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Fig. 1. Problem description: Visually synchronous sound synthesis capturing temporal action information. Our proposed model
locates the temporal action changes in subsequent frames of a video and generates the sound accordingly.

Abstract—Deep learning based visual-to-sound generation sys-
tems have been developed that identify and create audio features
from video signals. However, these techniques often fail to
consider the time-synchronicity of the visual and audio features.
In this paper we introduce a novel method for guiding a
class-conditioned GAN to synthesize representative audio with
temporally-extracted visual information. We accomplish this
visual-to-sound generation task by adapting the synchronicity
traits between the audio-visual modalities. Our proposed Fo-
leyGAN model is capable of conditioning action sequences of
visual events leading to the generation of visually aligned realistic
soundtracks. We expanded our previously proposed Automatic
Foley data set. We evaluated FoleyGAN’s synthesized sound
output through human surveys that show noteworthy (on average
81%) audio-visual synchronicity performance. Our approach
outperforms other baseline models and audio-visual data sets
in statistical and ablation experiments achieving improved IS,
FID and NDB scores. In ablation analysis we showed the
significance of our visual and temporal feature extraction method
as well as augmented performance of our generation network.
Overall, our FoleyGAN model showed sound retrieval accuracy of
76.08% surpassing existing visual-to-audio synthesis deep neural
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networks.
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I. INTRODUCTION

FOLEY recording, a component of the film production
process, provides added realism and clarity to movie

scenes by overlaying artificial sounds that emphasizes impor-
tant events and actions.

Today’s film production teams are dependent on Foley
tracks for movie scenes where the background sound is either
not present or where the original recording does not come
through well. In these situations the Foley artist looks for
available recorded Foley tracks, or records the required sounds
in special studios. The Foley artist’s skill is being able to
know how to accurately generate and record the required
sound effect. Since the latter option is often costly, filmmakers
often prefer to acquire pre-recorded tracks from online or
other sources at a lower cost. Although this seems like an
easy solution, they often encounter a lack of synchronicity
between the video and the overlaying sound. One solution is
to use deep learning algorithms that can learn the temporal-
correspondence between audio and video signals, then gen-
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erate the sound accordingly for the given video clip. In our
previous work [1], we addressed traditional Foley generation
problems and proposed two unique deep learning models
for automatic Foley generation. While generating sounds for
the Foley process, our goal is to enhance the visual effect
of the film by creating a sound overlay that audiences will
immediately associate with the related visual. A major goal
therefore is sensory augmentation, meaning that the correct
synthesized sound allows the audience to be more engaged
than normal. This was the focus in our prior research. This
research seeks to address the cross modal problem of the time
synchronization between the generated sound and the video
file.

In this paper, we propose a visually guided class con-
ditioned deep adversarial Foley generation network called
”FoleyGAN”, which we present as an advancement in au-
tomatic Foley-sound synthesis from silent video clips. Since
sound plays a crucial information role in the perception of
the inherent action in most of the visual scenarios of the
real world, and auditory guidance can assist a person or a
device in analyzing the surrounding events more effectively,
our proposed network also has the potential to serve as an
IoT (Internet of Things) system that is able to learn the
correspondence between visual and audio modalities along
with synthesizing actionable synchronous sound tracks from
visual signals.

Generative Adversarial Networks (GANs) [2] have started
to become widely used by researchers as a deep generating
model, particularly for high quality image generation appli-
cations (e.g. [3]–[7]). Notable advances are found in utilizing
GANs for audio and music generation [8]–[13] as well, though
adversarial audio generation still remains a highly challenging
task because of intrinsic differences between sound waveforms
and image signals. Sound waves generally show higher peri-
odicities than image signals, which leads to the use of more
sophisticated filters with large receptive fields. In addition,
generated audios are more likely to be affected by annoying
”checkerboard” artifacts, which can be avoided in a generated
image using GAN. Recent research uses spectral representa-
tions of audio files for adversarial generation. However, none
of these approaches have considered time-action synchronicity
traits as a visual guidance to condition the sound generator
of GAN, along with sound class information, which is the
key novelty of our ”FoleyGAN” network. In addition, we
efficiently incorporate scaled-up (512 × 512) BigGAN [14]
architecture as our base generative network, which enables
the synthesizing of high resolution spectrograms that are
inverted to sound tracks via ISTFT [15]. In addition to using
latent space and class information as inputs, we condition
the BigGAN generator with visual guidance. Furthermore, we
also expand on our previously proposed ”AFD” dataset [1].
The discriminator network is pretrained with the spectrogram
soundfile images of the updated dataset to differentiate be-
tween generated and actual samples.

Fig.2 shows the proposed FoleyGAN network, which con-
sists of two major neural network blocks: a video action
recognition network (the upper block, consisting of CNN
and Temporal Relational Network (TRN) architectures [16])

Fig. 2. FoleyGAN Model: the upper section utilizes TRN [16]
models for predicting class and temporal action information
that are passed to the lower section’s GAN structure as guid-
ance to generate spectrogram from random noise. Generated
spectrograms are then converted to sound via ISTFT.

followed up with a visually guided class conditioned GAN
network (the lower block) for sound generation. The first block
provides the action category prediction of the respective input
video as well as prediction weights of the action occurrences
over the video time duration from which we are generating
action spectrograms. These two outputs are forwarded to
our next sound generative network using the GAN principle.
Finally, the generated spectrogram is inverted via ISTFT to
obtain the visually synced sound track for the respective video
clip.

