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Abstract—The exponential demand for multimedia services
is one reason behind the substantial growth of mobile data
traffic. Video traffic patterns have significantly changed in the
past two years due to the coronavirus disease (COVID-19). The
worldwide pandemic has caused many individuals to work from
home and use various online video platforms (e.g., Zoom, Google
Meet, and Microsoft Teams). As a result, overloaded macrocells
are unable to ensure high Quality of Experience (QoE) to all
users. Heterogeneous Networks (HetNets) consisting of small
cells (femtocells) and macrocells are a promising solution to
mitigate this problem. A critical challenge with the deployment
of femtocells in HetNets is the interference management between
Macro Base Stations (MBSs), Femto Base Stations (FBSs), and
between FBS and FBS. Indeed, the dynamic deployment of
femtocells can lead to co-tier interference. With the rolling out
of the 5G mobile network, it becomes imperative for mobile
operators to maintain network capacity and manage different
types of interference. Machine Learning (ML) is considered a
promising solution to many challenges in 5G HetNets. In this
paper, we propose a Machine Learning Interference Classification
and Offloading Scheme (MLICOS) to address the problem of
co-tier interference between femtocells for video delivery. Two
versions of MLICOS, namely, MLICOS1 and MLICOS2, are
proposed. The former uses conventional ML classifiers while
the latter employs advanced ML algorithms. Both versions of
MLICOS are compared with the classic Proportional Fair (PF)
scheduling algorithm, Variable Radius and Proportional Fair
scheduling (VR+PF) algorithm, and a Cognitive Approach (CA).
The ML models are assessed based on the prediction accuracy,
precision, recall and F-measure. Simulation results show that
MLICOS outperforms the other schemes by providing the
highest throughput and the lowest delay and packet loss ratio.
A statistical analysis was also carried out to depict the degree of
interference faced by users when different schemes are employed.

Index Terms- HetNets, COVID-19, Interference, Machine
Learning, QoS, Statistical Visualization

I. INTRODUCTION

Recently, user demand for cellular data has surged due to
the rapid increase in the number of both smart devices and
mobile applications. Video streaming applications, including
video on demand and live streaming, account for the majority
of mobile data traffic. According to Cisco [1], video traffic
has increased at a compound rate of 26% from 2016 to
2020, and will account for 82% of all Internet traffic by the
end of 2022. As video traffic and applications are increasing
exponentially, the need for good resource management is of
paramount importance, especially in indoor spaces. Radio
signals in indoor environments are relatively weak due to
aspects such as path loss and fast fading. This indicates that
sometimes the bandwidth shared by users from Macro Base

Stations (MBS) is insufficient to support the delivery of high
quality multimedia content [2]. At other times, reliable and
fast delivery of multimedia content is of great significance for
the service provided [3]. In general, video streaming services
have high bandwidth and tight timing requirements, sometimes
exceeding the network support. This calls for an efficient way
to deliver videos, specific to ultradense HetNets [4].

One promising solution to improve the overall network
capacity is to provide 5G support as part of HetNets. HetNets
consist of small cells that are deployed within the macro
cell coverage area. Among the small cell solutions (i.e.,
femtocells, microcells, and picocells), femtocells have recently
received considerable attention in the new 5G service-based
architecture. Femtocells do not face any challenges related
to site availability, as users install FBS themselves and use
existing user broadband connections. They also introduce very
little overhead on mobile operators [5]. A femtocell provides
three types of access modes to its users. Open access allows
access to all User Equipment (UE) with no restriction, while
the closed access mode enables access only to authorized
users. The hybrid access enables access to authorized UEs
along with a limited number of predefined UEs in a prioritized
manner. A femtocell helps improve the indoor radio signal
quality, operates on a licenced spectrum, and provides good
wireless access service.

Due to limited radio resources, a femtocell shares the
same licenced range with a macrocell in the traditional cel-
lular network, leading to signal interference. The interfer-
ence between the macrocell and femtocell is called cross-
tier interference. The dynamic deployment of multiple fem-
tocells also determines a intercell interference known as co-
tier interference, which is one of the primary concerns with
femtocell deployment in HetNets. In an ideal HetNet, co-
tier interference can be minimized if femtocells are deployed
with appropriate planning. However, due to the plug and play
feature of femtocells, co-tier interference occurs even after
appropriate planning. In HetNets, there will always be more
femtocells than macrocells and a high number of femtocells
helps reduce the load of the macrocells. However, such a setup
introduces interference, in particular co-tier interference and it
is important to address it to ensure good QoS levels and high
user QoE.

All major video content providers (e.g., YouTube, Youku,
Netflix) have made great efforts to deliver the most exciting
content to users [6]. They require an increased amount of
bandwidth, which calls for the use of femtocells in a HetNet
environment. Femtocell employment results in interference,
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which ultimately affects the quality of service (QoS) of the
delivered content. Therefore, there is an important need to
mitigate the co-tier interference and ensure good quality of
the delivered multimedia content in HetNets.

Following considerable research efforts, many schemes have
been proposed to minimize the effect of co-tier interfer-
ence in HetNets, including clustering techniques, cognitive
approaches, resource allocation solutions and power control
techniques [7][8][9][10]. Among them, Sultan et al. [11]
discussed power and radio resource management techniques
to mitigate the co-tier interference in femtocells. However,
their proposed scheme measured the level of interference for
each femtocell only. Tian et al. [12] introduced a cognitive
interference management technique for the Internet of Things
(IoT) in a two-tier network. Pyun et al. [13] proposed a
heuristic optimization resource allocation scheme to mitigate
co-tier interference during uplink transmissions in femtocell
networks. Dai et al. [14] introduced an interference manage-
ment technique based on resource allocation and a common
clustering method in order to mitigate co-tier interference
in an Orthogonal Frequency Division Multiplexing (OFDM)-
based femtocell network. All different schemes from the
literature have proposed good unique solutions to mitigate co-
tier interference. However, as these methods cannot be used in
an online mode, novel techniques are sought, including using
ML [15].

This paper proposes the Machine-Learning Interference
Classification and Offloading Scheme, MLICOS, a ML-
based solution for the co-tier interference problem during
video delivery in HetNets. The proposed solution involves
a novel machine learning-based interference classification
algorithm and an offloading scheme applied on the most
affected traffic to mitigate the co-tier interference between the
femtocells and improve QoS levels.

