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Subjective Media Quality Recovery From Noisy Raw
Opinion Scores: A Non-Parametric Perspective
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Abstract—This paper focuses on the challenge of accurately
estimating the subjective quality of multimedia content from noisy
opinion scores gathered from end-users. State-of-the-art methods
rely on parametric statistical models to capture the subject’s
scoring behavior and recover quality estimates. However, these
approaches have limitations, as they often require restrictive
assumptions to achieve numerical stability during parameter
estimation, leading to a lack of robustness when the modeling
hypotheses do not fit the data. To overcome these limitations,
we propose a paradigm shift towards non-parametric statistical
methods. Specifically, we introduce a threefold contribution:
i) in contrast to the prevailing approach in subjective quality
recovery assuming a parametric score distribution, we propose
a non parametric approach that guarantees greater accuracy by
measuring reliability per subject and per stimulus, overcoming
the limits of existing approaches that measure only per subject
reliability; ii) we propose ESQR, a non-parametric algorithm
for subjective quality recovery, demonstrating experimentally
that it has higher robustness to noise compared to numerous
state-of-the-art algorithms, thanks to the weaker assumptions
made on data compared to parametric approaches; iii) the
proposed approach is theoretically grounded, i.e., we define a
non-parametric statistic and prove mathematically that it provides
a measure of score reliability.

Index Terms—Multimedia quality assessment, non-parametric
method, opinion scores reliability, subjective quality recovery.

I. INTRODUCTION

SUBJECTIVE tests are evaluations conducted by human ob-
servers to assess the quality and usability of multimedia

applications, such as audio, video, or graphical content. These
tests involve participants providing their opinions, preferences,
or judgments based on their personal experiences and percep-
tions. Data gathered in subjective tests serve as a crucial resource
for advancing the design of multimedia applications. These data
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Fig. 1. Parametric approaches assume that the observed opinion scores come
from a probabilistic model fθ , that depends on a finite set of parameters θ. The
parameters θ are then estimated, and the subjective quality Q is recovered from
the assumed probabilistic model using the estimated parameters. The proposed
non-parametric approach (ESQR) instead measures how reliable is each single
opinion score without resorting to a predefined model. The recovered quality Q
is then computed as a weighted sum of the opinion scores in which the weight
of each opinion score is determined by its reliability.

are expected to provide insight into end-users’ overall satisfac-
tion, thereby guiding the development and optimization of mul-
timedia technologies to better meet user needs and expectations.

However, a challenge arises from the inherent noise present
in raw data collected during subjective tests. This noise stems
from various factors, including subjects’ fatigue and distraction,
unforeseen software issues, and other uncontrolled elements in-
fluencing the emotional state of the subjects. Consequently, the
raw data collected in a subjective test may not precisely re-
flect the end-users’ satisfaction with the multimedia application
under evaluation. This challenge has motivated the need for ap-
proaches to recover the subjective quality of multimedia content
from noisy raw data collected from subjective tests.

Several approaches have been developed to recover an accu-
rate estimate of the subjectively perceived media quality from
noisy raw ratings collected in subjective tests [1], [2], [3], [4].
The conventional approach computes the mean of the opinion
scores (MOS) gathered for a given stimulus as an estimate of
the subjective quality of that stimulus. Despite its popularity,
the MOS is known to be particularly sensitive to outlier opin-
ion scores [5]. As a consequence, more sophisticated approaches
that exploit parametric statistical models have recently been pro-
posed for the subjective media quality recovery problem [3], [6],
[7], [8].

The diagram in the top part of Fig. 1 illustrates the main steps
of parametric approaches (e.g., [1], [3], [6], [8], [9]). They es-
sentially implement three steps: i) a parametric statistical model
explaining the scoring behavior of each subject is assumed; ii)
the model’s parameters are estimated; iii) finally the desired
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subjective quality is derived. The main advantage of parametric
approaches is that they explain the scoring behavior of subjects.
However, the use of parametric approaches entails several lim-
itations: i) Lack of robustness, as the model’s assumptions that
allow interpretability and numerical stability in practice do not
hold in several application scenarios [6], [8]. ii) High risk of un-
derfitting since despite the huge number of factors that influence
the subjects scoring behavior, very few parameters are consid-
ered to preserve the model’s numerical stability. For instance,
authors of parametric approaches (e.g., [1], [3], [6]) very often
use a single parameter to capture the reliability of a subject, dis-
regarding the fact that the latter varies with the characteristics
of each stimulus that the subject is asked to evaluate. iii) High
computational complexity due to the parameter estimation pro-
cess that involves solving a complex optimization problem [3],
[7].

Despite the acknowledged limitations of parametric statisti-
cal approaches for multimedia quality recovery, there has been a
notable absence of research exploring a shift to non-parametric
statistical methods which are less sensitive to the aforementioned
modeling issues of parametric methods. This paper fills this gap
by investigating such a paradigm shift for the first time. More
precisely, this paper proposes the first non-parametric approach
to study users’ scoring behavior in subjective quality assess-
ment. The general scheme of the proposed method is illustrated
in the bottom part of Fig. 1. The proposed non-parametric ap-
proach considers two main steps: first, it measures the reliability
of each single opinion score without resorting to any assumed
probabilistic scoring model. Then, the recovered quality is com-
puted as a weighted sum of the opinion scores, in which the
weight of each opinion score is determined by its reliability.

The proposed approach to measure the reliability of an opin-
ion score finds its theoretical explanation in information theory.
In fact, it is inversely proportional to a measure of how surprising
that opinion score is for the quality of the stimulus under eval-
uation. The proposed method addresses the main shortcomings
of parametric approaches since it: i) does not consider any scor-
ing model involving simple yet restrictive assumptions on the
subject’s behavior; ii) does not require to solve an optimization
problem for parameters estimation, thus a significant compu-
tational burden is avoided; iii) does not suffer underfitting or
overfitting issues since it is a non-parametric approach.

The contributions of this paper can be summarized as follows:
1) We introduce the first non-parametric approach for mea-

suring subject reliability in subjective experiments. While
existing parametric methods assess reliability solely on a
per-subject basis, our approach extends to measuring re-
liability both per subject and stimulus. This accounts for
the variability in scoring behavior observed across differ-
ent stimuli rated by subjects, thereby providing a more
comprehensive understanding of reliability in subjective
quality assessment.

2) We propose ESQR, a novel non-parametric algorithm for
subjective media quality recovery. By adopting a non-
parametric perspective, ESQR offers enhanced robustness
compared to current state-of-the-art approaches which all
rely on parametric models. As already mentioned, existing

parametric models make assumptions about subject scor-
ing behavior to ensure numerical stability during parame-
ter estimation. ESQR’s departure from such assumptions
marks a significant step forward in developing more accu-
rate and adaptable subjective quality recovery algorithms.

3) Lastly, the proposed approach is theoretically grounded,
i.e., we define a non-parametric statistic and prove math-
ematically that it provides a measure of score reliability.
This theoretical underpinning represents a departure from
the prevailing trend in the field, where quality recovery
approaches rely on scoring models assumed a priori.

Computational experiments demonstrate that ESQR offers a
subjective quality estimate with reduced uncertainty compared
to current techniques. Additionally, ESQR exhibits lower sen-
sitivity to noise when compared to five state-of-the-art quality
recovery approaches. Furthermore, the findings suggest as ex-
pected that the performance of ESQR is relatively robust across
various application scenarios. This resilience could be attributed
to the fact that, unlike parametric approaches, our method cir-
cumvents assumptions about subjects’ scoring behavior that may
be invalid in certain application contexts.

The rest of this paper is organized as it follows: Section II
reviews and analyzes the prior art. Our non-parametric approach
to analyze subject’s behavior in subjective tests is described in
Section III, while the proposed quality recovery algorithm is
discussed in Section IV. Computational experiments and the
related results are presented in Section V, and the conclusions
are drawn in Section VI.

II. RELATED WORK

In recent years, the research on subjective quality recovery
has gained increasing importance, specially since the COVID-19
pandemic democratized the collection of opinion scores in non-
highly controlled environments, i.e., crowdsourcing subjective
tests [10], [11], [12]. Various scholars have delved into the ex-
ploration of factors contributing to the presence of noise on raw
individual ratings derived from subjective experiments. These
factors encompass the influence of experimental context [13],
the impact of subject fatigue [14], and instances where sub-
jects misunderstand the task, potentially leading to inverted rat-
ings [15].

In efforts to mitigate the influence of noise sources on
raw opinion scores, numerous methodologies have been scru-
tinized for the subjective assessment of media content qual-
ity [16]. These methodologies include single stimulus-based ap-
proaches [17], where subjects exclusively evaluate the processed
signal; pair comparisons [18], involving subjects comparing the
quality of stimulus A to that of stimulus B and indicating the su-
perior one; and double stimulus-based approaches [17], wherein
subjects rate the quality of processed content relative to refer-
ence content after viewing the latter.