Previously in AutoFoley [1], we proposed two separate deep
neural networks (e.g. Frame Sequence and Frame Relation
Networks) for predicting action in video frames. Since the
overall performance of both models are quite similar, we
can use either of these models for the later expansion of
this research. However, in this work, we want to focus on
reducing computational complexity, as we are integrating a
scaled up GAN architecture (e.g. BigGAN) for high resolution
spectrogram generation. Additionally, we aim to advance the
earlier proposed automatic sound synthesis system with time
synchronicity features. Therefore, we intentionally select the
Frame Relation Network, which is not only capable of cap-
turing the temporal relations between two consecutive video
frames (leading to the prediction of the action happening in
the scene), but also uses limited video frames as inputs that
are fed into a simpler multilayer perceptron (MLP) structure
significantly reducing the computational loads. In addition, we
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are able to condition our generator network with relational
reasoning information between two sequential frames with the
help of temporal relation statistics.

The significant contributions made by this paper are:
• We take the initial step toward automatic Foley generation

in a silent video clip using a visually guided class
conditioned generative adversarial network, taking into
consideration the time-action synchronicity requirement
in the highly diverse movie-sound-effects domain.

• We introduce a concept of conditioning the generated
samples of a GAN with the temporal visual information
of a video frame sequence that can be deployed for
automatic Foley synthesis as well as other multi-modal
applications.

• We expand our previously proposed ”Automatic Foley
Dataset (AFD)” for future research and training.

• We present an image generating BigGAN architecture
trained on AFD for realistic and synchronous three sec-
ond duration sound synthesis for the multimedia applica-
tions field.

• For the performance analysis of our generated sounds,
we perform qualitative, numerical,ablation experiments
comparing with baseline models and conduct a human
survey on our generated sound quality as well as the
video/sound alignment in the respective visual events.

This paper is structured as follows. In sections II and III, we
present related works and a brief review of GAN. In section
IV, we describe our detailed methodology and present the
complete algorithm used in this research. In sections V and
VI, we provide the explanation of our extended AutoFoley
dataset, training details with specifications on hyper-parameter
tuning, and model evaluation results analysis through nu-
merical, qualitative and ablation experiments to assess the
overall performance. Finally, section VII concludes with the
summarization of substantial points and future directions of
this work.

II. RELATED WORK

A. Foley Generation

Automatic sound effect creation from 3D models has been
approached in [17] through dynamic simulation and user inter-
action. In our recent work [1], deep learning is deployed in the
application of automatic Foley generation, where we propose a
unique deep learning solution to predict sound in silent video
clips and then synthesize Foley from the predicted features.
In this paper, we utilize conditional generative adversarial
training on our predicted video categories to generate Foley
of that respected class.

B. Audio-Visual Correlation

Everyday we observe audio-visual events happening around
us where sound plays a vital role. The human ability to quickly
correlate between these two modalities simultaneously allows
us to react appropriately to real-time events. Taking inspira-
tion from this fact, [1], [18]–[22] utilizes these audio-video
correspondence properties for training their neural networks

with unlabeled video data. The audio-visual relationship is
employed to develop deep neural networks in various fields
of applications, e.g. for the material recognition task [23],
sound source localization task in video [18], [20], [24]–[29],
audio source separation tasks [30], audio event identification
tasks for video analysis [31], and video action recognition
to automatic foley generation tasks [1]. Likewise, advanced
research approaches proposed in [26], [28], [29] have assisted
in localizing a sound source against visual data in 3D space
by utilizing our ability to observe audio-visual events. In
[21], an automatic video sound recognition and visualization
framework is proposed, where nonverbal sounds in a video
are automatically converted into animated sound words and
are placed close to the sound source of that video for visual-
ization. In addition, an attention mechanism learning network
for the sound source proposed in [32] and semantic guided
modules (SGMs) performed in [33] for action recognition to
extract spatial-temporal features from videos show promising
applicability in audio-visual association properties. We are
motivated by this research on audio-visual relevance, and aim
for improved mapping of audio-video features by expanding
our AutoFoley deep neural network with an efficient generative
adversarial model.

C. Sound Synthesis from Videos

Understanding the capability of the human brain to syn-
chronize audio and visual modalities simultaneously, [1], [13],
[23], [34]–[39] propose different neural networks for sound
synthesis from visual inputs. Research in [40] use audio
generation for the full viewing sphere, when a 360◦ video
and corresponding mono audio are given, whereas in their
later work [36], they leveraged object configurations in videos
for transforming mono channel to binaural audio. Similar
video-based audio spatialization research is shown in [ [41].
Prior work in [34] shows natural sound generation from
videos captured in the wild, whereas the AutoFoley framework
[1] synthesizes Foley tracks in silent video frames. Another
approach for sound generation from visual inputs is presented
in [13] using conditional generative adversarial networks.
Recent work in [38] proposed a spectrogram based sound
generation model named REGNET, where authors introduced
an audio forwarding regularizer to pass missing information
while training. REGNET research focuses on eliminating
irrelevant sound component to prevent incorrect audio-visual
mapping whereas in our proposed visual-to-audio generator
we focus on learning temporal action relation for audio-visual
mapping. To reduce the computational cost while synthesizing
realistic rain sound, a different sound generation approach have
been adopted in [42] where authors proposed a physically-
based statistical simulation method to capture dynamic vari-
ations of rain sound. Authors in [43] presented a real time
sound synthesis system based on extracting foreground sounds
from background textures using double layer Markov Models
capable of capturing different properties of foreground and
background units. Their proposed hierarchical grid scheme
generates Head-Related Transfer Function filters to localize
sound clues represented as area sources. Authors in [44]