Fig. 1 illustrates the two-tier HetNet environment deploy-
ment for video delivery considered in this work. It involves
multiple femtocells and one macrocell. We assume femtocells
employ the closed access mode. The proposed MLICOS
scheme gives femtocells a cognitive sense that helps classify
users based on the interference level they experience. MLICOS
selects the most affected users and offloads their traffic to
nearby FBS, reducing the co-tier interference and improving
the overall QoS. The ML algorithms used by MLICOS are
assessed in terms of prediction accuracy, precision, recall and
F-measure. Two versions of MLICOS are proposed, namely,
MLICOS1 and MLICOS2. MLICOS1 uses the conventional
ML algorithms and MLICOS2 uses the neural network algo-
rithms. Both versions are tested in the simulated HetNet and
their performance is compared with that of other state-of-the-
art solutions based on QoS metrics such as throughput, delay
and Packet Loss Ratio (PLR).

The main contributions of this paper are as follows:

1) We propose a ML solution to address the problem of co-
tier interference. The proposed solution has two stages.
The first classifies the users based on the interference
level, while the second offloads users from the high
interference class to nearby FBS.
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Fig. 1: An example of a two-tier HetNet, including one MBS
and several FBS, located in residential buildings that constitute
hotspots for wireless traffic. In this scenario, most UE is
streaming videos, while the rest is generating regular web
traffic. UE in a given region is either served by MBS or FBS,
which can lead to co-tier and cross-tier interference, affecting
QoS and user QoE.

2) We perform an in-depth performance analysis of the pro-
posed versions of MLICOS against three other schemes,
demonstrating the proposed solution’s superiority.

The rest of the paper is organized as follows. Section
II surveys some related works. Section III formulates the
problem. The system model and proposed MLICOS algorithm
are presented in Section IV. Performance evaluation, including
ML analysis, QoS assessment and result visualization and
analysis, is discussed in Section V. Finally, Section VI con-
cludes the paper and indicates some future research directions.

II. RELATED WORKS

A HetNet may involve a large number of UEs and access
points, making it challenging to meet the delay-sensitive QoS
demands for video applications and services. In addition, the
dynamic deployment of femtocells in HetNets may lead to co-
tier interference, which can reduce overall network capacity.
There are an abundant number of interference management
schemes and techniques that have been proposed in the litera-
ture. In this section, we briefly review some of the existing co-
tier interference management techniques. They are organized
into four different categories: clustering techniques, cognitive
approaches, resource allocation schemes, and power control
techniques.

A. Clustering Techniques

Clustering techniques identify similarities between users
based on vicinity, power, and cell-clustering policy, and group
them according to those characteristics that are common.
These groups are known as ”clusters”. In [16], the authors
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proposed a semi clustering of a victim-cell (SCVC) approach,
which clusters users based on UEs status (i.e., critical and
non critical), and accordingly, assigns resource blocks among
the various clusters. This helps to manage the co-tier inter-
ference. In [17], the authors divided the problem into two
subproblems. First, a femtocell clustering scheme based on
LINGO for mathematical modelling was used. Second, a novel
algorithm was proposed to allocate subchannels to femtocell
users. The proposed algorithm predicts the change tendency
of the path loss values of UEs. A clustering approach that
groups users and femtocells based on line of sight connectivity
was introduced in [18], while Wang et al. [19] proposed
a Data-Driven Power Control (DDPC) technique based on
an Affinity Propagation (AP) clustering algorithm. It clusters
the various femtocells based on the reference signal received
power (RSRP). In [20], the authors proposed a dynamic cell
clustering-based resource algorithm to mitigate co-tier interfer-
ence in femtocells. The proposed algorithm includes two steps,
one for assigning subchannels for users and the second helps
mitigate the interference by controlling the power. In [21], the
authors proposed a small cell power control algorithm (SPC)
and interference-managed hybrid clustering (IMHC) scheme,
to resolve the issue of co-tier and cross-tier interference in
the small cell base station cluster tiers. The proposed scheme
improved the system throughput with reduced interference but
did not considered other QoS metrics, such as jitter, PLR and
delay. In [22], the authors proposed an interference manage-
ment technique to mitigate the problem of co-tier interference
in ultra dense small cell networks. It deploys a clustering-based
interference management scheme in which the subchannel
resources are allocated in the process of cluster generation.
While clustering techniques find common characteristics and
group users into different clusters, classification algorithms use
predefined classes to which users are assigned.

B. Cognitive Approaches

Cognitive approaches have been proposed for a long time in
the literature to mitigate co-tier interference. Tian et al. [12]
proposed a cognitive technique for a network of femtocells
serving multiple IoT devices. The authors described two
cognitive Interference Alignment (IA) schemes. The first offers
a nulling-based IA scheme that aligns the co-tier interference
into the orthogonal subspace at each IoT receiver. The second
presents a partial cognitive IA scheme that further enhances
the network performance with low signal to noise ratio v
alues. Zhang et al. [23] proposed a cognitive approach to
mitigate co-tier interference in femtocells. In the proposed
scheme, a FBS allocates component carriers to its UE for
transmission. The UE uses RSRP values to perform path
loss measurements from its FBS and neighbouring FBS. If
the RSRP value is low on one of the component carriers,
the FBS selects that component carrier as the primary to
help reducing the co-tier interference. Similarly, a Cognitive
Radio Femtocell Base Station (CFBS) was proposed in [24].
The CFBS constructs a radio environment map (REM) by
sensing the radio environment. The REM is used to assign
resources to authorized users and therefore helps mitigate

interference. A dynamic algorithm based on a distance-based
approach was proposed in [25]. It minimizes the interference
in a Device-to-Device (D2D) enabled cellular network and
guarantees QoS for both cellular and D2D communication
links. Finally, Wang et al. [26] used a cognitive relay to
increase the capacity of femtocell users and avoid co-tier
interference among femtocells.

C. Resource Allocation

Resource allocation techniques basically help allocate re-
sources in an efficient manner in HetNets, along with reduc-
ing the co-tier interference. In [27], the authors proposed a
statistical resource allocation scheme that helps mitigate the
cross-tier, co-tier and cross-link interference in ultra-dense het-
erogeneous networks. They considered Time Division Duplex
(TDD) mode for uplink and downlink transmission, which
can lead to cross-slot interference. This can be avoided by
using the Frequency Division Duplex (FDD) mode. In [28],
the authors proposed a Variable Radius algorithm for the
enhanced distribution of resources and interference manage-
ment in a LTE femtocell network. The scenario considered
the femtocell’s open access mode, where all users are au-
thorized to connect to the femtocell network. In [29], the
authors described a bat algorithm based on the nearest-integer
discretization method to minimize the interference in a closed
access femtocell network. In [30], the authors analyzed the
issue of resource allocation in 5G networks by classifying the
various proposed resource allocation schemes and assessing
their ability to enhance service quality. In [31], the authors
considered the hybrid access mode in a FBS deployment sce-
nario and proposed a resource allocation technique based on a
cuckoo search algorithm, RACSA, for cross-tier interference
mitigation in Orthogonal Frequency Division Multiple Access-
based Long Term Evolution (OFDMA-LTE) system.