Empirical observations suggest that pair comparison-based
subjective experiments are prone to yield more accurate re-
sults compared to single stimulus-based experiments [19]. How-
ever, the comprehensive acquisition of comparison matrices de-
mands considerable time, posing challenges to conducting pair



9344 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

comparison-based experiments with numerous stimuli, as fea-
sible in single stimulus-based approaches. Furthermore, while
double stimulus-based methods yield quality scores with nar-
rower confidence intervals, they necessitate twice the time of
single stimulus approaches. Consequently, data collection ap-
proaches aimed at enhancing the precision of raw ratings entail
constraints on the maximum number of stimuli that can be eval-
uated.

Beyond the pragmatic limitations associated with approaches
likely to ensure greater accuracy of opinion scores, there exist
noise sources beyond the researcher’s control during subjec-
tive testing. For instance, a subject’s rating for a specific video
sequence may significantly reflect their personal content prefer-
ences, such as the scene’s likability or dislikability [20].

Several approaches to recover the subjective quality from raw
opinion scores have been proposed in the literature. Examples
of approaches to deal with noise in pair comparison-based
subjective tests can be found, e.g., in [21], [22], [23], [24].
Pairwise preferences and rating scores can also be fused into
a common quality scale, thus reducing the noise of individual
experiments [25], [26]. In this paper, we focus on the scenario
where a rating quality scale is used to elicit and collect opinions.

The mean of the opinion scores (MOS) gathered for a given
stimulus has long been considered as a good estimate of the
subjective quality of that stimulus. Unfortunately, the MOS is
very sensitive to outlier ratings since it attributes the same im-
portance to reliable and unreliable subjects. To address this lim-
itation, several relevant ITU recommendations have appeared.
The ITU-R BT.500 [5] recommends to identify outlier subjects
and exclude their opinion scores from the dataset before com-
puting the MOS. The ITU-T P.910 [27] introduces the so-called
Absolute Category Rating (ACR) scale and recommends the use
of the quality recovery algorithm proposed in ITU-R BT.500 [5]
together with Confidence Intervals (CIs) to deal with noisy raw
opinion scores collected using the ACR scale. Finally, the ITU-T
P.913 [28] suggests to first perform a bias removal step on the
data and then potentially use the algorithm proposed in ITU-R
BT.500 [5].

All these ITU recommendations support the use of an algo-
rithm that performs subject exclusion. However, removing all
the opinion scores of a subject from the dataset probably causes
an unnecessary loss of relevant information. In fact, as under-
lined in [3], [6], considering that the excluded subjects gave
inaccurate opinion scores for all the stimuli is overly conser-
vative. Therefore, researchers have recently proposed advanced
statistical approaches to circumvent subject exclusion.

These recent methods mainly assume that each opinion score
of each subject follows a probability distribution that can be
characterized by a finite number of parameters. These parame-
ters are then estimated using statistical frameworks such as the
Maximum Likelihood Estimation (MLE) [29] or the Expecta-
tion Maximization Algorithm (EMA) [30]. Specifically, most
of these recent parametric approaches assume that the scoring
behavior of a subject can be modeled with two parameters, i.e.,
the subject’s bias and inconsistency [1], [6], [8], [9], [31]. The
bias is defined as a systematic tendency of a subject to provide
smaller (negative bias) or larger (positive bias) opinion scores

than the actual subjective quality of the stimulus that is being
rated. The inconsistency instead is a measure of the inability of
a subject to provide consistent opinion scores when rating the
same stimulus more than once.

When relying on bias and inconsistency, the authors usually
assume that each raw opinion score of each subject is a real-
ization of a Gaussian random variable. In [1], [9], the mean
of such a Gaussian random variable was modeled as the sum
of two parameters, i.e., the subjective quality to be recovered
and the subject’s bias. The variance was also expressed as the
sum of two other parameters: the subject’s inconsistency and the
stimulus’s ambiguity. The authors of [6] argued that the Gaus-
sian model proposed in [1] is still valuable if one gets rid of
the stimulus’s ambiguity, thus the variance of the Gaussian ran-
dom variable modeling each opinion score of each subject was
assumed to be equal only to the subject’s inconsistency. The
authors then proposed an iterative algorithm, called alternating
projection, to recover the subjective quality based on their pro-
posed scoring model. The alternating projection algorithm was
implemented in the Netflix SUREAL software [32]. The authors
of [8] improved the Gaussian model of [6] by integrating into it
the so-called Standard deviation of Opinion Scores (SOS) hy-
pothesis, proposed by the authors of [33], in order to account
for the fact that subjects are more accurate when rating very low
or very high quality. Finally, the authors of [31] suggested to
subtract the MOS from the raw opinion scores and divide the
result by the SOS to obtain the so-called Z-scores. They then
argued that the bias, the inconsistency and the subjective quality
can be estimated more reliably and efficie ntly from the Z-scores
rather than the original opinion scores. This yielded a subjective
quality recovery approach called “ZREC”.

Another interesting parametric approach is the one proposed
in [3]. The authors assumed that each rating of each subject
is a realization of a mixture of two probability distributions.
The first probability distribution models accurate opinion scores
given by the subject, while the second accounts for the cases
in which the subject provides inaccurate opinion scores. The
accuracy of the subject is measured with one parameter, i.e., the
probability that the subject would score the quality according to
the distribution modeling accurate opinion scores. An EMA is
proposed by the authors to estimate the model’s parameters and
thus the subjective quality.

More recently, the authors of [7] introduced the so-called
Regularized MLE (RMLE) approach to recover subjective me-
dia quality. Basically, they proposed a regularization term to be
added to the likelihood function before solving the optimization
problem, the solution of which provides an estimate of the pa-
rameters that characterize the subjective quality to be recovered.
The proposed regularization term is meant to penalize opinion
scores that are potentially noisy.

Although the superiority over the MOS of the parametric ap-
proaches discussed so far has already been proved in specific
applications, the assumptions made by these approaches on the
scoring behavior of subjects raises some questions on their gen-
eral applicability. In fact, as it will be observed in Section V,
the performance of some of these approaches with respect to
the performance of the MOS can vary significantly from one
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application scenario to another. In addition, from a theo-
retical point of view, the optimization problem guiding the
parameter estimation process in parametric models is usu-
ally computationally challenging and might not even have a
unique optimal solution as pointed out in [31]. This intro-
duces additional challenges that parametric models have to
overcome.

This paper adopts a different perspective than the recent para-
metric approaches described in the previous paragraphs. We
avoid making assumptions about any particular parametric prob-
abilistic model able to explain all the opinion scores of a subject.
Instead, a non-parametric approach to measure the reliability of
each opinion score of each subject and recover the subjective
quality of each stimulus is proposed. By refraining from impos-
ing stringent assumptions on the subjects’ scoring behavior, we
aim at proposing an approach whose accuracy is preserved over
a broad spectrum of practical situations.

The setting of this article shares some common elements with
the problem of crowd-source learning or learning from noisy la-
bels [34], [35], which has drawn considerable attention in recent
years, specially in the context of classification problems [36],
[37], [38], [39], [40], [41], [42], [43]. A common aspect that
we see between the problem of performing crowd-source learn-
ing and the subjective media quality recovery problem that we
consider in this paper is that in both cases, the input is a set
of noisy human-generated labels. However, there are some key
differences in terms of goals and how the performance of an ap-
proach is assessed in both fields. When performing crowd-source
learning, the goal is to propose an algorithm which effectively
uses the crowdsource labels to mitigate the effect of the noise
during the training process. In contrast, in subjective quality
recovery, the ground truth subjective quality corresponds to a
latent and unobservable random variable. The immediate goal
is to propose an algorithm that derives, from noisy crowdsource
labels, a robust point estimates of specific moments of this la-
tent random variable or its probability distribution in the most
general case.

In addition, to measure the performance of approaches aim-
ing at crowd-source learning, there is typically a ground-truth
test set with correct labels, on which the trained algorithm can
be tested to report a prediction accuracy. In contrast, in sub-
jective quality recovery, there is no ground-truth test set, the
performance of subjective quality recovery algorithms has to be
determined through different approaches that have been vali-
dated in the literature, such as robustness to perturbations, size
of confidence intervals and also through the intrinsic theoretical
properties of the proposed estimates. The unavailability of test
sets is due to the intrinsic subjectiveness of the media quality
assessment task. A label cannot be unequivocally identified as
right or wrong, and the variability within the labels represents
different preferences and expectations within a population. Ap-
proaches such as majority voting [44] are not suitable for this
problem since they disregard such a variability. The represen-
tativeness of an opinion score has to be evaluated in terms of
its value within the population and the observed behavior of the
subject.

III. A NON-PARAMETRIC MEASURE OF RELIABILITY

This section introduces and motivates our approach to mea-
sure the reliability of each opinion score of each subject. The
proposed measure will be used later in Section IV to derive a
new algorithm to recover the subjective media quality.

As discussed in the previous section, parametric approaches
to recover the subjective media quality from raw opinion scores
typically consider some parameters that measure the reliability
of each subject during the subjective test. For instance, in [6],
[31], the inverse of the square of the subject’s inconsistency was
used as measure of reliability. The authors of [3] estimated the
probability of each subject to provide accurate scores, and then
used this probability as an indicator of the reliability of the sub-
ject. Clearly, the effectiveness of these measures of reliability
strongly depends on the assumptions of the underlying para-
metric model. In this paper, we argue that the reliability of each
opinion score can be effectively measured without resorting to
any parametric scoring model.