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3177894, IEEE
Transactions on Multimedia

4

considered positional variations of multiple sound sources
from listeners perspective in complex scenes. They introduced
event loudness density (ELD) that is able to relate the rapidity
of received events to their loudness in order to compose and
encode acoustic texture. In our work, we develop a deep
learning model comprising of a visual action recognition and
adversarial audio synthesis network to generate realistic Foley
tracks for silent movie clips.

D. Audio Generation with GAN

GANs have extensive potentials in the computer vision and
image generation field (e.g. [3], [4], [5], [7], [45]), which
encourages researchers to deploy principles of GAN in the
audio generation domain as well. Being inspired by image
inpainting, authors in [37] have recently performed audio
inpainting as a form of spectrograms with GAN. Earlier works
in [8], [9], [10], [11], [12], [13] show a clear direction of using
generative adversarial training with audio signals. However
[11], [10] portray the challenges in training GAN with audio
waveforms compared to image matrices. Therefore, spectral
representations of audio are preferred while training adver-
sarial audio generation. The phase-gradient heap integration
(PGHI) [46] algorithm proposed in TiFGAN’s paper [47],
represents an improved reconstruction technique of the audio
from the spectrogram with minimal loss. Authors in [47]
trained GANs on short-time Fourier features to mitigate the
problems of generating audio in the short-time Fourier domain.
GAN has been used for efficient and high-fidelity speech
synthesis task in [48] where the proposed HiFi-GAN performs
with the melspectrogram and can generate faster samples with
comparable quality to an autoregressive counterpart. Likewise,
MelGAN architecture in [49] showed the potential of a non-
autoregressive feed-forward convolutional model for faster au-
dio generation using mel-spectrogram. MelGAN architecture
is applied on text-to-speech generation task however our pro-
posed FoleyGAN system is designed for sound synthesizing
task from visuals. Authors in [50] proposed a multi-class
guided sound synthesis approach using VQGAN with a new
perceptual loss for spectrogram generation. They used BN-
Inception model for feature extraction whereas our proposed
system utilized TRN models to extract visual temporal action
features to condition BigGAN. In our previous work [51], we
first proposed an IoT System of Systems framework of audio
generation for visual inputs exploiting BigGAN [14]. Recently,
authors in [52] utilized BigGAN architecture for adversarial
audio generation in a guided manner. Our proposed FoleyGAN
architecture is a novel approach to apply BigGAN in the movie
sound production domain where we are synthesizing the audio
for silent movie clips using visual and temporal guidance.

III. GENERATIVE ADVERSARIAL NETWORK (GAN)
BASICS

Generative Adversarial Networks (GANs) proposed in [2]
include a generator network G and a discriminator network D.
The two networks play in an adversarial manner taking part in
a min-max game throughout the training process. The training
objective of the G network is to map random vector z ∈ Z into

generated samples by minimizing the following value function
(Eq 1), whereas the D network, which judges between real and
generated examples, is trained to maximize the value function.
Here, z belongs to random noise distribution pz and pdata
denotes the target data distribution.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ex∼pz(z)[log (1−D(G(z))]
(1)

In a conditional GAN approach (Equation 2), conditional
information (e.g. labels of images) is passed to the generator
and discriminator networks where y represents the condition
variable.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)]+

Ex∼pz(z)[log (1−D(G(z|y))]
(2)

In this work, we use hinge loss for updating the generator
and the discriminator in our visually guided sound generation
network. In a conditional GAN network, hinge loss for the
discriminator and generator is calculated as,

LD = LDreal + LDfake

= E(x,y)∼pdata
[max(0, 1−D(x, y))]+

Ez∼pz,∼p(z),y∼pdata
[max(0, 1 +D(G(z, y), y))]

LG = −Ez∼pz,y∼pdata
[D(G(z, y), y)]

(3)

IV. PROPOSED RESEARCH METHOD

We separate our proposed architecture into two networks: A)
a video action recognition network and B) a sound generation
network. We explain these network details in the following
subsections. The graphical representation of the complete
FoleyGAN architecture is presented in Fig.3.

A. Video Action Recognition Network

We pick the frame relation model from [1] for class
prediction because of its superior performance in learning
temporal dependencies from visual frames, with less compu-
tational complexity compared with other prediction models.
The video action recognition network provides the prediction
of the overall action category (along with the frame-by-frame
identical action occurrence probabilities) of the entire video
clip exploiting the multiscale and 2-frame temporal relational
networks [16] principle respectively. The detailed methods are
explained in following paragraphs.