D. Power Control Techniques

Chen et al. [32] proposed a threshold-based handover
algorithm to mitigate co channel interference in a two-tier
femtocell network. The proposed scheme considers a Signal
to Interference and Noise Ratio (SINR) value as the threshold
to manage the transmission power of the FBS. Unfortunately,
only the uplink co channel interference was considered. In
[33], the authors proposed two power control methods to
reduce the interference effect in a two-tier network using
SINR. Both methods were able to mitigate well the impact
of interference by controlling the transmission power. An
Active Power Control (APC) technique was proposed in [34],
which helps to reduce the intercell interference and reduces
wastage of unnecessary power consumption in a green fem-
tocell network. In [35], the authors proposed a soft frequency
reuse (SFR) scheme to minimize the interference and increase
the network throughput. The proposed scheme solves the
interference problem of densely deployed SCs by dividing the
cell region into centre and edge zones. The proposed scheme is
based on n on/off switches, which tackles the elevated power
consumption problem and enhances the power efficiency of
5G networks. In [36], Stackelberg game theory was used to
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formulate a power control scheme that mitigates interference
in a shared spectrum two-tier network. The proposed scheme
was compared with the baseline scheme, where a two-way
pricing mechanism was integrated into the Stackelberg game
to reduce the co-tier interference among femtocells.

The schemes mentioned from the research literature help
mitigate co-tier interference among femtocells. To the best of
our knowledge, no ML-based solution has been proposed to
assess the level of interference faced by users when deliver-
ing multimedia content and address the co-tier interference
problem in a 5G HetNets. This paper proposes a scheme
that considers video content to be delivered among femtocell
users and mitigates co-tier interference, which impacts video
delivery content by making efficient use of resources while
maintaining high QoS values in 5G HetNets.

III. PROBLEM FORMULATION

We consider a heterogeneous network environment consist-
ing of a set of MBSs M = {M1,M2,M3, ...,Mm, ...,MNm}
and a set of FBSs F = {F1, F2, F3, ..., Ff , ..., FNf

}, within
the coverage area of the MBSs. A simplified version of the
network scenario with a single MBS is illustrated in Fig. 1. We
assume that users are randomly allocated to the nearest FBS.
Let U denote a set of UEs that is randomly and uniformly
distributed: U = {u1, u2, u3..........ui, ....., uNu}.

The communication quality in the context of existing inter-
ference between user ui and Ff , in the coverage area of Mm,
is measured by αi,f , computed as follows:

αi,f =
P fi G

f
i

No
2 +

∑
ujεU

Pj
mGj

m +
∑
ujεU

Pj
fGj

f
(1)

where P fi and Pmj denote the transmission power of UEs
relative to Ff and Mm, respectively. Gif denotes the gain
of the channel between ui and the allocated Ff while Gjm

designates the gain of the channel between uj and the allocated
Mm. No is the channel’s average white noise power. Similarly,
the communication quality in the presence of interference
between user ui and Mm is expressed as follows:

αi,m =
Pmi G

m
i

No
2 +

∑
ujεU

Pj
mGj

m +
∑
ujεU

Pj
fGj

f
(2)

The maximum achievable throughput by the network can
be expressed by Shannon’s Law and is given by:

Thr =
∑
uiεU

(Bfi log2(1 + αi,f ) +Bmi log2(1 + αi,m)) (3)

where Thr is the sum of throughput in the network, and
Bfi and Bmi are the bandwidths available for user ui when
associated with FBS Ff and MBS Mm, respectively.

The total round trip delay experienced by a packet ex-
changed between user ui and FBS Ff can be expressed as
follows:

Di,f = Dt
i,f +Dpr

i,f +Dp
i,f +Dq

i,f (4)

where, Dt
i,f is the transmission delay, defined as the time it

takes to transmit packets; Dpr
i,f is the radio propagation delay,

described as the time packets take to reach the receiver; Dp
i,f

is the signal processing delay, indicating the time to decode
the packet at the receiver; and while Dq

i,f is the queuing delay,
specifying the packet waiting time in the buffer. If we assume
that the radio propagation delay and signal processing delay
are very small [37] and are negligible, the total round trip
packet delay can be expressed as:

Di,f = Dt
i,f +Dq

i,f (5)

Similarly, the round trip delay experienced by a packet ex-
changed between ui and MBS Mm can be computed as:

Di,m = Dt
i,m +Dq

i,m (6)

Thus, the mean delay values for user ui are:

D̄i,f =
∑

Di,f/Ni,f (7)

D̄i,m =
∑

Di,m/Ni,m (8)

where Ni,f and Ni,m are the numbers of delay samples.
Assuming that loss is a random process that follows a

Bernoulli distribution [38], [39], [40], the Packet Loss Rate
(PLR) between FBS Ff and ui is expressed as:

σi,f =
√
Xi,f ∗ Yi,f/Ni,f (9)

where Xi,f is the probability of dropping a packet, Yi,f is
the probability of receiving a packet (can also be expressed as
(1-Xi,f )) and Ni,f is the total number of samples. Likewise,
PLR between MBS Mm and ui is expressed as:

σi,m =
√
Xi,m ∗ Yi,m/Ni,m (10)

The problem described in this work has three goals:
G1, G2andG3, expressed in terms of the following equations:

1) Maximize the network throughput, calculated according
to Eq. (3):

G1 = max(Thr) (11)

2) Minimize the average packet delay across all users
(calculated according to Eqs. (7) and (8):

G2 = min

([∑
uiεU

D̄i,f +
∑
uiεU

D̄i,m

]
/Nu

)
(12)

3) Minimize the average PLR across all users (calculated
according to Eqs. (9) and (10):

G3 = min

([∑
uiεU

σi,f +
∑
uiεU

σi,m

]
/Nu

)
(13)

These goals are achieved by reducing the co-tier interference
in the femtocell-enhanced network environment, thereby, im-
proving the quality of the multimedia content delivery.
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Fig. 3: MLICOS interference management service as part of
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IV. SYSTEM MODEL

A. System Architecture

This paper considers an Open-Radio Access Network (O-
RAN) architecture, supported in a 5G network environment
[41]. Within the O-RAN architecture, the functions of the
traditional RAN are split into multiple entities with open inter-
faces between them: Remote Radio Unit (RRU), Distributed
Unit (DU) and Centralised Unit (CU). These entities can be
developed by different vendors, allowing for flexibility.