A. Notation and Hypotheses

Let us introduce the following notation:
� I, a set of rated stimuli.
� J , a set of subjects.
� Ij ⊂ I the subset of the stimuli rated by the subject j ∈ J .
� Ji ⊂ J , the subset of subjects that rated the stimulus i ∈ I

using a discrete scale in the range {1, . . .,K}.
For a given stimulus i ∈ I, there might be different opinion

scores that accurately characterize its quality. The ground-truth
quality can be modeled as a discrete random variable, charac-
terized by its probability mass function (pmf). Specifically, we
introduce the following notation:
� Vi the discrete random variable that describes the la-

tent ground-truth quality of a stimulus i ∈ I in the range
{1, . . .,K}. In the absence of any noise, subjects sample
this random variable, producing opinion scores.

� pVi
denotes the pmf of Vi.

The problem of quality estimation has been formulated in
some cases as that of recovering pVi

(refer to, e.g., [3], [45]).
In practice, most of the quality assessment literature focuses on
predicting point estimates of the quality pmf, such as the mean
opinion score. We also follow the latter approach in this paper,
i.e., we are interested in estimating qi = E[Vi].

In real-world scenarios, the latent random variable describing
quality is observed through a set of stochastic, noisy observa-
tions, i.e., opinion scores. This model effectively captures the
intrinsic subjectivity of scores, arising, e.g., from different ex-
pectations in terms of quality. We will therefore denote by:
� Rj,i, the discrete random variable modeling the score of

the subject j for the stimulus i on a quality scale in the
range {1, ..,K}.

� pRj,i
denotes the pmf of Rj,i.

Our goal is to propose a robust estimator of qi by introducing
an approach to measure the reliability of each observed opin-
ion score {Rj,i}j∈Ij ,i∈I . We will denote as Qi our proposed
estimator of qi.
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B. Measuring the Reliability of an Opinion Score

We propose the following definition of reliability:
Definition 1: The reliability Wj,i of the opinion score Rj,i

given by the subject j when assessing the quality of the stimulus
i is the following ratio:

Wj,i = − 1

log (pVi
(Rj,i))

. (1)

An estimate of the distribution pVi
is required to compute

the reliability measures Wj,i. We will explore how to perform
such an estimation in Section IV. For the moment, in order to
motivate why the formula in (1) provides a suitable measure of
reliability for each opinion score gathered in a subjective test, let
us assume that the distribution pVi

is known for each stimulus
i ∈ I.

Note that Wj,i is a measure of reliability if and only W−1
j,i is

a measure of unreliability. To motivate the suitability of Wj,i as
a measure of reliability, let us introduce the following statistic
for each subject:

Sj(Ij) = 1

|Ij |
∑
i∈Ij

W−1
j,i . (2)

We will prove that the statistic Sj(Ij) can be used to measure
the average unreliability of the subject j. In fact, the following
proposition holds:

Proposition 1: For each subject j, if there is a constant c
such that var[W−1

j,i ] < c∀i ∈ Ij , then, as |Ij | → ∞,Sj(Ij) con-
verges in the mean square sense to:

h̄j(Ij) = 1

|Ij |
∑
i∈Ij

H(pRj,i
) +

1

|Ij |
∑
i∈Ij

DKL(pRj,i
||pVi

), (3)

where H(pRj,i
) is the entropy of the distribution pRj,i

and
DKL(pRj,i

||pVi
) denotes the Kullback-Leibler (KL) divergence

between pRj,i
and pVi

.
Proof: We should prove that:

lim
|Ij |→∞

E

[(
Sj(Ij)− h̄j(Ij)

)2]
= 0. (4)

To do this we show thatSj(Ij) is an unbiased estimator of h̄j(Ij)
and that its variance goes to zero as |Ij | → ∞.

For the bias we have:

ERj,i
[Sj(Ij)] = − 1

|Ij |
∑
i∈Ij

ERj,i
[log(pVi

(Rj,i)]

= − 1

|Ij |
∑
i∈Ij

ERj,i

[
log

(
pVi

(Rj,i)

pRj,i
(Rj,i)

)]

− ERj,i

[
log

(
pRj,i

(Rj,i)
)]

(5)

= h̄j(Ij), (6)

where from (5) to (6), we use the definitions of entropy and
KL divergence. Also, we consider that if there are any terms
in the expectation for which pRj,i

(r) = 0, then those terms are
zero through the continuity definition that 0 log 0 = 0 [46], so in
reality we are only dividing by pRj,i

for the positive terms that
impact the expectation.

Finally, to compute the variance of Sj(Ij) we make use of
the fact that the opinion scores can be considered independent
and the assumption that the variance of W−1

j,i is finite:

var [Sj(Ij)] = 1

|Ij |2
∑
i∈Ij

var
[
W−1

j,i

] ≤ c

|Ij | −→|Ij |→∞ 0, (7)

which completes the proof. �
Proposition 1 basically states that the statistic Sj(Ij) con-

verges to the overall unreliability of the subject j, since for a
large value of |Ij |, the following approximation can be used:

Sj(Ij) ≈ 1

|Ij |
∑
i∈Ij

H(pRj,i
) +

1

|Ij |
∑
i∈Ij

DKL(pRj,i
||pVi

). (8)

Remembering that the subject’s inconsistency is a measure of
the inability to repeat exactly the same opinion score when rat-
ing several times the same stimulus, it is not difficult to observe
that the more the subject j is inconsistent when rating the stim-
ulus i, the larger is the entropy H(pRj,i

) of the random variable
Rj,i. Hence, the quantity 1

|Ij |
∑

i∈Ij H(pRj,i
) in (8) captures the

average inconsistency of the subject j. On the other hand, the
following 1

|Ij |
∑

i∈Ij DKL(pRj,i
||pVi

) indicates on average how
far the opinion scores of the subject j are expected to be from
the accurate opinion scores. Hence, 1

|Ij |
∑

i∈Ij DKL(pRj,i
||pVi

)

measures the average inaccuracy of the subject j.
In the light of the above interpretation of Proposition 1 it

turns out that asymptotically the value of the statistic Sj(Ij) =
1
|Ij |

∑
i∈Ij W

−1
j,i measures the average unreliability of the subject

j. Each single term, i.e., W−1
j,i , of this statistic can therefore be

considered as the measure of the unreliability of the opinion
score given by the subject j to the quality of the stimulus i. This
motivates our definition of Wj,i as a measure of reliability.

It is worth noting that in information theory, the logarithm
of the probability of an event is called the self-information of
the event. It can be interpreted as a measure of the likelihood of
the event, and thus the level of surprise that the observation of
the event entails. Therefore,− log(pVi

(Rj,i)) can be interpreted
as the measure of how surprising (thus potentially unreliable) is
the opinion score Rj,i if it is supposed to come from pVi

. This is
another way to motivate why the Wj,i defined in (1) measures
the reliability of the opinion score Rj,i.

Notice that Proposition 1, which is the main theoretical foun-
dation of the proposed reliability measure, is based on the no-
tion of entropy of a probability distribution (the KL divergence
is the relative entropy between two probability distributions).
For this reason, the algorithm proposed in the next section,
grounded in the proposed reliability measure, shall be denoted
as Entropy-based Subjective Quality Recovery (ESQR).

IV. RECOVERING THE SUBJECTIVE QUALITY: THE ESQR
ALGORITHM

We now introduce the proposed ESQR algorithm to recover
the subjective quality. The key idea of the method is to weight
each opinion score in the computation of the subjective media
quality using the reliability measure described in Section III.
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To measure the reliability of each opinion score using the
formula in (1), the distribution of accurate opinion scores pVi

of
each stimulus i is required. In practice, as already mentioned, this
distribution is unknown, so an estimate of it is needed. Therefore,
the ESQR algorithm implements two main steps:

1) For each stimulus i, an estimate p̂Vi
of the distribution

of accurate opinion scores is obtained from the observed
sample of opinion scores {Rj,i}i∈Ij ,j∈J .

2) Then, p̂Vi
is used in (1) to get an estimate Ŵj,i of the

reliability of each opinion score. Ŵj,i is used to define our
estimator of the ground-truth subjective quality qi of each
stimulus i as it follows:

Qi =

∑
j∈Ji Ŵj,i.Rj,i∑

k∈Ji Ŵk,i

. (9)

Note that from the definition of Qi above, the contribution
of the subject j ∈ Ji to the determination of the ground truth
quality of the stimulus i ∈ I is weighted by their normalized
reliability i.e.,

ωij =
Ŵj,i∑

k∈Ji Ŵk,i

. (10)

A. Estimating pVi

Unlike previous approaches, we do not make assumptions
on the shape of the distributions pVi

, i ∈ I. Therefore, we use a
non-parametric approach to estimate the distribution of accurate
opinion scores.