1) Video Action Class Prediction: We use a fused network
comprised of CNN and a multiscale temporal relation network
(MTRN) proposed in [16] to identify the action occurring
throughout the video clip. We compute the temporal relation
composite functions RQ using the following equation, where
Q = [2, 3, ...8] represents the number of video frames under
consideration:
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Fig. 3. Proposed Sound Generation Architecture in detail.

R2 = hφ(
∑
j<k

gθ(F j ,F k))

R3 = h′φ(
∑
j<k<l

g′θ(F j ,F k,F l))
(4)

Here, F j , F k, and F l represent the activation output
obtained from the pretrained ResNet-50 [53] CNN architecture
at the jth, kth, and lth frame of the video. We train the
ResNet-50 model with n number of soundless video frames
[I1, I2, ....In] from each video (V ) of our trained dataset. In
this equation, hφ is a single layer and gθ is a double layer
multilayer perceptron (MLP) associated with 256 units per
layer. These functions compile features of video frames at
different temporal orders and are unique for each R(V ). In
this way, we calculate the composite temporal function over
time up to 8 frames as R8(V ) since, up to this frame number,
we achieve optimum results through ablation studies on TRN
networks in our earlier work [1]. Finally, we sum all the
temporal relation functions (equation 2) to compute the action
category C(V ) happening in the entire video clip.

C(V ) = R2(V ) +R3(V ) + ...+R8(V ) (5)

2) Video Action Spectrogram Generation: Our intuition is
to obtain the relational reasoning information between two
sequential frames over the complete time duration of the video
with the help of a temporal relation equation of R2. We plot
these values over time to get a time-series graph representing
the probabilities Pact of similar action occurrence of two sub-
sequent frames over the whole time period of the video. Next,
we convert this time series plot into a spectral representation

by computing STFT and reshape it into the required dimension
(512 x 512 x 3). Therefore, we get a 3D matrix, Sact that
we name a video action spectrogram since it contains the
frame-by-frame similar action occurrence probabilities of each
video (Fig.4). We next condition our sound generation network
with this visual guidance to create the temporal synchronicity
between the audio and visual inputs.

B. Sound Generation Network

1) Preprocessing of Sound Data for Training: In our ob-
jective to train our generative model (image generating GAN)
with sound data, we have to represent our sound files as three
dimensional matrices without losing the magnitude and phase
information contained within the individual tracks. To do so,
we first extract audio from video recordings and clip them into
3 second durations. We then convert audio files into mono-
wave files and compute their spectrograms by calculating
STFT with the help of TensorFlow’s built-in functions. We
use the Hanning window and sample frequency of 44kHz
and select a stride of 256 and frame size of 1024, allowing
windows to overlap 75% with 513 frequency bins. In order to
obtain a three dimensional image-like matrix, we use padding
in the time axis. Finally, our complex spectrogram of each
sound file becomes a matrix (512,512,3), containing both the
magnitude and phase information of the original audio in the
1st and 2nd channel respectively. For the 3rd channel, we again
apply zero padding, which we extract later through depadding
during the reconstruction process. Finally, we prepare the
sound spectrogram features, applying a mel-filter bank to
convert the frequency scale into the mel-scale. Since our
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Fig. 4. Action spectrogram formation for visual guidance for
audio generation with GAN generator network.

generator network applies a tanh nonlinearity function, we
scale the log magnitudes and phase angles within the -1 to
1 range to comply with the generator model.

2) Generation of Visually Guided Sound: Similar to the
SpecGAN model proposed in [10], our deep sound gener-
ation network is a frequency-domain sound synthesis GAN
architecture. The proposed generation network is trained with
spectrogram inputs by performing short-time Fourier Trans-
form (STFT) [54] on audio samples. The generated output
spectrograms are then inverted using the (ISTFT) method
[15]. The objective of feeding spectrogram inputs to the
generation network is to leverage the proficiency of GAN
in high resolution image generation tasks. In this proposed
model, we adopt BigGAN [14] for adversarial sound synthesis
by generating high fidelity spectrogram images of multiple cat-
egories through large scale GAN training. The generator and
discriminator network follows a BigGAN (512 × 512) image
generation architecture capable of generating high resolution
spectrogram images of multiple sound classes.

In brief, BigGAN is a high resolution and high-fidelity
class-conditional image generating GAN model that signifi-
cantly improves the inception score by using higher batch sizes
with increased width in each layer. Being a class conditional
GAN, it takes image class information and a point from
latent space as an input. Rather than using the pretrained
weights of BigGAN trained on natural images from the
ImageNet dataset, we train the model with our generated
spectrograms to follow our goal for adversarial sound syn-
thesis. As previously mentioned, the class output C resulted
from the prediction network, and the action spectrogram Sact,
are both fed into the generator. Being conditioned by the
video action information, the generative network produces a
spectrogram of the predicted class, taking random noise z as

an input. Next, the generated image Sgen is passed to the
discriminator block pretrained with the original spectrogram
image Sreal of that predicted class. The discriminator network
distinguishes between the real spectogram Sreal and the
synthesized spectrogram Sgen. Using BigGAN, we adopt an
orthogonal regularization technique and truncation trick to
boost performance and improve the generated spectrogram
quality. Using a “truncation trick,” our generator uses less
random numbers, which leads to the output of more realistic
images. Finally, LD and LG losses are calculated (as Equation
5) and fed back to the generator and discriminator blocks to
update their weights at the end of each training epoch.