Fig. 2a illustrates RAN components in a traditional network
context. The traditional RAN is considered a black box in
which the internal interfaces are closed and operated only by
a single vendor. Fig. 2b shows the O-RAN-enhanced system
architecture. According to the 3GPP standards, CU consists
of a logical unit that integrates the Radio Resource Control
(RRC), Service Data Adaptation Protocol (SDAP) and Packet
Data Convergence Protocol (PDCP). These are a part of both
the User Plane (UP) and Control Plane (CP). CP carries the
signalling traffic and UP transports the user traffic. CU also
controls the operations of one or multiple DUs, which are
logical units that host Radio Link Control (RLC), Medium
Access Control (MAC), and are partially controlled by the
CU. RRU is integrated with the 5G MIMO antenna [42].

An essential part of this system architecture is the RAN
Intelligence Controller (RIC) which contains various artificial
intelligence (AI)/ML models that help improve network oper-
ations. AI/ML models situated in the RIC controller support
many microservices, including handover optimization, QoS
optimization, network slicing and interference management
[43]. The proposed MLICOS is part of this intelligence (see
Fig. 3).

As illustrated in Fig. 4, MLICOS includes an Interference
Management Server (IMS) that acquires information on both
co-tier and cross-tier interference in 5G HetNets. MLICOS
focuses on co-tier interference and, as discussed, involves clas-
sification and traffic offloading. Classification identifies low
co-tier interference users (C-1) and high co-tier interference
users (C-2). MLICOS reduces the co-tier interference for C-2
users by offloading user traffic to the nearby FBS, depending
upon the availability of resources at that particular FBS. The
resource monitor keeps a track of resources at a particular
FBS which helps in the offloading process. Traffic offloading
is performed using a solution such as the one proposed in [44].

B. Machine Learning Interference Classification and Offload-
ing Scheme (MLICOS)

The proposed approach is a ML solution that classifies users
into two different classes based on the level of experienced
co-tier interference within the FBS coverage area: low co-
tier interference class (C-1) and high co-tier interference class
(C-2). The MLICOS focuses on C-2 users and offloads their
traffic to a nearby FBS to improve the QoS and QoE metrics
for video streaming services.

The proposed algorithm has three phases, as shown in
Algorithm 1: Initialization, Classification, and Offloading. In
the Initialization phase and, U is the set of UEs, randomly and
uniformly distributed. Let Bs be the set of all base stations as
Bs = {B1, B2, . . . , BNm , BNm+1 , . . . , Bt, . . . , BT }, where T
= Nm + Nf . Let Rt be the available set of resource blocks
at BSt, defined as Rt= {rt1, rt2, ..., rtj , ..., rtNt

r
}, where N t

r is
the number of resource blocks at BSt. We assume that the
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Algorithm 1: MLICOS Algorithm
Goals: Increase Throughput (Thr), Decrease Delay (Dt) and

PLR (σ)
Phase 1: Initialization :

1. Nu, ∀ui ∈ U ;
2. C1= {}, C2= {};
3. Bs = {B1, . . . , Bt, . . . , BT };
4. Threshold α;
5. User Interference Matrix (UIM);
6. User Association Matrix (UAM);

Phase 2: Classification
foreach ui ∈ U do

foreach rtj ∈ N t
r do

if UIM [i, j] < α then
C1 ←C1 ∪{ui}
user in the low co-tier interference class

else if UIM [i, j] ≥ α then
C2 ←C2 ∪{ui}
user in the high co-tier interference class

i++;
end

end
Phase 3: Offloading

foreach ui ∈ C2 AND Bt ∈Bs do
if UAM [i, t] = 1 then

Compute Si as in Eqs. (16);
Determine sig as in Eqs. (17);
foreach rtj ∈ N t

r do
Offload ui to a new FBS Bg having the

available resource blocks and which guarantees
maximum throughput, lowest delay and PLR
according to Eqs. (11), (12), and (13);

Update UIM and UAM
end
;

i++;
end

resource blocks available at each BS t ∈ Bs are the same. This
assumption does not affect the generality of the solution. These
resource blocks are further divided into subchannels and are
assigned to the UEs associated with BSt. In the initialization
phase, two matrices are filled. They are defined as follows:

UIM =


UIM1,1 . . . UIM1,Nt

r

UIM2,1 . . . UIM2,Nt
r

...
. . .

...
UIMNu,1 . . . UIMNu,Nt

r

 (14)

The User Interference Matrix (UIM) is introduced in Eq.
(14), where UIM [i, j] indicates the effect of the interference
experienced by ui on resource block rtj . The interference effect
is assessed using SINR values, which are calculated according
to Eq. (1) with UIM [i, j] = αi,j .

UAM =


UAM1,1 . . . UAM1,BT

UAM2,1 . . . UAM2,BT

...
. . .

...
UAMNu,1 . . . UAMNu,BT

 (15)

The User Association Matrix (UAM) is presented in Eq.
(15), where UAM [i, t] indicates the association of each ui
with one BS BSt, which can be either the MBS or FBS.
In this paper, we consider UAM [i, t] as a binary variable. If
ui is not associated with BSt, UAM [i, t] = 0; otherwise,
UAM [i, t] = 1. Since this paper focuses on co-tier inter-
ference, we consider UEs that is associated with FBSs only
(t > Nm). Both matrices are updated after each iteration.
Note that we assume that only one user is associated with one
resource block per time slot in each FBS. This assumption
enables disregarding the interference between users within the
same cell.

In the classification phase, we categorize users based on
their experienced level of interference. In this paper, two levels
are considered: high (C-2) and low (C-1). We consider α as
a threshold value for assessing of the interference between
a user and a selected FBS. Using ML algorithms, users
who experience interference above the threshold value α are
assigned to C-2; the rest of the users are assigned to C-1.
We tune the hyperparameters for the ML algorithms and then
perform user classification. The novelty of the ML algorithms
is shown in the second stage of Algorithm 1.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3187607

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

In the offloading phase, C-2 users are offloaded to a nearby
FBS that has enough resource blocks to meet the user’s
requirements while also contributing to the achievement of
goals G1, G2, and G3. To this end, we use the received signal
strength to identify the most suitable FBS. We define the vector
Si as follows:

Si = {si1, si2, ..., sif , ..., siNf
} (16)

where sif is the signal strength experienced by user ui with
respect to FBS Ff . We compute the signal strength for each
C-2 user and offload the user’s traffic to FBS g, which has
the lowest signal strength and available resource blocks, as
indicated in Eq. (17).

sig = min{sif |∀f, 1 ≤ f ≤ Nf} (17)

Note that by offloading users from macrocells to nearby
femtocells, more resource blocks at the macrocell level are
made available, which can be used to improve the QoS of
users in C-1, and hence contribute to the realization of G1,
G2, and G3. Additionally, note that offloading all C2 user
traffic to new FBSs does not guarantee that there will be no
interference; hence, the proposed scheme runs iteratively until
all UIM values drop below α or in case no improvement has
been achieved in the previous iterations.

