the Li2020 model.
Specifically, we make it function in a manner similar to that
of the GSD. Put differently, we make the Li2020 model only
require responses assigned to a single stimulus of interest. This
results in a model defined by a Gaussian probability density
function (PDF) with its mean (µ) equal to sample mean (i.e.,
the MOS) and variance (�2) equal to the sample variance (s2).
(Note that “sample” here means a set of responses assigned to
a single stimulus of interest.) In the following text, we refer
to the modified Li2020 model as the Simplified Li2020 model
or SLI for short.

After estimating Simplified Li2020 model’s parameters, we
end up with a continuous normal distribution N (MOS, s2).
Since real subjective responses take the form of discrete
numbers ({1, 2, 3, 4, 5} in our case), we need to map from
the continuous domain of the normal distribution to the 5-
level scale of interest. To this end, we proceed in the same
manner as we do when fitting the Ordered Probit model to the
data. Specifically, we apply equations (2), (3), and (4).

Although the Ordered Probit and Simplified Li2020 models
look very similar, they are not identical. The key difference lies
in model parameters estimation. The Simplified Li2020 model
assumes observed subjective responses are realizations of a
continuous random variable following the normal distribution.
Importantly, realizations of such a random variable can take
any value (from plus to minus infinity). Hence, observing val-
ues from the {1, 2, 3, 4, 5} set exclusively is, probabilistically
speaking, very rare. The Simplified Li2020 model ignores this
fact and fits the normal distribution to these data using sample
mean and variance.8 Contrary to the Simplified Li2020 model,
the Ordered Probit model does not assume that observed
subjective responses are realizations of a continuous random
variable. More precisely, the continuous normal distribution

8This approach exemplifies what Liddell and Kruschke warn against in [7].
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present in the Ordered Probit model is treated as a latent
trait of the data. This latent continuous distribution is always
mapped to a discrete scale of interest first (cf. (2), (3) and
(4)), before fitting the model. Finally, although we describe the
Simplified Li2020 model here, the same discussion applies to
the original Li2020 model as well. Put differently, the original
full model also assumes that observed subjective responses
are realizations of a continuous normal random variable (even
though these responses only take values from the {1, 2, 3, 4, 5}
set).

1) G-test of Goodness-of-Fit: Let us first check how the SLI
model performs when it comes to describing response distri-
butions observed in typical MQA experiments. In this regard,
we will use the same G-test-based procedure, as the one we
applied to the GSD in Sec. III-B. Fig. 5 shows the comparison
of GSD, SLI and Ordered Probit in terms of G-test results.
Since only GSD data points fall below the black diagonal line,
it is the only model that properly reflects response distributions
observed in typical MQA experiments. Furthermore, the SLI
model performs worse than both the GSD and the Ordered
Probit models. Performance inferior to the Ordered Probit
model may be ascribed to SLI’s lack of mapping to the 5-
level scale, when estimating its parameters. In short, the SLI
and Ordered Probit models do not properly describe response
distributions observed in typical MQA experiments, whereas
the GSD model does.

2) Bootstrapping: We now test whether the SLI model can
perform better than the GSD if it comes to bootstrapping. To
ascertain this, we apply the same procedure to the SLI model
that we had applied to the GSD model in Sec. III-C. The result
is given in Fig. 6b. As shown in the figure, the SLI model
performs better than the empirical probability mass function
(EPMF) for small samples of size 12 and 24. However, it
performs worse than the EPMF for small samples of size 50.
Figure 6c presents the result of directly comparing the GSD
with the SLI model. Put succinctly, the GSD outperforms the
SLI model for all small sample sizes.

IV. DISCUSSION

Section III-A shows that GSD’s parameterisation is more
interpretable and intuitive when compared to that of Ordered
Probit. Importantly, Ordered Probit’s parameterisation is not
erroneous. Still, using it may lead to mistaken conclusions,
if used carelessly. Our results indicate that GSD’s parame-
terisation should be preferred over that of Ordered Probit.
This insight is relevant for the MQA research community
since many practitioners decide to first try using continuous
models (Ordered Probit being one of them) when they start
working with subjective responses modelling. Arguably, their
preference to choose continuous models stems from easier
availability of methods operating on such models. We can
also argue that continuous models elicit more attention during
standard statistics and probability classes and thus, are a nature
choice when it comes to data modelling. We want to protect
MQA practitioners against potential mistakes arising from
the use of continuous models to analyze discrete data. Our
results indicate that the GSD is a viable and better alternative

to continuous models when it comes to subjective responses
analysis (with responses expressed on a discrete scale).