As the training proceeds, the generator moves closer to
synthesizing a spectrogram that misguides the discriminator
that is identifying the differences between the original and
generated images. At the end of the training, the generator
learns the pattern and features of the original spectrograms
and generates representative spectrogram images of 512 ×
512 resolution classified as real by the discriminator. For
the complete architecture and parameter details of BigGAN’s
generator and discriminator blocks, we direct readers to the
appendix section of the original paper [14].

Algorithm 1 Visually Guided Adversarial Foley Generation
Input: Silent video frames (I1, I2, ...IN ), training audio
tracks (A1, A2, ...AN ) and random noise z.
Output: Generated audio tracks (Agen).

1: Vt ← CNN(IN )
2: C ←MTRN(Vt)
3: Probseq ← 2TRN(Vt)
4: Sact ← Spectrogram(Probseq)
5: Sreal ← Spectrogram(AN )
6: for number of training iterations do
7: Sgen ← BigGANG(z, C, Sact)
8: R← BigGAND(Sreal, Sgen)
9: Calculate LG and LD

10: Update BigGANG and BigGAND
11: end for
12: Agen ← ISTFT (Sgen)

V. EXPERIMENTAL DETAILS

A. Dataset

In the context of generating artificial foley tracks from
silent video, in our previous work we proposed an Automatic
Foley Dataset (AFD) [1] that is carefully prepared to avoid
external noise focusing on popular foley categories. Since
GAN training requires a large set of training samples for
improved learning, we expand our dataset with more diverse
video samples to be used in FoleyGAN training. In Table I, we
show the data percentages of individual classes of our updated
AFD dataset. The total number of video samples is 27,800 (of
3 second duration each). In addition, as an ablation analysis,
we compare the generated audio sample performance (Table
III) by training the proposed FoleyGAN architecture with a
subset of AudioSet [55] and YouTube8M [56] datasets, as
they closely comply with our data requirements for this task.
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We prepare the subsets by collecting videos of 12 similar
categories contained in the AFD. In all cases, our training
set comprises of 80% and testing set comprises the remaining
20% of the whole dataset.

B. Experimental Protocols

We trained the event class prediction MTRN (Multi-Scale
Temporal Relation Network), the consecutive action prediction
2TRN network, and the sound generating GAN network
separately on training datasets. We collected image features
from the output of the conv5 layer of the ResNet-50 network.
The TRN models have two layers of MLP (256 units in each)
for gθ and a single layer MLP (12 units) for hφ. The training of
100 epochs was completed in less than 24 hours on a NVIDIA
Tesla V100 GPU. We used a minibatch gradient descent with
the Adam optimizer [25]. The minibatch size was 128 and the
learning rate was 0.001.

To implement our audio generation network, we adopted
the 512 × 512 BigGAN [14] architecture (which is a Self-
Attention GAN [57] based model) trained on our AutoFoley
spectral data. In most cases, we followed similar hyper-
parameters and optimization techniques for the discriminator
and generator while training. The entire implementation was
done using TensorFlow. Similar to BigGAN, we applied
an orthogonal Initialization [58] strategy (e.g. introducing a
random orthogonal matrix weight in each layer maintaining
their orthogonal property) on both the generator and the
discriminator. The generator model used the skip-z technique
to directly link the input latent vector z to specific layers deep
in the network where the full dimensionality of z is set to 160
for a 512 × 512 spectrogram image generation. We set the
learning rate to 2 × 10−4 and 5 × 10−5 for the discriminator
and generator respectively. We obeyed the truncation trick [14]
by resampling the z values to arbitrate between image quality
and variety. The overall model was trained by calculating the
hinge loss. We used the Adam optimizer [25] for optimization.
BigGAN performance greatly depends on increasing the batch
size — specifically, BigGAN requires high batch size training
to provide better gradient information while updating the
weights through training epochs. However, training with larger
batches requires GPUs of higher memories. To handle the
memory constraints, we implemented a gradient accumulation
technique during our training session. We trained our sound
generation network on a single NVIDIA Tesla V100 GPU of
32GB VRAM. Our intuition was to train with a total batch
size of 2048. To avail this large batch size without facing
a ”OOM” error (e.g. out of memory error), we used a mini
batch size of 128 for 16 gradient accumulations. Each training
session took 8 days to complete for 500 epochs with 12k
iterations. We then added a post-processing filter of 512 length
to the generator output for decreasing the noisy artifacts of the
generated spectrogram samples.

VI. MODEL EVALUATION

In this section, we first describe different numerical eval-
uation matrices adopted to assess the performance of our

proposed method in a quantitative manner, and explain the cal-
culated results comparing with state-of-the-art models (subsec-
tion (A-E)). Next, in subsection F and G we show an extensive
ablation analysis and a phase coherence study respectively.
Later in subsection H, we present human survey results to
evaluate the generated sound quality in a comprehensive way
in accordance with the video clips.

A. Sound Retrieval Accuracy

We adopted the similar sound retrieval experiment system
as in AutoFoley [1]. This time we prepared a sound classifier
by training a ResNet-50 [53] CNN model with spectrogram
images of our updated AFD training data. We calculated
the classifier’s performance (i.e., accuracy with real data) by
testing it with AFD test spectrogram samples. Next, we mea-
sured the prediction accuracy of our generated spectrogram
samples with proposed and other baseline models. The average
accuracy was measured over all event classes (shown in Table
II).