C. Machine Learning-based Algorithm

We formulate the given challenge as a ML-based problem
and use the binary classification method as a solution since
it requires less training time and is usually faster to converge
[45]. Fig. 5 illustrates the main components of the proposed
solution. First, simulations are carried out using the Network
Simulator NS-3. After each iteration, relevant data are saved in
a Comma Separated Value (CSV) file and constitute our sim-
ulated dataset. The reason we opted for a simulated dataset is
threefold: 1) we avoid any confidentiality and privacy liability
that may arise from using a real-world dataset; 2) we know
the environment used for generating the dataset. Therefore,
we can easily make changes to simulation parameters along
with hyperparameters of the ML models [46]; and 3) the
generated dataset is specific to the scenario we are examining
since it solely focuses on one type of traffic (i.e., video
traffic). The collected data contain values of the following
parameters: SINR, RSRP, Reference Signal Received Quality
(RSRQ) and cell ID. The CSV file is given as input in the
Python environment for classification purposes. The first step
is data preprocessing, which is required for replacing and
eliminating nonnumeric or symbolic features from a dataset.
Next, the feature selection stage helps eliminate noise in the
data and focuses only on the relevant data in a dataset. For the
ML models used by MLICOS, SINR is the target feature of
interest. The dataset is split into 80% training data and 20%
test data, which are used during training and testing of our
proposed solution, respectively [47].

Two versions of MLICOS were designed: MLICOS1 and
MLICOS2. MLICOS1 employs supervised ML techniques,
mainly Support Vector Machine (SVM) and Random For-
est (RF). While SVM is one of the best classifiers and is

TABLE I: Simulation Parameters

Parameter Value
Number of MBS 1
Number of FBS 2

Femtocell Coverage 10m
Max. MBS Transmit Power 46 dbm
Max. FBS Transmit Power 20 dbm

Downlink Frequency 2150 MHz
Uplink Frequency 1940 MHz

Width of Band 90 MHz
Duplex Spacing 190 MHz

Number of Resource Blocks 100
Number of Subchannels 1200
Subcarrier Bandwidth 15 KHz

Mobility Model Constant Position
Femtocell Access Closed Access

TABLE II: Properties for the Video Used for Transmission

Parameter Value
Width 1280
Height 720

Total Bitrate 1209Kbps
Frame Rate 30 fps

Total Duration 10 seconds
Total Frames 300 frames

considered a benchmark in the field of statistical learning
and ML [48], RF is an ensemble learning algorithm that
can ensure high accuracy while handling multiple outliers
in training and test datasets. MLICOS2 deploys two neural
network approaches, Artificial Neural Network (ANN) and
Convolutional Neural Network (CNN) [49]. The ANN and
CNN used a three-layer neural network structure composed of
input, hidden and output layers. We employed the Rectified
Linear Activation Function (ReLU) for training the hidden
layers of the neural networks. ReLU prevents an exponential
growth in the computation required to operate neural networks.
As we formulated the given problem as a binary classifi-
cation problem, we used the Sigmoid (Logistic) activation
function for the output layer. Both neural network models
were trained from scratch. We used the Stochastic Gradient
Descent (SGD) optimization algorithm for training the neural
network models and applied a binary cross-entropy loss. Our
solution was implemented using the Keras library in Python.
We used the GridSearchCV class from the scikit-learn Python
library. GridSearchCV enabled selection of the best parameters
from a hyperparameter set during training [50]. The learning
parameters used for MLICOS2 are batch size, learning rate,
number of epochs and momentum. We trained our neural
network models for 250 epochs with a learning rate of 0.1.
We used a mini batch of 256 and 0.9 as momentum.

We set α as the threshold value for both MLICOS1 and
MLICOS2. After the testing phase, the algorithm outputs the
classes of users (C-1 and C-2) and the associated SINR values
for each user. The simulations in NS-3 are performed until
there are no users affected by the interference (i.e., in the C-2
class) or no significant improvements have been achieved in
the past iterations (i.e., the number of users in the C-2 class
remained the same).
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V. PERFORMANCE EVALUATION

We consider a heterogeneous scenario with one MBS (Nm
= 1) and two FBSs (Nf = 2) along with a number of users
Nu which increases linearly from 50 to 130. Gercom’s Evalvid
model in NS-3 is used for video transmissions. The Evalvid
model transmits the video in the form of a trace file. The
sender and receiver trace files are compared, allowing for the
recreation of the video at the receiver end. An H.264 encoded
video consisting of 300 frames with a data rate of 1200 Kbps
and frame rate of 30 fps was selected for streaming. Table II
presents additional video stream details.

All users are randomly allocated to the nearest FBS within
the MBS coverage area. Any user between the two FBSs and
MBS is subjected to strong interference. The macrocell also
transmits signals in the same channel within the same area,
resulting in interference. In this work, we consider only the
co-tier interference between the femtocells and their associated
users according to Eq. (1). Table I depicts the simulation
parameters used.

The performance of the proposed scheme employing SVM
and RF classifiers in turn is assessed in terms of accuracy,
precision, recall and F-measure. The proposed scheme is
also assessed in terms of the following QoS parameters:
throughput, PLR and delay.

A. MLICOS Classifier Assessment

The classifier assessment is evaluated based on the follow-
ing metrics:

1) Accuracy: defined as the percentage of correctly classi-
fied predictions (CP ), divided by the total number of predic-
tions (T ) made by a model in a dataset.

Accuracy =
CP

T
(18)

where CP and T are defined as:

CP = TP + TN (19)

T = TP + TN + FP + FN (20)

where TP denotes true ositive, FP means false positive,
TN represents true negative and FN is false negative. TP
and TN correctly indicate the presence or absence of some
characteristics, whereas FP and FN incorrectly identify the
presence or absence of the same characteristics, respectively.
In this paper, the characteristics are the interference levels and
TP , FP , TN and FN are computed based on the correct
and incorrect classification of a user based on interference
level when comparing the model prediction with the actual
classification values.

Fig. 6a depicts the accuracy for MLICOS employing SVM,
RF, ANN, and CNN, respectively. We observe that the CNN
achieves the highest accuracy (99.02%), followed by RF
(98.91%), ANN (96.38%), and SVM (95.47%).

2) Recall: defined as the percentage of TP predictions by
the total number of actual positive predictions TP+FN .

Recall =
TP

TP + FN
(21)

Fig. 6b illustrates the recall in terms of percentage for
MLICOS employing SVM, RF, ANN, and CNN. We observe
that the CNN provides the highest recall (99.11%), followed
by RF (98.04%), ANN (95.82%), and SVM (91.63%).