Section III-B reveals that the GSD adequately describes
responses from typical MQA experiments. This property of the
GSD indicates that the GSD can serve as a basis for building
parametric methods for subjective responses analysis. Notably,
the power of parametric methods is greater than that of
their non-parametric counterparts. For example, a parametric
hypothesis testing framework can detect a smaller effect size
for a given sample size, when compared to a nonparametric
framework. This increased power may prove essential when
analyzing responses from controlled subjective experiments.
Since such experiments usually take place in a laboratory
environment and require the direct involvement of a researcher,
they can become resource intensive (both money- and time-
wise). It is desirable (or sometimes necessary) to reduce the
sample size of such experiments.9 A parametric GSD-based
data analysis framework would help address this problem. Due
to its parametric nature, it would be able to detect smaller
differences between various test conditions for a given sample
size, in comparison to other nonparametric methods.

Importantly, neither the GSD nor the Ordered Probit model
properly describe response distributions observed in broadly
understood or non-MQA subjective experiments (cf. Fig. 4b
and Fig. 4c). This implies that the models are not globally
applicable to modelling subjective responses expressed on the
5-level Likert scale. Potentially, more complicated models (i.e.,
models with more than two parameters) are necessary to model
phenomena present in responses from broadly understood or
non-MQA experiments.

Although our results indicate that the GSD does not properly
model responses coming from broadly understood and non-
MQA experiments, we strongly believe that the model can
be applied to data sets other than those originating from the
MQA community. Specifically, we expect the GSD to function
well in all those situations where we expect people to agree
and where their responses are expressed on a discrete scale.
Put differently, in MQA research, we assume that although we
gather subjective responses, these are the objective character-
istics of the stimulus that decide what is the consensus opinion
of human observers. Whenever this line of thinking applies to
a given data set, there is a strong likelihood that the GSD will
properly model the related response distributions.

Sec. III-C makes it clear that the GSD outperforms the
traditional approach (based on empirical distribution) when it
comes to subjective responses bootstrapping. This result means
that whenever there is a need to generate more results from
a small real-life sample, the GSD should be preferred over
empirical distribution to perform resampling. Such resampling
may prove necessary when building an ML-based perceptual
quality predictor. Building such a predictor requires a signif-
icant amount of data. Sufficiently large sample sizes may be
difficult to generate through a controlled experiment. For this
reason, a small real-life sample can be collected through a
controlled experiment. Then, the GSD-based bootstrapping can

9In MQA experiments sample size usually corresponds to the number of
people invited to assess quality of a set of stimuli.
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be used to enlarge the small real-life sample to a larger sample
(of a size sufficient for building an ML-based perceptual
quality predictor). Significantly, having such a mechanism at
hand also addresses the issue of controlled experiments being
money- and time-intensive. As discussed previously, a small
and not so expensive experiment may be organized to generate
a small real-life sample of responses. This sample can then
be enlarged using the GSD-based bootstrapping to achieve a
sample size that would otherwise require organizing a larger
and more expensive controlled experiment. At this point, we
would like to remind the reader that our results indicate that the
mechanism described above applies to responses from typical
MQA experiments exclusively.

Looking at Sec. II-D, the reader may wonder whether there
are methods of checking GSD’s bootstrapping capabilities
other than comparing the GSD with the empirical distribution.
Naturally, the answer is yes. For example, one could use either
the Akaike Information Criterion (AIC) [32] or the Bayesian
Information Criterion (BIC) [33]. Both AIC or BIC could be
computed for the GSD and the SLI model. Then, the resultant
AIC or BIC values could be compared and the model with a
lower value selected as the winner. However, since both AIC
and BIC are based on the number of model parameters and
the maximized value of the likelihood function of the model,
using those two measures would lead to the same conclusions
as the ones presented in Sec. III-D. This is because both the
GSD and SLI model have the same number of parameters and
because the GSD always attains a higher likelihood value (at
least when the likelihood is computed as shown in point 2-c) of
the procedure given in App. C in the supplemental material).