B. Inception Score (IS)

To evaluate the semantic diversity of generated samples, we
calculated the inception score (IS) proposed in [59] using the
following equation:

exp(ExDKL(P (y|x)||P (y)) (6)

Here, P (y|x) represents the conditional class distribution for
image sample x predicted by the Inception Network [60],
and P (y) gives the marginal class distribution. The equation
computes the IS score by calculating the Kullback-Leibler
(KL) Divergence between these two distributions. The Incep-
tion features are extracted from the Inception Network [60]
trained on the ImageNet dataset. A high IS value is preferred
when evaluating generation quality. Since the Inception Score
evaluation matches with human judgements at a high level,
we wanted to evaluate our generated spectrograms on this
basis. Therefore, we used our pretrained sound retrieval CNN
classifier features mentioned in the previous subsection to
compute the score (shown in Table II and III).

C. Fréchet Inception Distance (FID)

The Fréchet Inception Distance (FID) measures the Fréchet
Distance (FD) between two multivariate Gaussian distributions
for synthesized and real samples, configuring the mean and
covariance of intermediate layer inception features as follows:

FID(r, g) = ||µr − µg||2+

Tr(
∑

r +
∑

g − 2(
∑

r
∑

g)1/2)
(7)

Here, µr and
∑
r represent the mean and covariance of

real samples respectively. Likewise, µg and
∑
g represent the

mean and covariance of generated samples. The FID score
is considered a good evaluation metric to compare between
real data and generated outputs. A low FID score is preferred
when evaluating generation quality. The existing Inception
features pretrained with Imagenet or S09 data will not match
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TABLE I
AUTOFOLEY DATASET STATISTICS

Class Group Data (%)
A (car racing, clock ticking, fire rainfall, thundering, typing and waterfall videos) 10.79

B (chopping, footsteps, gunshots and horse running videos) 5.4
C (breaking videos) 2.88

the requirements for our specific audio spectrogram generation
associated with the video clip. Therefore, we again used the
same sound retrieval CNN classifier pretrained on AutoFoley
spectrograms to compute the FID scores (shown in Table II
and III).

D. Number of Statistically-Different Bins (NDB)

We followed another effective quantitative evaluation metric
called number of statistically-different bins (NDB), proposed
in [61]. This method takes up two sets of samples from the
same distribution and indicates that the number of samples
that fall into a given bin should be the same up to sampling
noise. Thus, a NDB score shows the number of cells where
the training sample number is statistically different from the
generated sample number through a two-sample binomial test.
Here, we cluster our training sample k = 50 Voronoi cells
into a log-spectrogram by k -means clustering. Next, we
assign the generated samples to the nearest cell by mapping
them into the log-spectrogram space. Certainly, a low NDB
score is preferred in the case of evaluating good generation
quality. Tables II and III respectively show the NDB scores
for different sound generative models on AFD data as well as
the NDB scores for the FoleyGAN model trained on different
datasets. In addition to analyzing generated sample quality for
individual classes with different sound encoding methods, we
computed the scores and present the ablation study in Table
IV.

E. Quantitative Study Result Analysis

As mentioned in the above subsections, we performed
quantitative experiments on the generated samples from our
proposed FoleyGAN and other baseline audio generating net-
works and present the results in Table II, where all the models
are trained on our AFD dataset. The FoleyGAN model with
visual guidance achieves the highest IS score (10.97) and
sound retrieval accuracy (76.08%), which are very close to the
experiment results with real samples. However, the generated
sample performance deteriorates (lower than AutoFoley, GAN-
SYNTH and Taming VGSG samples) when FoleyGAN is not
guided with visual action information. The same trend follows
in the case of FID and NDB computations. Our proposed Fo-
leyGAN with visual guidance results in the lowest (considered
as better) scores – 67 and 18.47 for FID and NDB, respectively
— which again represents good generation quality. Next, we
wanted to evaluate our proposed model efficiency on the two
most popular video datasets, YouTube8M and AudioSet — the
comparative results are shown in Table III. Since most of the
audio clips associated with YouTube8M and AudioSet video
samples consist of background noise and occasionally sounds

from multiple sources, it becomes difficult for the generator to
learn the original pattern from latent z from a similar number
of training epochs used with AFD video samples. However,
the scores are not too far from real data, which leads to the
fact that despite foley generation, our proposed model can be
deployed in a generalized application of audio synthesis in
silent video inputs as well. Later in Table IV, we present a
NDB scores of generated samples of individual AFD classes
on FoleyGAN models using 5 different sound encodings (eg.
Short-Time-Fourier Transform (STFT), Mel-Spectrum (MS),
Mel-Frequency Cepstral Coefficient (MFCC), Log-amplitude
of Mel-Spectrum (LMS), and Constant-Q Transform (CQT))
as GAN inputs. All class results showed the lowest value of
NDB is calculated for the generated samples where FoleyGAN
is trained with LMS audio features.