3) Precision: defined as the percentage of TP predictions
by the total number of positive predictions TP+FP .

Precision =
TP

TP + FP
(22)

The precision for MLICOS employing SVM, RF, ANN, and
CNN is shown in Fig. 7a. We observe that the CNN achieves
the highest precision (98.63%), followed by RF (97.56%),
ANN (96.27%), and SVM (93.24%).
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TABLE III: Machine Learning Model vs. Performance Metrics

Model Accuracy Recall Precision F-measure
SVM 95.47% 91.63% 93.24% 92.42%
RF 98.91% 98.04% 97.56% 97.79%
ANN 96.38% 95.82% 96.27% 96.04%
CNN 99.02% 99.11% 98.63% 98.86%
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Fig. 7: Precision and F-Measure

4) F-Measure (FM): defined as the harmonic mean of
precision and recall and is given by:

FM = 2 ∗ Precision ∗Recall
Precision+Recall

(23)

Fig. 7b shows the F-measure for the four classifier models
used in the proposed MLICOS algorithm. We observe that
when the CNN is employed, the results include the highest
F score (98.86%), followed by the scenario when RF
(97.79%), ANN (96.04%), and SVM (92.42%) are used
respectively. Table III summarizes the assessment results. We
propose two versions of MLICOS, namely, MLICOS1 and
MLICOS2. The former uses SVM and RF as classification
models, while the latter uses the ANN and CNN. Based on the
superior performance results achieved and presented in Table
III, the RF-based MLICOS1 and the CNN-based MLICOS2
were selected to be compared in the testing phase.

B. QoS Assessment

When testing the performance of MLICOS1 and MLICOS2,
it was compared with that of the Proportional Fair (PF),
Variable Radius + Proportional Fair (VR+PF) [28], and a
Cognitive Approach (CA) [23]. The performance was assessed
in terms of QoS parameter throughput, delay and PLR.

Fig. 8 illustrates the average throughput with respect to
the number of users for the three schemes. For instance,
MLICOS1 using RF achieved an average throughput of 6500
Kbps per user, which was 83.88%, 66.79% and 41.52%

TABLE IV: Comparison between QoS results when using PF,
VR+PF, CA and MLICOS (both versions) schemes

Users Scheme Throughput (Kbps) Delay (ms) PLR (%)

50

PF
VR+PF
CA
MLICOS1
MLICOS2

3974.54
5951.78
6757.14
7859.65
8017.68

440.38
327.51
106.47
10.742
9.82

39.61
22.37
16.44
0.15
0.12

70

PF
VR+PF
CA
MLICOS1
MLICOS2

3765.20
5514.54
6385.51
7504.77
7781.24

558.72
401.57
125.86
33.43
29.57

65.55
48.91
39.72
0.72
0.57

90

PF
VR+PF
CA
MLICOS1
MLICOS2

2282.66
4879.23
5417.71
7115.92
7369.66

681.71
498.67
161.55
58.15
52.14

78.66
62.63
58.2
1.21
0.82

110

PF
VR+PF
CA
MLICOS1
MLICOS2

2041.24
3597.72
4971.89
6904.88
7018.52

954.1
513.56
214.62
75.41
70.93

87.66
78.711
71.56
4.97
3.75

130

PF
VR+PF
CA
MLICOS1
MLICOS2

1050.78
2165.68
3813.64
6521.54
6828.92

1029.58
647.01
302.42
105.94
96.58

98.57
89.27
82.92
5.53
4.38

higher than the values output by the PF, VR + PF, and CA
schemes, respectively. On the other hand, using CNN-based
MLICOS2, the achieved average throughput was 6900 Kbps
per user, which was 84.61%, 68.28%, 44.15% and 4.51%
higher than the throughput recorded when the PF, VR + PF,
CA and MLICOS1 schemes were employed, respectively.

Fig. 9 depicts PLR as a function of the number of users. We
observe that PLR per user remained under 6% when using both
MLICOS1 and MLICOS2. The value obtained by MLICOS1
was 96.912%, 87.69%, and 63.22% lower than the results of
PF, VR + PF, and CA, respectively. The values obtained using
the MLICOS2 scheme were 97.01%, 88.21%, 64.13% and
9.97% lower than the results recorded when employing PF,
VR+PF, CA, and MLICOS1, respectively.

Fig. 10 shows the delay with respect to the number of users.
Using MLICOS1, the average delay per user was less than 110
ms, compared to larger values achieved by the PF, VR + PF,
and CA schemes. The values obtained were 88.73%, 78.68%,
and 46.17% lower than the delays incurred by PF, VR + PF,
and CA, respectively. With MLICOS2, the average delay per
user was less than 100 ms, much shorter than the large delay
values achieved by PF, VR + PF, CA, and MLICOS1. The
values obtained were 90.25%, 80.04%, 47.68% and 10.68%
lower than the delays of PF, VR+PF, CA, and MLICOS1,
respectively.

Based on the above QoS results, MLICOS2 performs better
than the MLICOS1. Hence, MLICOS2 can be used in a
real-world scenario with high dimensional datasets and can
perform better than other classification models in terms of
accuracy, precision, recall and F-measure. Our simulation
results show that the goals described in Eqs. (11), (12), and
(13) are achieved by the proposed solution. Table IV presents
a summary of the QoS results when using MLICOS1 and
MLICOS2 along with three other solutions.
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C. QoE Estimation

As illustrated in Fig. 1, we consider video streaming to be a
high priority service for users. Thus, objective quality assess-
ment of video sequences (as perceived by a user) becomes
crucial. We consider Peak signal-to-noise-ratio (PSNR) as an
estimation metric for the QoE. It is a signal quality metric
that is computed over all pixels in the video with respect to
a reference video. The PSNR value is calculated and mapped
directly on the Mean Opinion Score (MOS), as specified in
ITU-T J.144 standard. The PSNR estimation outcomes are
shown in Fig. 11 over 300 frames for 130 users. The PSNR
profiles are different for all five schemes, and the perceived
quality experienced by C-2 users is much better under both
versions of MLICOS. Fig. 12 shows the error bar, which
uses the standard deviation as one of the uncertainties over
the mean of the PSNR achieved when different schemes are
used. We observe that while incurring low variations, the mean
value of PSNR under MLICOS2 was 52.7%, 42.96%, 26.2%
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Fig. 11: PSNR Estimation

Fig. 12: Mean and Standard Deviation of PSNR

and 3.3% higher and incurred much lower variations than
what was achieved when PF, VR+PF, CA, and MLICOS1
were employed, respectively, while incurring much lower vari-
ations. The numerical results show how MLICOS2 improves
the user’s QoE in terms of PSNR, outperforming the other
schemes.