Sec. III-D evidences that the GSD outperforms the state-
of-the-art model, namely the Simplified Li2020 (SLI) model
from [6]. GSD’s superiority is clear in terms of the goodness-
of-fit testing for data from typical MQA experiments. Out of
the three models tested (GSD, SLI and Ordered Probit), only
the GSD properly describes response distributions observed in
the data. If it comes to bootstrapping, the SLI, similarly to the
GSD, outperforms the empirical distribution for small sample
size of 12 and 24. However, GSD’s improvement over the
empirical distribution is greater for the two cases. Furthermore,
only the GSD outperforms the empirical distribution for a
small sample size of 50. Finally, when we directly compare
the GSD with the SLI model, the former performs better for
all small sample sizes.

In Sec. III-D, we mention that the Li2020 model [6] is
currently the most popular method of subjective data analysis
in the MQA community. We also say that the model has been
presented to ITU as a candidate for standardization. The reader
may be surprised to see that the Li2020 model performed
rather poorly in the analyses that we presented in Sec. III. A
few things require consideration here. First, we do not use the
Li2020 model as is. Put differently, we simplify its structure
to make it function in accordance with the GSD model. This
means that the conclusions we reach do not necessarily apply
to the full formulation of the Li2020 model presented in [6].
Second, the Li2020 model takes into account (and corrects
for) subject bias present in subjective responses. Undoubtedly,
this is a positive feature of that model. For example, [34]

shows that Li2020 model’s ability to take into account subject
bias makes it function very well as a subjective experiment
precision estimator. Importantly, the simplified version of the
Li2020 model, that is, the SLI, does not take into account
subject bias. Undoubtedly, this impacts model performance.
Finally, although we argue in this paper that GSD’s ability to
model discrete data directly is something good, it comes at a
cost. Specifically, if subjective responses are, for some reason,
non discrete (e.g., 3.2 instead of 3), the GSD cannot be used
to model them. The Li2020 model does not suffer from this
limitation. In other words, the Li2020 model can be used to
analyze both discrete and non-discrete subjective responses.

V. CONCLUSION

Our work substantiates the following four claims:
1) The GSD has interpretable parameters that clearly and

intuitively describe response distribution shape (for re-
sponses gathered in MQA subjective experiments).

2) The GSD properly models response distributions ob-
served in typical MQA subjective experiments.

3) The GSD is better suited for bootstrapping of responses
from MQA subjective experiments in comparison to the
traditional approach based on empirical distribution.

4) The GSD outperforms the state-of-the-art model in terms
of goodness-of-fit testing (on data from typical MQA
experiments) and bootstrapping.

The results indicate that the GSD-based bootstrapping of
subjective responses from MQA experiments can be used to
build new ML-based perceptual quality predictors, without
having to organize large-scale controlled experiments. This
makes it possible to build ML-based predictors cheaper than
would otherwise be possible.

We hope that our discussion regarding interpretable GSD
parameters and risks inherent to using continuous models to
analyze discrete subjective responses, will convince the MQA
research community to reconsider current best practices and
recommendations.

There are at least three directions that our future work may
take. First, we would like to build a ML-based perceptual
quality predictor. In this regard, we plan to use the GSD-
based bootstrapping. Second, we would like to propose a GSD-
based parametric hypothesis testing framework for the analysis
of subjective responses from MQA experiments. Third, we
aim to test GSD’s performance on other openly available data
sets with subjective responses [35], [36], [37]. Importantly, we
need access to individual subjective responses for the latter to
be possible. Many researchers make available only aggregated
data (e.g., MOS scores [36], [37] or the number of responses
per response category [35]). Thus, we would like to openly
ask the researchers in the MQA community to publicly share
their data in the per response format. In other words, we would
ask them to structure their data so that there are as many
data rows as there are individual responses gathered in the
course of a subjective experiment. Each row should state the
experiment in which the participant issued the response and to
which stimulus. In general, the data format should conform to
the rules of the so-called tidy data [38]. Only the data sets that
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are structured this way can help extend the work presented in
this paper.

Finally, we invite everyone to use the GSD to analyze
subjective responses from their experiments and to make use
of the tools presented in this paper. Our GitHub repository
(https://github.com/Qub3k/subjective-exp-consistency-check)
contains software tools that make it easier to start using the
GSD. We hope the model and related tools will allow other
MQA researchers and practitioners to analyze their data more
efficiently and effectively.
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