The simplest non-parametric estimation of pVi
is based on

computing the histogram of opinion scores. In fact, pRj,i
can be

estimated by the histogram of the opinion scores that the subject
j gave for the quality of the stimulus i. For instance, if a single
opinion score is collected per stimulus, then pRj,i

is a probability
mass function that attributes a one to the observed opinion score
and 0 to all the other opinion scores on the quality scale. The
observed distribution of opinion scores for each stimulus i can
then be estimated as:

p̄Vi
(r) =

1

|Ji|
∑
j∈Ji

pRj,i
. (11)

In practice, this estimate p̄Vi
can be influenced by the potential

presence of noise in the raw opinion scores collected from the
subjects. To obtain a more accurate estimation that closely aligns
with the true distribution pVi

we suggest a different approach
for weighting different subjects’ contributions, as opposed to
the uniform weighting (1/|Ji|) used in (11). Specifically, our
proposition is based on the observation that the more a subject’s
opinion scores correlate with those of other subjects, the more
trustworthy that subject is. Consequently, to enhance the pre-
cision of our estimate of pVi

we propose applying a weighting
coefficient, denoted as εj to each histogram pRj,i

which depends
on the overall correlation between subject j and the other sub-
jects.

We employ Cjk, the Spearman Rank Order Correlation Co-
efficient (SROCC) between the opinion scores of the subject j

Algorithm 1: Entropy Based Subjective Quality Recovery
(ESQR).

Data: Rj,i, i ∈ Ij ; j ∈ J // stimuli i,
subjects j

1 Cjk ← SROCC(Rj,., Rk,.) j, k ∈ J // pairwise
subject scores correlation

2 Ĉj ← FZT−1
(∑

k∈J FZT(Cjk)

|J |
)

j ∈ J // overall

subject-to-subject correlation

3 εij ← |Ĉj |
∑

k∈Ji |Ĉk | i ∈ I; j ∈ Ji // importance

of the ratings of subject j in the
PVi

estimation
4 p̂Vi

←∑
j∈Ji εijpRj,i

i ∈ I // estimate the
distribution PVi

5 Ŵj,i ← 1
− log(p̂Vi

(Rj,i))
i ∈ Ij ; j ∈ J //

estimate each opinion’s score
reliability

6 Qi ←
∑

j∈Ji Ŵj,iRj,i
∑

k∈Ji Ŵk,i
i ∈ I // estimate the

quality
Result: Qi, i ∈ I

and those of the subject k, as a non-parametric measure of cor-
relation. To compute the average correlation between subject
j’s opinion scores and those of all the other subjects, we uti-
lize the Fisher Z-Transformation (FZT), as suggested in [47].
For each subject j, the FZT is applied to the SROCC values
Cjk k = 1, 2, . . . , j − 1, . . . , j + 1, . . . , |Ji|. The average of
the obtained values is computed. The inverse of the FZT, here
denoted by FZT−1, is then applied to the obtained average to ob-
tain the overall correlation Ĉj between the opinion scores of the
subject j and those of the other subjects. Finally, the importance
εij of the histogram pRj,i

in the estimation of the distribution
pVi

is expressed as:

εij =
|Ĉj |∑

k∈Ji |Ĉk|
i ∈ I, j ∈ 1, 2, . . . , |Ji|. (12)

Therefore, the final estimate p̂Vi
of the distribution pVi

, used to
recover the subjective quality of each stimulus i as defined in
(9), is obtained from the following formula:

p̂Vi
=

∑
j∈Ji

εij .pRj,i
i ∈ I. (13)

It is worth noticing that other more sophisticated estimations
of p̂Vi

might be possible. However, we argue that even a simple
and possibly noisy approximation of pVi

, such as the one pro-
posed above, is a good starting point for the second step of the
proposed ESQR algorithm, where atypical subjects are further
penalized using the reliability measure introduced in Section III.
The experiments in Section V support this claim with empirical
evidence.

The proposed ESQR algorithm is summarized in Algorithm 1.
The input of Algorithm 1 is the set of the observed opinion
scoresRj,i i ∈ Ij ; j ∈ J . The output is the recovered subjective
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quality of each stimulus i. The notation Rj,. is used to indicate
all the opinion scores of the subject j.

B. Confidence Interval of the Recovered Quality

Using a similar formula as in [31] to compute the standard
deviation of a weighted sum of opinion scores, for each stimulus
i, an unbiased estimator of the standard deviation of Qi can be
computed as follows:

σQi
=

√√√√ |Ji|
|Ji| − 1

∑
j∈Ji Ŵj,i(Rj,i −Qi)2∑

k∈Ji Ŵk,i

. (14)

From the standard deviation in (14), the 95% confidence interval
(CI) of the recovered quality stimulus i can be computed as:

CIQi
= Qi ± 1.96

σQi√|Ji| . (15)

Equation (15) assumes that the estimator Qi is normally dis-
tributed. In Appendix A, we provide theoretical conditions for
this to happen, and we show through simulation that these condi-
tions are indeed reasonable in a practical scenario. Also, notice
that this normality assumption only applies to the estimator of
the ground-truth quality, and not the individual opinion scores,
which can follow any arbitrary distribution in our framework.

V. NUMERICAL EXPERIMENTS

A. Experimental Settings

The evaluation of subjective media quality recovery meth-
ods is challenging, since there is no observable “true” quality of
stimuli to be used as ground truth. In related work, e.g., [1], [6],
[7], [8], [31], the effectiveness of quality recovery approaches is
assessed in terms of: i) robustness to the insertion of synthetic
noise in the quality scores; ii) and uncertainty on the recovered
subjective media quality. We will therefore use similar experi-
ments in this paper to evaluate the effectiveness of the proposed
ESQR algorithm.

We compare the proposed ESQR algorithm with five state-
of-the-art quality recovery approaches, i.e.: the MOS, the al-
gorithm recommended in the ITU-R BT.500 [5], very recent
algorithms such as ZREC [31], RMLE [7], The Generalized
Distribution Score (GSD)-based approach presented in [48], the
SOS Hypothesis-aware Subjective Quality Recovery (SHaSQR)
algorithm proposed in [8] and finally the Netflix SUREAL soft-
ware that implements the so-called “alternating projection” al-
gorithm [6]. The latter has been recommended by the ITU in
2021 as the most comprehensive method for subjective quality
recovery (as per Section 12.6 of ITU-R P.913 [28]).

The computational experiments were conducted using the
data gathered in six different subjective tests. The related
datasets are named: VQEG-HD1 [49], VQEG-HD3 [49],
VQEG-HD5 [49], Netflix Public [1], KoNViD-1k [50] and
the MoviesLens-1M [51]. While the last two datasets, i.e., the
KoNViD-1k [50] and the MoviesLens-1M [51] were obtained
from crowdsourcing subjective tests, the others are the results of
highly controlled lab experiments. Notice that for crowdsourc-
ing experiments, the matrix of opinion scores is typically sparse,

TABLE I
UNCERTAINTY OF QUALITY ESTIMATES: COMPARISON OF THE SIZE OF CIS

ESTIMATED BY THE DIFFERENT QUALITY RECOVERY APPROACHES

as stimuli are evaluated only by a subset of subjects. Thus, we
present results for crowdsourcing datasets in a separate section
below.

For the three VQEG experiments, there were 24 participants
and each of them rated around 168 stimuli, yielding for each of
the three tests, a total of 24× 168 opinion scores to be analyzed.
The Netflix Public dataset is a relatively small-scale dataset,
which includes the opinion scores of 26 subjects on the percep-
tual quality of 70 processed video sequences and nine source
content. The KoNViD-1 k subjective test involves 624 partic-
ipants, who have scored 1200 short video sequences. For the
MovieLens-1 M, 6040 subjects have expressed their opinion
score on 3952 movies. For all the six datasets considered for our
experiments, the authors made use of five-point quality scales
when gathering the opinion scores from the subjects. Hence, the
opinion scores in each dataset range from 1 to 5.

B. Uncertainty of Quality Estimates

A typical approach to measure the uncertainty of the subjec-
tive quality recovered by a given method consists in computing
the size of confidence intervals [6], [8], [31]. The larger the CI,
the higher the uncertainty on the recovered subjective quality.

Table I shows the comparison between the average size of the
CIs of the recovered subjective quality by each method on the
four datasets resulting from tests performed in controlled envi-
ronments. The percentages reported between parenthesis indi-
cate by how much the application of each method reduced on
average the size of the CIs that can be computed from the raw
opinion scores, i.e. the MOS’s CIs (computed for each stimulus i
as MOS± 1.96× SOS/

√|Ji|, where SOS stands for Standard
deviation of Opinion Scores). For instance, as it can be seen
in Table I, the average of the sizes of the MOS’s CIs on the Net-
flix public dataset is 0.509, while the average of the sizes of the
CIs of the recovered qualities by the proposed ESQR algorithm
is 0.355. Hence, by using the proposed ESQR algorithm instead
of the MOS on the Netflix public dataset, on average, the size of
the CIs of the recovered subjective qualities is reduced by 30%,
i.e., 100× (1− 0.355/0.509).