D. Statistical Visualization

To visualize the degree of interference faced by a user under
all schemes, we used the box plot (data analysis) method in
R. Using this method, we can easily compare the different
schemes in terms of the degree of interference experienced
by C-2 users. The UIM values (according to Eq. (14)) are
normalized using the min-max normalization method.

Fig. 13a, 13b, 13c, 13d and 13e show the box plots for PF,
VR + PF, CA, MLICOS1 and MLICOS2, respectively. The
degree of interference is indicated by values ranging between
0 and 1. When values are closer to 1, they imply that users
experience high co-tier interference, whereas when values are
near 0, they indicate that users are the least affected by the
co-tier interference.

Fig. 13a shows that when the PF scheme is applied for 50
users, most users face very little interference, but when the
number of users increases to 130, the normalized interference
value for each user is very close to 1, and almost all users are
affected by co-tier interference. Fig. 13b depicts the box plot
visualization for the VR + PF scheme. The box plot results of
the VR + PF scheme are better than those of the PF scheme.
Indeed, when the number of users is below 90, most users
experience low co-tier interference. Nevertheless, when the
number of users increases to 130, most users experience high

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3187607

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

(a) Box plot for PF (b) Boxplot for VR+PF

(c) Box plot for CA (d) Boxplot for MLICOS1

(e) Boxplot for MLICOS2

Fig. 13: Degree of interference faced by users under various
compared schemes. The Y axis shows the degree of interfer-
ence normalized values (0 to 1 range).

co-tier interference. Fig. 13c shows the box plot for the CA
scheme. When the CA scheme is deployed, we observe that
when the number of users reaches 130, only 50% of users
are affected by high co-tier interference. Figs. 13d and 13e
illustrates the box plot for MLICOS1 and MLICOS2. We
observe that users hardly experience any interference. Indeed,
even when the number of users reaches 130, a tiny percentage
of users experienced co-tier interference. This indicates that
both versions of MLICOS maintain good QoS levels and
mitigate the co-tier interference by making efficient use of
resource blocks.

E. Statistical Analysis

Fig. 14 shows a direct comparison between the variability of
the different schemes in terms of the mean, median, maximum
value and standard deviation. In relation to measuring the
degree of interference, we showed in the above section that the
normalized values decide whether the user experiences high

Fig. 14: Variability of different schemes
TABLE V: Comparative statistical analysis of the degree of
interference when different schemes are employed

Scheme Mean Median Max. Value Std. Dev
PF 0.46 0.53 0.98 0.3
VR+PF 0.31 0.32 0.78 0.26
CA 0.21 0.16 0.49 0.17
MLICOS1 0.047 0.049 0.07 0.01
MLICOS2 0.035 0.037 0.05 0.002

or low co-tier interference. Fig. 14 illustrates the maximum
value for all schemes. In the case of PF, when there are 130
users, the ultimate value a user obtains is approximately 0.98,
which is very close to 1, and most users experience high co-tier
interference. The VR+PF scheme performs better than the PF
scheme. When 130 users are considered, the maximum value
any user faces is approximately 0.78, and the users experience
high co-tier interference. For 130 users, the CA scheme gives
the maximum value of 0.49, which shows that 50% of the users
are still affected by high co-tier interference. MLICOS1 incurs
a maximum value of approximately 0.07 whereas MLICOS2
has a value of 0.05, which is very close to 0. The medians for
PF, VR+PF, CA, MLICOS1, and MLICOS2 are: 0.53, 0.32,
0.16, 0.04, and 0.03, respectively. The error bar indicates how
precise the measurement is or how much is the variation from
the reported value. We used the standard deviation as one
of the uncertainties to plot the error bars. We can conclude
from Fig. 14 that both versions of MLICOS incur much lower
variations and errors than those associated with the PF, VR
+ PF, and CA schemes. Table V summarizes the statistical
analysis for all schemes in terms of the degree of interference.

VI. CONCLUSIONS AND FUTURE WORK

In a 5G HetNet, the deployment of femtocells increases
the overall network capacity. The dynamic deployment of
femtocells in a HetNet leads to co-tier interference. Co-tier
interference is considered one of the significant challenges,
especially in urban settings. To address this problem, we
proposed MLICOS, a scheme that classifies user traffic based
on the interference level (i.e., high and low) and offloads
highly affected traffic from macrocells to nearby femtocells
based on signal strength. Four ML algorithms, SVM, RF, ANN
and CNN, are used in turn by the proposed solution for classi-
fication purposes. The performance of the ML-based algorithm
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is assessed in terms of prediction accuracy, precision, recall
and F-measure. Based on the assessment, we propose two
versions of MLICOS, MLICOS1 and MLICOS2. The former
employs RF, while the latter uses CNN. Both versions were
compared to the PF, VR + PF and CA schemes, and the results
show substantial improvements in terms of QoS and QoE
metrics. Simulation results also show that MLICOS2 performs
better than MLICOS1. Future work will define multiple user
classes while also attempting to consider the need for fast
convergence. Both cross-tier and co-tier interference in a
HetNet will be considered in a coordinated manner in the
future.
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[24] G. Gür, S. Bayhan, and F. Alagöz, “Cognitive femtocell networks: an
overlay architecture for localized dynamic spectrum access [dynamic
spectrum management],” IEEE Wireless Communications, vol. 17, no. 4,
pp. 62–70, 2010.

[25] M. Kamruzzaman, N. I. Sarkar, and J. Gutierrez, “A dynamic algorithm
for interference management in d2d-enabled heterogeneous cellular
networks: Modeling and analysis,” Sensors, vol. 22, no. 3, 2022.

[26] W. Wang, G. Yu, and A. Huang, “Cognitive radio enhanced interference
coordination for femtocell networks,” IEEE Communications Magazine,
vol. 51, no. 6, pp. 37–43, 2013.

[27] F. Liu and S. Zhao, “Statistical resource allocation based on cognitive
interference estimation in ultra-dense hetnets,” IEEE Access, vol. 8, pp.
72 548–72 557, 2020.

[28] V. Sathya, H. V. Gudivada, H. Narayanam, B. M. Krishna, and B. R.
Tamma, “Enhanced distributed resource allocation and interference
management in lte femtocell networks,” in 2013 IEEE 9th International
Conference on Wireless and Mobile Computing, Networking and Com-
munications (WiMob), 2013, pp. 553–558.

[29] N. Fath, I. W. Mustika, Selo, K. Yamamoto, and H. Murata, “Opti-
mal resource allocation scheme in femtocell networks based on bat
algorithm,” in 2016 22nd Asia-Pacific Conference on Communications
(APCC), 2016, pp. 281–285.