F. Ablation Analysis

We performed 2 separate ablation studies performed on
AFD dataset. In the first study (Table V), we showed the
significance of our proposed temporal action information ex-
traction method using TRN architecture. Here, we kept the
generation architecture (BigGAN 512) unchanged. Since in the
ablation experiment of our previous AutoFoley paper [1], with
8-scale TRN we obtained higher sound retrieval accuracy with
comparatively less time, in FoleyGAN research we used the
same method for extracting action class information. But we
trained the model with different action spectrogram matrices
where we evaluated similar action occurring probabilities from
subsequent 3 and 4 frames separately. In addition, we substi-
tuted our class and action TRN models with BN-Inception
network used in baseline models ( [38], [50]) for visual
feature extraction purpose. We evaluated average accuracy and
inference time with different extraction and similar generation
technique. Table IV shows close values for 2-frame and 3-
frame action TRN techniques. Whereas, when we are taking
4 consecutive frames in consideration for getting similar action
occurrence probabilities, it is taking longer computation time.
In contrary, when we are using the BN-Inception model [62]
to condition our generator with only action class information,
we find significant accuracy degradation, that highlights the
significance of conditioning the generator with temporal action
information of visual scenes. Moreover, TRNs are taking less
computation time than BN-Inception model (the 3rd column
of Table V shows the time required by the models to generate
a 3 second sound sample).

In the second ablation experiment, we evaluated Foley-
GAN’s sound retrieval accuracy using BigGAN and MelGAN
[49] architecture trained with 2 different losses (e.g. Hinge and
Wasserstein loss [63]). We kept the action extraction technique
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TABLE II
PERFORMANCE COMPARISON OF GENERATED SAMPLES

FROM SOUND GENERATIVE BASELINE MODELS WITH AFD DATASET

Samples IS FID NDB Average Accuracy (%)
Real Data 11.42 11 3.23 78.32
FoleyGAN 10.97 67 18.47 76.08

FoleyGAN without visual guidance 9.22 181 26.53 64.61
AutoFoley (Frame Sequence Network) 10.40 127 20.94 65.79
AutoFoley (Frame Relation Network) 10.72 119 20.03 63.40

GANSYNTH (IF-Mel + H) 10.87 115 22.14 73.12
Taming VGSG 10.47 121 20.63 68.16

SpecGAN 8.62 271 30.07 61.75
WaveGAN 7.36 322 34.91 59.93

TABLE III
PERFORMANCE COMPARISON OF GENERATED SAMPLES

FROM FOLEYGAN WITH AUDIO-VISUAL DATASETS

Dataset IS FID NDB Average Accuracy (%)
Real Data 11.42 11 3.23 78.32

AFD 10.97 67 18.47 76.08
YouTube8M Subset 10.04 114 20.03 70.16

AudioSet Subset 9.72 102 21.16 68.71

TABLE IV
GENERATED SAMPLE QUALITY COMPARISON WITH AFD

DATASET FOR DIFFERENT SOUND FEAUTURES USING
FOLEYGAN

Class NDB (k = 50)
STFT CQT MS MFCC LMS

Break 31.6 30.1 28.4 29.3 23.5
Car 22.8 27.5 30.2 21.8 21.6

Clock 15.3 20.4 19.1 14.0 11.2
Chopping 21.6 18.5 22.1 17.2 15.7

Fire 15.1 17.4 15.3 13.6 12.0
Footstep 18.9 21.0 19.1 18.2 13.3
Gunshot 26.7 28.1 30.4 25.6 24.5

Horse 19.9 20.3 21.2 19.1 17.3
Rain 12.8 13.4 13.9 12.4 12.1

Thunder 34.1 31.7 36.5 35.3 33.8
Typing 27.6 29.8 31.0 28.1 27.2

Waterfall 10.7 11.5 12.3 11.2 9.4
Average 21.43 22.48 23.29 20.48 18.47

unchanged to observe the impact of our proposed and state-of-
the-art GAN model for waveform generation. Table VI results
show that both BigGAN and MelGAN generated waveforms
are performing better with Hinge loss with a small margin.
However, our proposed BigGAN generator is significantly
outperforming MelGAN generator.

G. Phase Coherence

To envision the phase coherence between training and
generated waveforms, we show Rainbowgram representations
[11] of each event class in Fig.5, where the left column is
the indicating rainbowgrams of the originals and the right
column displays the same for generated tracks. The com-
parison between two rainbowgrams helps visualize both the
phase consistency and differences of the wave harmonics in
a clearer way. In every rainbowgram image, the brightness
symbolizes the log magnitudes and the color depicts the instan-

taneous frequencies of the respective waveform. Noticeably,
the rainbowgrams of the fire, footstep, rain, and waterfall class
synthesized waves depicting vigorous consistent colors and
phase coherence like that of real waves. Few deformities in
color lines are noticed in the breaking, chopping, ticking clock,
running horse, typing, and thundering categories. However,
rainbowgrams of the car and gunshot classes show more phase
discontinuities since the wave harmonics are occasionally
afflicted by noise components, which are responsible for the
additional color flecks, phase irregularities, and aperiodicities.