Looking at the results in Table I, it can be noticed that on all
datasets, the proposed ESQR algorithm always recovered sub-
jective qualities characterized by smaller CIs than those of all the
other approaches on average. Hence, in practice, the proposed
algorithm is expected to provide estimates of the subjective qual-
ity that are prone to lower uncertainty.
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It is interesting to notice that more recent approaches such
as SHaSQR, ZREC, RMLE and the Netflix SUREAL software
offered better performances than the MOS and the algorithm
proposed in the ITU-R BT.500. The performances of the Netflix
SUREAL software, RMLE, ZREC and SHaSQR were however
outperformed by that of the proposed ESQR algorithm. In fact,
the application of the ESQR algorithm has yielded in the worst
case a reduction of the size of CIs by more than 22% in all
cases, while all the other approaches never did better than 21%.
The CIs resulting from the output of the algorithm proposed
in the ITU-R BT.500 are indeed larger than the MOS’s CIs on
average. This is actually not a peculiarity of this work as the
same observation was made. We also note that the GSD approach
was not considered in this experiment since we did not find in
the related paper a formula to compute CIs for the recovered
qualities. in [6].

C. CIs Prediction Accuracy

When comparing confidence interval sizes, a natural question
arises: does a smaller confidence interval actually imply reduced
uncertainty, or is it merely a result of underestimating the true
uncertainty linked to the quality estimation? In real datasets,
there are no ground-truth CIs against which estimated CIs can
be benchmarked. Therefore, we must resort to simulations to
verify the accuracy the CI estimates of ESQR and competing
methods.

We simulated the opinion scores of 25 subjects for 100 stimuli.
For each stimulus i, we assumed that reliable opinion scores on
its quality follow a normal distribution with a mean of qi and a
standard deviation of σi. Consequently, qi represents the ground
truth quality for stimulus i. The ground truth CI of the quality
of stimulus i is then:

CIi = qi ± 1.96
σi√
Ms

, (16)

where Ms = 25 is the number of simulated opinion scores for
each stimulus. The ground truth quality values qi were derived by
uniformly sampling 100 numbers within the range of [1.5, 4.5].
To simulate the fact that subjects exhibit lower inconsistency
at the quality scale’s extremes, as observed in real subjective
experiments [33], we employed the SOS hypothesis [33]. More
precisely, we set σi = 0.2× (−q2i + 6qi − 5), ensuring that the
standard deviation of the distribution of reliable opinion scores
diminishes at the quality scale’s extremes.

We will denoteN(qi, σi) as the distribution of reliable opinion
scores for the stimulus i. In our simulation, each stimulus is as-
sessed by 25 subjects. We followed the scoring model proposed
in [3], where each subject could provide a reliable opinion score
with a probability of 1− η and an unreliable one with prob-
ability η. We divided the 25 subjects into two clusters, i.e., a
group of 20 accurate subjects, and a group of 5 inaccurate ones.
For the accurate subjects, we set η = 0.01 (1%), meaning that
99% of their opinion scores were sampled from the distribution
N(qi, σi) of reliable opinion scores and rounded to the closest
integer from 1 and 5, while the remaining 1% were randomly
selected between 1 and 5. The 5 inaccurate subjects had η ran-
domly chosen between 0.6 and 1, meaning that at least 60% of

TABLE II
CI PREDICTION ACCURACY

their opinion scores were randomly selected between 1 and 5,
and the rest were drawn from N(qi, σi). We conducted this sim-
ulation with 30 different seeds, resulting in 30 distinct simulated
datasets.

We applied all quality recovery methods to each of the simu-
lated datasets. Let ĈI

m

id represent the CI estimated by method m
for stimulus i in simulated dataset d. To evaluate the accuracy
of method m in estimating the ground truth CIs, we compared
ĈI

m

id to CIi using two main indices:

Δm =
1

30× 100

30∑
d=1

100∑
i=1

|ct(ĈI
m

id)− ct(CIi)| (17)

ρm =
1

30× 100

30∑
d=1

100∑
i=1

sz (ĈI
m

id)/sz (CIi) (18)

where ct() and sz () stand for center and size of the CI respec-
tively. Δm is, therefore, the average distance between the center
of the estimated CI of method m and the center of the ground
truth CI. Meanwhile, ρm is the average ratio between the size of
the CI estimated by method m and the size of the ground truth
CI. Clearly, the closer Δm is to zero, the better; and the closer
ρm is to 1, the better.

Table II summarizes the results. RegardingΔm, the best meth-
ods are ESQR, ZREC, and Netflix Sureal software, with the cen-
ter of the estimated CI differing from that of the ground truth
CI by around 0.05. The MOS exhibited the lowest performance
(Δm = 0.13), followed by RMLE and SHaSQR (Δm = 0.08).
When it comes to predicting CI sizes, ESQR outperformed all
other approaches, with a related value of ρm = 0.98 signifi-
cantly closer to 1 than that of all the other methods for which
ρm > 1.21. Thus, ESQR slightly underestimated (by 2% of the
actual size) the sizes of the ground truth CIs on average, while
all the other methods overestimated them significantly (by more
than 21% of the actual size).

The results in Table II suggest that the proposed ESQR al-
gorithm can better predict the ground truth CIs and thus better
quantify the actual uncertainty characterizing the quality of a
stimulus compared to the other quality recovery approaches. We
believe this stems from the fact that ESQR makes no restrictive
assumptions about the subjects’ scoring behavior.

D. Robustness to Synthetic Noise

Following the same protocol of [1], [6], [7], [8], [31], all the
quality recovery methods are first used to recover the subjec-
tive media quality on each dataset. Then, some synthetic noise
is added to each dataset. After adding the noise, the subjective
quality is estimated again, this time using the noisy dataset. Fi-
nally, the recovered quality on the noisy dataset is compared
in terms of RMSE to the one obtained before adding noise to
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Fig. 2. Robustness to noise insertion. RMSE between the quality recovered on
the original dataset and under different noisy conditions. The noise was added by
replacing a given fraction of the opinion scores (see the x-axis) of each subject
with integer numbers sampled at random between 1 and 5. The simulation was
run with 30 different seeds and the curve for each quality recovery method
reports the average RMSE from the 30 trials.

the dataset. This allows us to determine which method is more
robust to noise.

The noise is added to the datasets using two different ap-
proaches that simulate different applications:

1) Noise insertion: a small fraction of the opinion scores of
each subject is replaced by an integer sampled at random
in the interval [1, 5];

2) Spammer annotators: some simulated subjects scoring the
quality at random are added to the dataset.

In practice, our first approach to adding noise simulates, for in-
stance, the type of noise that would be generated by the subjects’
fatigue or unexpected subjects’ distraction. In fact, it is reason-
able to assume that, due to fatigue or distraction, each subject
might inaccurately score the quality of a very small fraction of
stimuli. The second noise model simulates situations such as the
unexpected crash of the software used to collect opinion scores,
causing a mismatch of the opinion scores of certain subjects (see
for instance the Netflix subjective test described in [1]). In that
case, the subjects whose opinion scores have been mismatched
correspond to subjects rating at random. Another application is
the case in which a subject accepts to participate in the subjec-
tive test but just provides ratings at random in order to complete
the test as quickly as possible. These subjects are referred to in
the literature as spammer annotators [15].

Fig. 2 reports the results obtained using the first noise model.
The fraction of replaced opinion scores is reported on the x-axis.
The y-axis reports, for each quality recovery method, the RMSE
error between the quality recovered on the original dataset and
the one obtained after replacing the fraction of opinion scores
on the x-axis with random integers. For instance, looking at the
VQEG-HD1 dataset in Fig. 2, the RMSE between the values of
the recovered qualities by the proposed ESQR algorithm on the
original dataset and the values computed after replacing 4% of
the opinion scores of each subject in the dataset with random
integers is 0.06.

Fig. 3. Robustness to spammer annotators. RMSE between the quality recov-
ered on the original dataset and under noisy conditions. The noise was generated
by adding simulated subjects (see thex-axis) that score the quality of each stimu-
lus with an integer number sampled at random between 1 and 5. The simulation
was run with 30 different seeds and RMSE of the 30 trials for each quality
recovery method is shown.

In this first case, as it can be seen from Fig. 2, the proposed
ESQR algorithm outperformed all the other methods in all test-
ing conditions. In fact, the curve of RMSE values associated to
the ESQR algorithm lies below the ones of all the other methods.
This result suggests that the proposed ESQR algorithm would
guarantee better robustness than the other quality recovery meth-
ods to the noise generated for instance by the subjects’ fatigue.

One can notice that the Netflix SUREAL software, SHaSQR,
GSD and ZREC showed performances very similar to that of the
MOS. The RMLE approach instead showed better performance
than the MOS, the BT.500 algorithm, ZREC,SHaSQR, GSD and
the Netflix SUREAL software.

The results related to our second approach to add the noise
are summarized in Fig. 3. The x-axis reports the number of sim-
ulated subjects added to the dataset. These simulated subjects
rate the stimuli by choosing at random an integer between 1 and
5. In this case, the proposed ESQR algorithm, ZREC and the
Netflix SUREAL software showed comparable performances.
In particular ESQR delivered the best performance on the Net-
flix public dataset and provided similar performance to that of
the Netflix SUREAL software on the VQEG-HD5 dataset. The
Netflix SUREAL software showed a better performance than the
proposed ESQR algorithm on the VQEG-HD1 and VQEG-HD3
datasets. The RMLE approach showed a performance that is
higher than that of the MOS but significantly lower than those
of all the other methods. Finally, it can be observed that the
GSD approach is not particularly robust to the presence of spam-
mer annotators. This can be explained by the fact that, unlike
SUREAL, ZREC and SHaSQR, the GSD was mainly proposed
to better model the distribution of opinion scores stimulus by
stimulus, rather than capturing long term inaccuracy that char-
acterizes spammer annotators.

