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Multimodality Self-distillation for Fast Inference of
Vision and Language Pretrained Models

Jun Kong , Jin Wang , Liang-Chih Yu , and Xuejie Zhang

Abstract—The computational cost of the vision and language
pretrained models (VL-PTMs) limits their deployment in resource-
constrained devices that require low latency. One existing solution
is to apply the early exiting (EE) strategy to accelerate the
inference. This technique can force model prediction using only
a few former transformer layers. However, these former layers
behave differently with the final classifier, inevitably resulting in
performance decline. To counter such limitation, self-distillation
has been commonly introduced to enhance the representation
abilities of the EE classifiers. This results in a semantic gap since
EE classifiers are directly trained to mimic the outputs of the final
classifier without access to the modality-specific behaviors. This
study proposes a multimodality self-distillation method for the fast
inference of VL-PTMs. To fill the semantic gap between modalities,
we split the multimodalities into separate modalities and added
them as extra inputs to encourage the effective distillation of
each modality. Furthermore, the mean squared error (MSE)
is introduced to minimize the distance of feature maps and
further enhance the representation ability of the EE classifiers.
Experiments show that the proposed method outperforms the
previous EE strategies with the same inference time, and performs
competitively even if the model exited very early.

Index Terms—Accelerating inference, early exiting, multi-
modality self-distillation, vision and language pretrained models.

I. INTRODUCTION

TRANSFORMER architecture applications are increas-
ingly being used for various multimodal tasks, including

visual question answering (VQA) [1], visual entailment (VE)
[2] and natural language for visual reasoning (NLVR2) [3]. This
success is attributed to the shared underlying textual and vi-
sual properties associated with texts with visual concepts. Vision
and language pretrained models (VL-PTMs), such as ViLBERT
[4], VL-BERT [5], Unicoder-VL [6] and UNITER [7], can be
fine-tuned to improve the performance of downstream multi-
modal tasks. However, the resulting exponential growth of the

Manuscript received 24 November 2022; revised 9 October 2023 and 18
March 2024; accepted 25 March 2024. Date of publication 2 April 2024; date
of current version 21 August 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant 61966038 and Grant
62266051, and in part by the Ministry of Science and Technology, Taiwan, under
Grant MOST111-2628-E-155-001-MY2. The Associate Editor coordinating the
review of this manuscript and approving it for publication was Mrs. Si Liu.
(Corresponding authors: Jin Wang; Liang-Chih Yu.)

Jun Kong, Jin Wang, and Xuejie Zhang are with the School of Information
Science and Engineering, Yunnan University, Kunming 650000, China (e-mail:
kongjun@mail.ynu.edu.cn; wangjin@ynu.edu.cn; xjzhang@ynu.edu.cn).

Liang-Chih Yu is with the Department of Information Management, Yuan Ze
University, Taoyuan 32003, Taiwan (e-mail: lcyu@saturn.yzu.edu.tw).

The code for this paper is available at: https://github.com/JunKong5/
UNITER-MSD.

Digital Object Identifier 10.1109/TMM.2024.3384060

parameters may severely limit the deployment and flexibility of
these models for real-time applications on resource-constrained
platforms, such as drones, self-driving cars, and wearable de-
vices.

Recent studies have suggested compressing the parameters
in pretrained models (PTMs) [8], [9], [10] to reduce the com-
putational cost and accelerate the inference. Existing methods
include knowledge distillation (KD) [11], [12], [13], pruning
[14], [15], and quantization [16]. Knowledge distillation (KD)
[17], [18] refers to the use of the predictive distributions of a
powerful teacher model as soft targets to guide the training of a
smaller student model, such that the student model becomes an
equally effective model with a tolerable performance sacrifice.
Similarly, pruning [19] removes unnecessary parts of PTMs af-
ter training, whereas quantization [20] truncates floating point
numbers such that only a few bits are used, thus accelerating
the computation. These techniques permanently discard parts of
PTMs, leading to an inevitable decline in performance. More-
over, once the models are redesigned and retrained, their pa-
rameters and computations are fixed, making it impossible to
migrate to other platforms.