H. Qualitative Study: Human Survey

We found that a human survey was an inevitable assessment
to judge both the audio quality and its synchronicity with the
video recording, since the human brain can inherently perceive
the correspondence between audio-visual modalities in such
coinciding events. Therefore, we prepared a research study
participated in by our College of Engineering students and
officials to survey qualitative questions on our synthesized
sound tracks superimposed on real video clips. There, we set 2
queries for videos of each event class. Every audience member
was asked to observe videos with our synthesized sounds and
rate the generated sample on the basis of the overall quality
of the audio (question 1) and how much they perceived that
the audio was synchronous with the visual scene (question 2).
The observance score is marked out of a scale of 10 and the
experiment was conducted using 100 participants. Audiences
are provided with the ground truth samples as reference.
Through this approach, we intended to capture human’s natural
intuition to assess the artificially synthesized sound quality to
determine how accurately our generated sound traits portray
the original event.

Table VII presents the average ratings for individual classes
separately on both queries. The best result for both queries
comes from the waterfall sound. We think it is because the
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Fig. 5. Phase coherence comparison between the original and generated sound samples through Rainbowgram representation.
Horizontal and vertical axes are showing time and frequency, respectively.
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TABLE V
PERFORMANCE COMPARISON OF GENERATED SAMPLES

WITH DIFFERENT ACTION EXTRACTION METHODS

Method Accuracy (%) Time (sec)
2 Frame Action TRN + 8 scale Class TRN + BigGAN 76.08 4.7

3 Frame Action TRN + 8 scale Class TRN + BigGAN 75.99 4.9
4 Frame Action TRN + 8 scale Class TRN + BigGAN 71.52 5.4

BN Inception + BigGAN 48.61 5.3

TABLE VI
PERFORMANCE COMPARISON OF GENERATED SAMPLES

FROM DIFFERENT GENERATION METHODS

Method Average Accuracy (%)
FoleyGAN with BigGAN + Hinge loss 76.08

FoleyGAN with BigGAN + Wasserstein loss 73.08
FoleyGAN with MelGAN + Hinge loss 65.97

FoleyGAN with MelGAN + Wasserstein loss 64.13

training sound clips contain a similar continuous pattern for
this category and thus the generator learns it more accurately.
Regarding audio-visual synchronicity, the rainfall (9.6), fire
(9.4), and clock ticking (9.2) event classes are three other
classes that captured the continuous pattern of sound. Addi-
tionally, asynchronous event classes (e.g. chopping on kitchen
board (9.5), footstep (9.3), horse running (9.2), breaking
(9.0), and car (8.8)) also provided outstanding syncing scores.
Since object movements are more visible due to close up
video recordings (mostly in chopping, footstep, and breaking
videos), we assume this helps in generating more synchronous
sound with visual guidance. However, in generated horse clips,
we find some variation in sound intensity when the horse is
hitting the ground while running or walking. This shows that
depending on the action speed, the sound intensity and pitch
change, which is a challenging property to learn. In a few
cases, we observed that the model was unable to capture this
trait and instead learned to generate a more general form of
horse running sound. Despite this, the generated tracks are
well synced with the test clips, indicating the success in visual
guidance introduced to the GAN.

For gunshot and thundering videos, we must rely on videos
that are available online for use, as we are not able to
record them in person. The thundering category is the most
challenging part - in most cases, the lightening visuals were
unable to provide action info coherently with audio features
while generating sound. However, if we consider the audio
quality, the generated thundering audio clips sound similar
to the raining sound. In the case of the gunshot sound
generation, we find the action of shots are not clearly visible
in most recordings due to distant object placement. This may
hinder providing temporal action updates to the GAN while
generating the sound.

We have the least number of training examples in the
breaking category (mostly collected from online sources). We
assume this class needs to be developed with the more training
samples, with inclusion of a variety of object materials to
expect better audio quality. According to this study, people
perceive ticking clock, footstep, fire, running horse, rain, and
water audio quality well, car, chopping, gunshot, and typing

sounds as average, and thundering sound as the least similar
to the originals. Averaging all class results, our generated
sound score was 7.1 and 8.1 out of 10 in terms of quality
and synchronicity with video, respectively.

TABLE VII
HUMAN EVALUATION RESULTS

Class Audio Quality Audio-Visual Synchronicity
Break 7.7 9.0
Car 5.1 8.8

Clock 7.5 9.2
Chopping 5.6 9.5

Fire 8.2 9.4
Footstep 9.1 9.3
Gunshot 5.9 4.3

Horse 8.4 9.2
Rain 8.9 9.6

Thunder 3.2 3.6
Typing 6.3 5.5

Waterfall 9.2 9.8
Average 7.1 8.1

VII. CONCLUSION AND FUTURE SCOPE

In this paper, we address the time synchronization setback in
the task of visual-to-audio generation and take the first attempt
to exploit conditional GANs with visual guidance of an event
to synthesize visually aligned sound. For efficient adversarial
training, we expand the AFD dataset with adequate diverse
video samples in each class. In order to evaluate our models,
we conducted numerical, qualitative, and ablation evaluations
and compared them with baseline models with leading results.
Our experiments reveal that our proposed FoleyGAN system
has the capability of successful synchronous sound synthesis,
maintaining good audio quality that can indeed be used as au-
tomatic Foley generators for silent movie scenes as well as for
other audio-visual intersensory applications. One shortcoming
in this work is the requirement that the subject of classification
is present in the entire video frame sequence. Furthermore, in
our approach, we have not dealt with video clips containing
multiple sound sources, and we want to work with more sound
categories. These are the targeted directions of our future work.
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