The joint analysis of Figs. 2 and 3 reveals a crucial observa-
tion: the proposed ESQR algorithm demonstrates robustness, ir-
respective of the noise simulation approach. Unlike other quality
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recovery methods tested, ESQR performance does not exhibit
sensitivity to the specific noise simulation employed. For in-
stance, in Fig. 2, sophisticated methods like ZREC, SHaSQR
and the Netflix SUREAL software do not outperform the MOS,
yet they perform well in the second noise simulation case, as
depicted in Fig. 3. Conversely, RMLE excels in the first case in
Fig. 2 but falters in the second case in Fig. 3. ESQR consistently
maintains high performance across both cases, standing out as
the top performer in the first noise simulation case and one of
the best methods in the second case.

This stability in ESQR’s performance during transitions be-
tween scenarios can be attributed to our avoidance of assump-
tions about subjects’ scoring behavior, a characteristic of para-
metric approaches. Such assumptions often face challenges due
to specific application characteristics. For example, the paramet-
ric model in the Netflix SUREAL software assumes a subject
permanently possesses bias and inconsistency, making it less ef-
fective in capturing the scoring behavior of subjects who only
occasionally misjudge quality. This likely explains the similar
performance of the Netflix SUREAL software to that of the MOS
in the first noise simulation case.

E. Crowdsourcing Experiments

This section evaluates the accuracy of ESQR when the matrix
of ratings is sparse. This type of matrix is typically obtained
from crowdsourcing tests where a very large number of stimuli is
employed, but each subject is required to rate only a small subset
of them. This yields a stimuli-to-subjects table with numerous
empty cells and thus a sparse matrix of ratings.

When the matrix of ratings is sparse, the correlation between
the ratings of each pair of subjects cannot always be calculated.
This makes it difficult for ESQR to derive a more accurate es-
timate of the distribution pVi

than the distribution of collected
ratings. In this case, our implementation of ESQR considers the
distribution p̄Vi

(11) of gathered ratings during the test as the
estimate of pVi

for each stimulus i in order to compute the reli-
ability of each individual opinion score.

In light of the results discussed in Section V-D, the quality re-
covery approaches with the most competitive performance with
respect to the proposed ESQR algorithm in terms of robustness to
noise are the RMLE (see Fig. 2), ZREC and the Netflix SUREAL
software (see Fig. 3). The analysis in this section could have
therefore been done by considering ZREC, the Netflix SUREAL
software and the RMLE approach. Unfortunately the RMLE ap-
proach involves an optimization problem whose solution is com-
putationally very demanding on large-scale datasets as the ones
considered in this section. This made it impossible to perform
the experiments with RMLE on these datasets in a reasonable
amount of time. For this reason, we considered only ZREC and
the Netflix SUREAL software.

The sizes of the CIs of the recovered subjective qualities by
the proposed ESQR algorithm, ZREC and the Netflix SUREAL
software are compared in Table III. As in the case of datasets
collected in controlled environments, the proposed ESQR al-
gorithm provided a recovered subjective quality prone to lower
uncertainty, i.e. smaller CIs. The use of the Netflix SUREAL

TABLE III
CROWDSOURCING EXPERIMENTS: CI SIZES OF ESQR VS NETFLIX, SUREAL,

ZREC. PERCENTAGE REDUCTION WITH RESPECT TO MOS CI

Fig. 4. Crowdsourcing experiments, robustness to noise insertion. Comparing
the robustness to synthetic noise of the ESQR algorithm, the Netflix SUREAL
software and ZREC on two crowdsourcing datasets. A given fraction of the
opinion scores (see the x-axis) in each dataset was replaced with integers sampled
at random between 1 and 5. The RMSE between the quality recovered on the
original dataset and the one obtained in each noisy situation is reported on the
y-axis.

software and ZREC induced no more than 18% reduction of the
size of the raw data CIs, while ESQR achieved 25%. The reduc-
tion percentages achieved by the Netflix SUREAL software are
slightly higher than the percentages it reached on datasets ob-
tained in controlled environments (see Table I). This is consistent
with the fact that greater benefit can be expected from sophis-
ticated quality recovery approaches when used on challenging
datasets such as those derived from crowdsourcing subjective
tests.

The reduction percentages obtained for the proposed ESQR
algorithm in Table III, although being greater than those of the
Netflix SUREAL software and ZREC, were in one case smaller
than the ones in Table I, which were obtained on datasets col-
lected in controlled environments. This is because the current
version of the proposed ESQR algorithm to analyze a sparse
matrix of ratings directly uses the distribution of gathered rat-
ings to estimate the reliability of individual opinion scores. We
strongly believe that, as for the Netflix SUREAL software, the
application of the ESQR algorithm would bring larger benefits
on crowdsourcing datasets if an approach to “clean” the distri-
bution of collected opinion scores is employed as in the case of
a plain matrix of ratings where pairwise correlations are used.
Finding such an approach will thus be one of the main points
for a future contribution.

We compared the proposed ESQR algorithm to the Netflix
SUREAL software and ZREC in terms of robustness to syn-
thetic noise and spammer annotators added to a sparse matrix of
ratings. The results are shown in Figs. 4 and 5. As in Section V-D,
the quality recovered on the original dataset was compared in
terms of RMSE to the one recovered from a noisy version of
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Fig. 5. Crowdsourcing experiments, robustness to spammer annotators. Com-
paring the robustness of the ESQR algorithm, the Netflix SUREAL software and
ZREC to the insertion of spammer annotators on two crowdsourcing datasets.
A certain number of spammer annotators (see the x-axis) was added to each
dataset. The opinion scores of a spammer annotators are integers sampled at
random between 1 and 5. The RMSE between the quality recovered on the orig-
inal dataset and the one obtained after adding spammer annotators is reported
on the y-axis.

each dataset. To add noise, a fraction (see the x-axis) of opin-
ion scores was selected at random and replaced with integers
randomly sampled between 1 and 5. The ratings of a spammer
annotator are simulated by selecting random integers between
1 and 5. As we see in Fig. 4, in the case of noise insertion,
the proposed ESQR algorithm showed higher robustness to the
added noise. In fact, it always recovered a subjective quality
from the noisy dataset with the lowest RMSE with respect to the
one obtained on the original version of the dataset. This suggests
that, by adding additional noise to a challenging dataset, the pro-
posed ESQR algorithm would offer more robustness to it than
the Netflix SUREAL software and ZREC. For what concerns
the insertion of spammer annotators (see Fig. 5), ESQR shows
better performance than the Netflix SUREAL software, but this
performance is outperformed by that of ZREC.

F. Reliability of Opinion Scores

In this section we analyze the effect of the proposed reliability
measure (1) as a weight of the contribution of each stimulus to the
quality recovery. We compare the proposed reliability weights
with the weights defined by Netflix SUREAL and ZREC. Let
ωSUREAL
ij , ωZREC

ij and ωESQR
ij be the weights of the contribution

of subject j to the determination of the quality of each stimu-
lus i for SUREAL, ZREC and the proposed ESQR algorithm,
respectively. Equation (10) defines ωESQR

ij , while SUREAL and
ZREC define the contribution as:

ωSUREAL
ij =

(
σSUREAL
j

)−2
∑

k∈J
(
σSUREAL
k

)−2 (19)

ωZREC
ij =

(
σZREC
j

)−2
∑

k∈J
(
σZREC
k

)−2 (20)

where σSUREAL
j and σZREC

j are the estimated inconsistency of the
subject j by the Netflix SUREAL software and ZREC respec-
tively. Notice that, for SUREAL and ZREC, the weights only
depend on the subject and are constant across stimuli evaluated
by the same subject.

Equations (19) and (20) reveal that ZREC and SUREAL
weigh opinions similarly in determining ground truth quality.
Consequently, we exclusively report results comparing ESQR

Fig. 6. Reliability of opinion scores. The figure shows the contribution weights
ωSUREAL
ij (left) and ωESQR

ij (right) of each subject j to the determination of the
ground truth quality of each processed video sequence i in the Netflix public
dataset. The ESQR weights can capture the reliability of individual opinion
scores.

to SUREAL in the following section, as similar conclusions
arise with ZREC.

In Fig. 6, we report ωSUREAL
ij and ωESQR

ij computed on the Net-
flix public dataset. The ability of ESQR weights to modulate the
importance of opinion scores per stimulus and not only per sub-
ject as SUREAL gives higher flexibility and precision in quality
estimation. For instance, from the left heatmap in Fig. 6 one can
notice that, according to SUREAL, all the opinion scores of the
subject #7 are considered unreliable. The heatmap of ESQR con-
tradicts that by identifying stimuli for which the opinion scores
of subject #7 are still accurate enough to contribute to estimating
ground truth quality. In fact, for the following stimuli: #3, #43,
#56 and #58 the ESQR contribution weights of subject #7 are
rather high. A quick look at the dataset revealed that for these
stimuli, subject #7 gave the opinion score chosen by the ma-
jority of subjects. Hence, contrarily to SUREAL, ESQR rightly
attributed high importance to these opinion scores since they can
be considered as accurate. Similarly, looking at the left heatmap
in Fig. 6, it can be observed that SUREAL attributes very high
importance to all the opinion scores of subject #23. The ESQR
heatmap however points out some stimuli for which the opinion
scores of that subject are less reliable. For instance, subject #23
is the only one that scored the quality of stimulus #44 as being
“bad” while all the other subjects found it at least “fair”.