[30] M. A. Kamal, H. W. Raza, M. M. Alam, and M. Mazliham, “Resource
allocation schemes for 5g network: A systematic review,” 2021.

[31] M. S. Alomari, A. Ramli, A. Sali, and r. s. a. raja abdullah, “A
femtocell cross-tier interference mitigation technique in ofdma-lte sys-
tem: A cuckoo search based approach,” Indian Journal of Science and
Technology, vol. 9, 01 2016.

[32] G. Chen, J. Zheng, and L. Shen, “A preset threshold based cross-
tier handover algorithm for uplink co-channel interference mitigation
in two-tier femtocell networks,” in 2013 IEEE Global Communications
Conference (GLOBECOM), 2013, pp. 4717–4722.

[33] M. Susanto, D. Fauzia, Melvi, and S. Alam, “Downlink power control
for interference management in femtocell-macrocell cellular communi-
cation network,” in 2017 15th International Conference on Quality in
Research (QiR) : International Symposium on Electrical and Computer
Engineering, 2017, pp. 479–484.

[34] T. Hassan and F. Gao, “An active power control technique for downlink
interference management in a two-tier macro–femto network,” Sensors,
vol. 19, p. 2015, 04 2019.

[35] M. Osama, S. El Ramly, and B. Abdelhamid, “Interference mitigation
and power minimization in 5g heterogeneous networks,” Electronics,
vol. 10, no. 14, p. 1723, 2021.

[36] O. I. Ladipo and A. O. Gbenga-Ilori, “Hierarchical power control model
for interference mitigation in a two – tier heterogeneous network,”
Cogent Engineering, vol. 6, no. 1, p. 1691358, 2019.

[37] Y. Chen, “Mathematical modelling of end-to-end packet delay in multi-
hop wireless networks and their applications to qos provisioning,” Nov
2013.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3187607

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13

[38] B. M. Parker, S. Gilmour, J. Schormans, and H. Maruri-Aguilar, “Opti-
mal design of measurements on queueing systems,” Queueing Syst 79,
pp. 365–390, 2015.

[39] M. Roshan, J. A. Schormans, and R. Ogilvie, “Video-on-demand qoe
evaluation across different age- groups and its significance for network
capacity,” EAI Endorsed Transactions on Mobile Communications and
Applications, vol. 4, no. 12, 1 2018.

[40] A. Wahab, N. Ahmad, and J. Schormans, “Statistical error propagation
affecting the quality of experience evaluation in video on demand
applications,” Applied Sciences, vol. 10, no. 10, 2020.

[41] “O-ran alliance.”
[42] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A survey of

the functional splits proposed for 5g mobile crosshaul networks,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 146–172, 2019.

[43] B. Balasubramanian, E. S. Daniels, M. Hiltunen, R. Jana, K. Joshi,
R. Sivaraj, T. X. Tran, and C. Wang, “Ric: A ran intelligent controller
platform for ai-enabled cellular networks,” IEEE Internet Computing,
vol. 25, no. 2, pp. 7–17, 2021.

[44] D. Anand, M. A. Togou, and G.-M. Muntean, “A machine learning
solution for automatic network selection to enhance quality of service for
video delivery,” in 2021 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB), 2021, pp. 1–5.

[45] T. J. D. Berstad, M. Riegler, H. Espeland, T. de Lange, P. H. Smedsrud,
K. Pogorelov, H. Kvale Stensland, and P. Halvorsen, “Tradeoffs using
binary and multiclass neural network classification for medical multidis-
ease detection,” in 2018 IEEE International Symposium on Multimedia
(ISM), 2018, pp. 1–8.

[46] O. Owoyele, P. Pal, A. V. Torreira, D. Probst, M. Shaxted, M. Wilde, and
P. K. Senecal, “Application of an automated machine learning-genetic
algorithm (automl-ga) coupled with computational fluid dynamics sim-
ulations for rapid engine design optimization,” 2021.

[47] R. Medar, V. S. Rajpurohit, and B. Rashmi, “Impact of training and
testing data splits on accuracy of time series forecasting in machine
learning,” in 2017 International Conference on Computing, Communi-
cation, Control and Automation (ICCUBEA), 2017, pp. 1–6.

[48] M. A. Cano Lengua and E. A. Papa Quiroz, “A systematic literature
review on support vector machines applied to classification,” in 2020
IEEE Engineering International Research Conference (EIRCON), 2020,
pp. 1–4.

[49] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural
networks-based machine learning for wireless networks: A tutorial,”
IEEE Comms. Surveys & Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019.

[50] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, nov 2020.

Devanshu Anand received the B.Eng. degree in
Electronics and Communication Engineering from
Bangalore, India in 2020. He was a Research Intern
at the Department of Electrical Engineering, Indian
Institue of Technology, Kanpur. He is currently pur-
suing a PhD degree from the School of Electronics
Engineering, Dublin City University, Dublin, Ire-
land. His research interests include Machine Learn-
ing solutions for rich media delivery in heteroge-
neous networks, resource allocation, 5G, machine
learning. He is a recipient of an SFI scholarship from

the ML-LABS Centre for Research Training at Dublin City University, Ireland.

Mohammed Amine Togou is a postdoctoral re-
searcher with the SFI Insight Centre for Data Ana-
lytics at Dublin City University, Ireland. He received
B.S. and M.S. degrees in computer science and
computer networks from Al Akhawayn University
in Ifrane, Morocco and a Ph.D. degree in computer
science from the University of Montreal, Canada.
He has a solid expertise in network performance
optimisation, protocol design, and network security.
He has published over 35 peer-reviewed scientific
articles in top journals and flagship conferences. He

has also served as a member of the technical programme committee of several
international conferences. His research interests include 5G/6G networks,
SDN-NFV, network slicing, Blockchain, IoT, cloud computing, and machine
learning.

Gabriel-Miro Muntean (Senior Member, IEEE) is a
Professor with the School of Electronic Engineering,
Dublin City University (DCU)—Ireland and the Co-
Director of the DCU Performance Engineering Lab-
oratory. He received the Ph.D degree from DCU for
his research on quality-oriented adaptive multimedia
streaming in 2004. He has published over 450 papers
in prestigious international journals and conferences,
has authored four books and 25 book chapters, and
has edited seven other books. His research interests
include quality-oriented and performance related is-

sues of adaptive multimedia delivery, performance of wired and wireless
communications, energy-aware networking, and personalized technology-
enhanced learning. He is an Associate Editor of the IEEE TRANSACTIONS
ON BROADCASTING, the Multimedia Communications Area Editor of the
IEEE COMMUNICATION SURVEYS AND TUTORIALS, and a reviewer
for other important international journals, conferences, and funding agencies.
He is a Senior Member of IEEE Broadcast Technology Society.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3187607

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