Another interesting example is the situation of stimulus #19
for which all the subjects gave the same opinion scores. Despite
all the subject agreed on one opinion score, SUREAL attributed
different importance to the subjects when recovering the quality
of that stimulus. This is not the case for ESQR that attributed the
same contribution weight to all subjects as it can be seen from
the right heatmap in Fig. 6.

All these examples provide insights of why the proposed
ESQR approach achieves in general better robustness and lower
uncertainty than SUREAL and ZREC in the numerical experi-
ments presented so far in this paper.

To further assess the effectiveness of the proposed non-
parametric measure of reliability, we conducted a simulation
study. The objective of the simulation was to demonstrate that as
the probability of an opinion score being anomalous increases,
the proposed reliability measure progressively identifies such
opinion score as less reliable.

In our simulation, consistent with our previous methodology
outlined in Section V-C, we assume that reliable opinion scores



ALTIERI et al.: SUBJECTIVE MEDIA QUALITY RECOVERY FROM NOISY RAW OPINION SCORES: A NON-PARAMETRIC PERSPECTIVE 9353

Fig. 7. Average reliability of an opinion score and the related 95% confidence
interval as function of the probability that the opinion score is anomalous. Two
different anomalies are studied (biased and spam opinion scores). In both cases
the proposed measure of reliability decreases as the probability of the opinion
scores being affected by an anomaly increases.

regarding the quality of stimulus i follow a normal distribu-
tion with a mean of qi and a standard deviation computed from
the SOS hypothesis [33], i.e., σ(qi) = 0.2× (−q2i − 6qi + 5).
Thus, the distribution pVi

of reliable opinion scores is denoted
as N(qi, σi) as in Section V-C. Following the scoring model
introduced in [3], we generated the opinion score Rj,i that a
generic subject j would express on the quality of stimulus i
by considering that this opinion score might be reliable with
probability 1− ηij or anomalous with probability ηij . Con-
sequently, the opinion score Rj,i is a realization of a random
variable whose distribution is given by the following mixture:
(1− ηij)×N(qi, σ(qi)) + ηij × pZ , where pZ represents the
probability distribution modeling the type of anomaly affecting
the opinion score. In our simulation, we utilized two distinct
distributions for Z:

1) The uniform distribution on a discrete scale ranging from
1 to 5. In this case, with probability ηij , the opinion score
Rj,i is obtained by randomly selecting an integer from 1
to 5. As already mentioned, this type of opinion score is
commonly referred to as a “spam” in the literature.

2) A normal distribution with mean qi + b and standard de-
viation σ(qi + b). Here, the opinion score is affected by a
bias set to b. In our simulation, we employed b = ±0.5.

Subsequently, we examined the reliability of the opinion score
Rj,i as a function of its probability ηij of being anomalous.

The results of the simulation are presented in Fig. 7. For each
value of ηij , we simulated 100 different opinion scores Rj,i by
randomly selecting 100 different values of qi within the interval
[1, 5]. This approach enabled us to obtain 100 distinct values of
reliability Wij corresponding to a specific ηij . With this sample
of values, we computed not only the average reliability corre-
sponding to a given ηij but also the associated 95% CI.

As depicted in Fig. 7, as the probability ηij of an opinion score
Rj,i being anomalous increases, the proposed reliability mea-
sure accurately indicates a decrease in its reliability. Moreover,
it is noteworthy that the CI of the reliability decreases in size as
the probability of the opinion score being anomalous increases.

Fig. 8. Quality estimates of ESQR vs. other methods. Opinion scores distri-
bution for a stimulus with high discrepancy between Q (ESQR) and the mean
opinion score (MOS).

This suggests that the proposed measures exhibit higher confi-
dence in the estimation of reliability when the opinion is almost
certainly affected by an anomaly.

Additionally, an interesting observation is that biased opinion
scores maintain greater reliability compared to spam scores. This
indicates that the proposed measure of reliability can discern that
biased opinion scores contain more valuable information com-
pared to spam scores, which are essentially noise. In summary,
the simulation results affirm the effectiveness of the proposed
non-parametric measure of reliability in correctly identifying
and quantifying the impact of anomalies on opinion scores.

G. Quality Estimates of ESQR vs. Other Methods

We evaluate the similarity between the subjective quality re-
covered by ESQR and that of other state-of-the-art quality es-
timation algorithms on the six considered datasets. ESQR es-
timates generally align with prior methods, deviating only in
specific cases where assumptions are potentially violated. The
smallest Pearson correlation found between ESQR and other
methods is 0.996 (0.994 for Spearman correlation), indicating
very high consistency on average. The RMSE further confirms
these results, with a maximum value of 0.167, notably small on
a 5-level quality scale.

It is instructive to analyze cases where the quality estimated
by ESQR differs significantly from that of alternative methods.
An example of stimulus where the output of ESQR deviates sig-
nificantly from the MOS (difference = 0.34) is the one whose
distribution of scores is showed in Fig. 8. In fact, while 14 sub-
jects out of 26 deemed that the quality of that stimulus was ex-
cellent and scored it with a 5, there is one subject that found the
quality bad and gave a 1 as opinion score. The MOS attributes
to this opinion score the same importance that is attributed to
the other opinion scores; this yields a MOS = 4.31. The pro-
posed ESQR algorithm instead under-weights that potentially
noisy low opinion score and recovers a larger subjective quality
(4.65).

To study significant differences between ESQR and the pop-
ular Netflix SUREAL, we compare the quality estimates by
the two methods for the large-scale dataset MoviesLens-1 M
through the scatter plot in Fig. 9(a). We observe that the out-
put of ESQR mostly differs from that of the Netflix SUREAL
software at the extremes of the quality scale, i.e., where the
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Fig. 9. Quality estimates of ESQR vs. other methods. Comparing the output
of the ESQR algorithm to the one of the Netflix SUREAL software on the
MovieLens-1 M dataset. On the right, the distribution of opinion scores of the
stimulus for which the outputs of the two approaches differ the most.

TABLE IV
ABLATION STUDY ON THE ESQR ALGORITHM

distribution of the opinion scores is typically strongly asymmet-
ric. In these cases, the Gaussianity assumption made by Netflix
SUREAL concerning the quality distribution is not met, lead-
ing the method to introduce substantial bias in the estimates.
We observed a similar behavior for KoNViD-1 k. Fig. 9(b) re-
ports the score distribution for the stimulus having the largest
estimated quality difference between the ESQR algorithm and
Netflix SUREAL. The Netflix SUREAL software recovered a
subjective quality equal to the MOS. The ESQR algorithm in-
stead recovered a subjective quality that is significantly lower
than the MOS. The difference, 0.51, represents more than 10%
of the whole quality scale. This confirms that, despite most of the
time ESQR provides estimates coherent with previous methods,
there are stimuli for which different quality recovery approaches
strongly disagree.

H. Ablation Studies

In our ESQR algorithm ablation study we examined two as-
pects: i) removing pairwise correlation, thus directly using the
observed distribution p̄Vi

(11) instead of the estimate p̂Vi
(13)

that involves the weights εij ; ii) using the expected value com-
puted from p̂Vi

as the subjective quality estimate. Results are
shown in Table IV. We focus only on the Netflix Public dataset
since similar conclusions were drawn from other datasets. To
evaluate the robustness against noise and spammer annotators,
we computed the average RMSE across the noisy scenarios in
Figs. 2 and 3.

As it can be noticed from Table IV, without pairwise cor-
relation, the algorithm is less robust to spammer annotators,
and by using only the expected value computed from p̂Vi

, it is
less robust to noise and computes a quality estimate with larger

CIs and thus prone to more uncertainty. The full ESQR algo-
rithm demonstrates superior performance balance, highlighting
the importance of all introduced elements.

It is worth noting from (9) that our introduced reliability
measure plays a crucial role in our ESQR algorithm. Remov-
ing this measure, or equivalently assuming that opinion scores
are equally reliable, would reduce ESQR to the MOS. How-
ever, throughout all experiments presented in this paper, ESQR
consistently outperformed the MOS. This superiority is mani-
fested in various aspects: i) ESQR demonstrates the capability
to estimate subjective quality with lower uncertainty than the
MOS, as evidenced by the results presented in Table I. ii) ESQR
provides better predictions of confidence intervals, as indicated
in Table II. iii) ESQR exhibits higher robustness to noise, as
highlighted by the results in Section V-D. These results clearly
demonstrate that the enhanced accuracy of ESQR stems from the
weighting of opinion scores by our proposed reliability measure.
Thus it is a fundamental piece of the algorithm.

I. Computational Time Analysis

Each method was executed 30 times on each dataset, and the
average computational time was recorded. These experiments
were conducted using MATLAB on a computer equipped with
a 2.6 GHz 6-Core Intel Core i7 processor and 16 GB of RAM.

Excluding RMLE, all approaches processed the small-scale
datasets (VQEG-HD1, VQEG-HD3, VQEG-HD5, and Netflix
Public) in less than 4 ms on average. Specifically, Netflix
SUREAL and ZREC took less than 1 ms each, while ESQR
required just over 3 ms. A notable increase in computational
time (up to 70 seconds) was observed with RMLE on small-scale
datasets. This highlights the computational demands of paramet-
ric methods in estimating optimal parameter values. The efficient
processing by SUREAL and ZREC is attributed to the approxi-
mation of the parameter estimation process through an iterative
procedure and utilization of statistical moments, respectively.

Finally, it is interesting to note that, despite being slightly
slower than ZREC and the Netflix SUREAL software, ESQR
completed the recovery of the subjective quality on the
MovieLens-1 M dataset, involving up to 1 million ratings, in no
more than 12 seconds. This clearly suggests that the efficiency
of ESQR is not questionable for practical exigencies.

VI. CONCLUSION

In this paper, we introduce ESQR, a novel Entropy-based Sub-
jective Quality Recovery algorithm to estimate subjective me-
dia quality from noisy opinion scores. The primary idea behind
our approach is to treat quality estimation as a non-parametric
problem, diverging from the prevalent practice in the literature
that involves modeling scoring behavior through predefined and
often simplistic distributions. Specifically, we establish a relia-
bility measure for each stimulus capturing the degree of surprise
that a given score brings compared to the overall score distribu-
tion. We then utilize this measure to weigh the contribution of
individual opinion scores to the overall quality of a stimulus.

When comparing ESQR to five state-of-the-art quality recov-
ery methods across six diverse datasets, our results indicate that:
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i) ESQR produces subjective quality estimates characterized by
reduced uncertainty; ii) ESQR demonstrates superior robustness
to noise compared to other methods; and iii) ESQR maintains
its accuracy across a broader range of applications and datasets.

Future work will explore a refinement of the introduced relia-
bility measure to explicitly consider the ordinal nature of quality
scales, as entropy-based approaches may overlook this essential
aspect.

APPENDIX A
ASYMPTOTIC DISTRIBUTION OF QUALITY ESTIMATOR

Consider a stimulus that has been scored independently
by M subjects. The subject j has given a score 1 ≤ Rj ≤
K <∞ drawn from a distribution pRj

. Based on the scores
{R1, . . ., RM} a quality recovery algorithm is proposed as a
weighted average:

Q(M) =

∑M
j=1 h(Rj)Rj∑M

l=1 h(Rl)
. (21)

In the ESQR algorithm we would have h(Rj) =
− log(p̂V (Rj))

−1 where p̂V is an approximation to the
scoring distribution. In this section, to simplify our theorical
analysis we assume that we are in fact using the true scoring
distribution pV . Other algorithms (see (19)) have the same
structure so our analysis can also be extended to those cases.

Proposition 2: If there exists c > 0 such that |h(Rj)| ≤ c for
all j, and as M →∞ for any q ∈ [1, K] we have that:

M∑
j=1

var [h(Rj)(Rj − q)]→∞, (22)

then the asymptotic distribution of Q is:

lim
M→∞

P(Q ≤ q) = Φ

(
−μq

σq

)
, (23)

whereΦ is the distribution function of a standard normal random
variable and:

μq =

M∑
j=1

E [h(Rj)(Rj − q)] , (24)

σ2
q =

M∑
q=1

var [h(Rj)(Rj − q)] . (25)

Proof: Using (21) we may write the distribution of Q as:

FQ(q) = P(Q ≤ q) = P

⎛
⎝ M∑

j=1

h(Rj)(Rj − q) ≤ 0

⎞
⎠ . (26)

Since |h(Rj)| ≤ c, for some c, and q ∈ [1, K] then the random
variables in the summation are uniformly bounded for all j as
|h(Rj)(Rj − q)| ≤ c(K − 1). Under (22) we can now apply
Lindeberg’s central limit theorem (CLT) [52, Example 27.4] to
obtain the desired result. �

Notice that event though we have a closed form approximation
for the distribution of Q using the the CLT we cannot guarantee
thatQwill be normally distributed since μq and σq are functions

of q. The approximation will yield a normal distribution if and
only if μq/σq is a linear function of q. By looking at (24) we
see that μq is indeed a linear function of q. Then we have the
following corollary:

Corollary 1: Under the hypotheses of Proposition 2, Q is
asymptotically normal if and only if (25) is independent of q.

It is clear that a good approximation will be retained as long
as μq/σq is approximately linear in q where Φ changes more
rapidly. We now perform some numerical simulations to study
whether the quality estimate can be assumed to be normal. In
order to do this, we need to test two things:

T1) Using the CLT is a good approximation for FQ for the
number M of subjects typically considered. This would
validate that (23) is a good approximation for practical
finite values of M .

T2) The argument of (23) is a linear function of q where Φ
changes rapidly, which, together with T1) would validate
that the estimator is approximately normal in practice.

For the tests, we perform simulation with M = 24 subjects.
We consider a model very similar to that of Section V-B. We
assume that each subject independently rates the same stimulus,
giving a score on {1, 2, 3, 4, 5}. The scores is given according to
the true distribution pV with probability 1− pe, and a uniform
score with probability pe. The probability pe, different for each
subject, is obtained as a uniform random variable on (0, 0.05).
The distribution pV is obtained by discretizing continuous dis-
tributions, namely:
� A normal random variable of mean xe and devia-

tion a, where xe is drawn from a continuous uniform
random variable on (1,5) and a = 0.2× (−x2

e + 6xe −
5) [33]. The discretization is done considering the points
{1.5, 2.5, 3.5, 4.5} of the normal variable.

� A beta random variable with parameters a and b drawn as
independent continuous uniform variables on (1,10). The
discretization is done by dividing the support (0,1) into 5
consecutive equally spaced intervals.

To test the validity of T1) and T2) we proceed as follows:
� Let q be a uniform grid of nd points in [1, 5], that is:

q =

{
4i+ (nd − 5)

nd − 1
: i = 1, . . ., nd

}
. (27)

These points are were FQ will be estimated.
� Choose an input distribution for V , normal or beta.
� Do the following experiment np times:
1) Choose the parameters θ for the true score, with θ =

(xe, a) for normal and θ = (a, b) for beta.
2) For each q ∈ q obtain estimates μ̂q and σ̂q of (24) and (25),

respectively, through samples averages using ns = 5000
independent realizations of the scores of the M subjects.
Then obtain the estimate of the CDF of Q using the CLT
as: F̂Q,CLT(q) = Φ(

μ̂q

σ̂q
).

3) For each q ∈ q obtain an independent estimate of the dis-
tribution of Q using ns independent realizations of the
scores as:

F̂Q,emp(q) =
# Samples of Q ≤ q

ns
. (28)
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Fig. 10. Test T1. Scatter plot of the L1 error between (23) for finite M and
the empirical estimation of Q as a function of the true average score.

Fig. 11. Test T2. Scatter plot of the L1 error between (23) for finite M and a
normal distribution with the same mean and variance as Q, as a function of the
true average score.

Also, compute the sample mean μ̂Q,emp and sample vari-
ance σ̂2

Q,emp.

4) Computations for T1: F̂Q,CLT uses Proposition 2 (the CLT)
to approximate the distribution of Q, while F̂Q,emp does
not make any modeling assumptions. If the CLT is a good
approximation, then both estimators should give similar
values, which validates T1). To check this, we estimate
this error using the L1 norm of the error between the two
estimators by using the discrete samples inq. To do this we
compute the error: ei = |F̂Q,CLT(qi)− F̂Q,emp(qi)| where

qi =
4i+(nq−5)

nq−1 and estimate the L1 error between the two
estimators using the trapezoidal rule. where Δ is the spac-
ing between two values of q.

5) Computations for T2: validating T1, this does not mean
thatQ is approximately normal. To verify this we compare
F̂Q,CLT with the distribution of a normal with mean μ̂Q,emp

and variance σ̂2
Q,emp by computing the L1 in the same

manner as with F̂Q,emp.
After the np repetitions we have computed the np estimates

of F̂Q,CLT, F̂Q,emp, and the distribution of a normal with mean
μ̂Q,emp and variance σ̂2

Q,emp, for different parameters of the input

distribution. We also computed the L1 error between the F̂Q,CLT

and the other two estimates. If both errors are small then T1 and
T2 are validated, which means that, at least for the proposed
distributions, the CLT is a good approximation for values as
small as M = 24 subjects and that Q is approximately normal.

In Fig. 10 we can see the scatter plot of the L1 error of the true
distribution of Q and F̂Q,CLT, the approximation (23) using the
CLT for finite M , for np = 500 repetitions and the three score
distributions. We see that the total worst case error is very small,
below 0.012, for all the possible true scores. In Fig. 11 we see
the scatter plot of the L1 error between F̂Q,CLT and a normal
distribution with the same mean and variance as Q. Again for
all the results the worst error is very small, around 0.006 for
Gaussian and 0.012 for the Beta.
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