An alternative approach to accelerate model inference for
PTMs is the early exiting (EE) strategy [21], [22], used in ap-
plications such as DeeBERT [23] and PABEE [24]. Specifi-
cally, extra classifiers (that is, off-ramps for EE) are inserted
between each two transformer layers of the PTMs. After an
input goes through a transformer layer, the EE classifier deter-
mines whether the prediction is sufficiently robust to achieve
adequate performance as the final classifier. Once the off-ramp
is sufficiently confident, the result is returned; otherwise, the
sample is passed to the next layer, and the calculation is
repeated.

Although EE classifiers in the former layers are already suf-
ficiently confident, previous studies have shown that different
levels of features can be learned in different transformer lay-
ers [25]. For example, surface features are typically learned in
former layers, syntactic features in middle layers, and semantic
features in deeper layers. This leads to the contradiction where
the earlier the model exits, the fewer semantic features can be
learned. In addition, EE classifiers that share the same parame-
ters are not applicable for input features with different semantic
levels. Since the EE classifiers tend to capture fewer features,
and primarily those at the surface level, they may behave differ-
ently from the final classifier that can learn a greater number of
and more semantic features. As shown in Fig. 1(a), the logits of
the EE classifiers in the former layers are quite different from
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Fig. 1. Conceptual diagram of early exiting strategy for vision and language pretrained model.

those of the final classifier. In this circumstance, applying the
EE strategy may lead to performance decline.

To ensure that the former layers can approximate the higher
layers in terms of representation ability, FastBERT [26] adopts a
self-distillation strategy to improve the stability of the EE classi-
fier, where the final classifier was applied as a teacher to transfer
the representation abilities to the EE classifiers as students. As
shown in Fig. 1(b), once the self-distillation strategy is applied,
the logits of the EE classifiers are improved, and are similar to
those of the final classifier. However, multimodal inputs contain
different modalities, such as text and images, presenting dif-
ferent types of knowledge. The amount of information in each
modality is likely to differ [27]. As a result, different modalities
exert different degrees of influence on different tasks. For exam-
ple, the language modality dominates on VQA, while the visual
modality dominates on SNLI-VE.

While self-distillation can be applied to multimodal tasks, EE
classifiers are trained with the joint modality without considering
individual modalities, which can also provide useful knowledge
for prediction. As the example shown in Fig. 1(c), the individ-
ual modality (Text) provides more practical knowledge than the
joint modality (Image+Text). In this example, the EE classifiers
trained with self-distillation can only mimic the outputs of the
final classifier with the joint modality, thus producing incorrect
predictions.

To address this issue, this study proposes a multimodal-
ity self-distillation (MSD) method for fast inference of VL-
PTMs. The proposed method improves existing EE strategies by

splitting the multimodalities into separate modalities and adding
them as extra inputs to encourage effective distillation from each
modality. Additionally, instead of exiting from the former lay-
ers, which lack the necessary semantic information, the proposed
method transfers knowledge from the last transformer layer to
guide the training of the former layers and ensure they remain
consistent with the behavior of the final classifier. Even if the
VL-PTMs exit very early, they can still achieve competitive per-
formance with the original VL-PTMs model. Inspired by Sun
et al. [18], the mean squared error (MSE) is used to minimize
the distance of the feature maps between the teacher and student
model to guide the training, and further enhance the representa-
tion ability of the EE classifiers.

Comparative experiments were conducted on various vi-
sion and language multimodal tasks. The results showed that
the proposed method significantly outperformed the previ-
ous EE and KD methods. Multimodality distillation is su-
perior to conventional distillation because the former layers
mimic the final classifier on each modality for better knowl-
edge transfer. Even if the PTMs exit very early, performance
and inference time are better balanced with little performance
loss.

The remainder of this paper is structured as follows. Section
II reviews related work on compression methods for VL-PTMs.
Section III describes the proposed multimodality self-distillation
method. Section IV presents extensive experiments for compar-
ison with several existing methods. Finally, conclusions are pre-
sented in Section V.
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II. RELATED WORK

A. Vision and Language Pretrained Models

In relevant fields of both natural language processing tasks
[28], [29] and computer vision tasks [30], [31], transformer-
based models [32], [33], [34], [35] have achieved remark-
able success in multimodality tasks, such as the embedded AI
vision-language navigation task. Since only minimal informa-
tion can be obtained from language instructions, Gao et al. [36]
proposed a cross-modality knowledge reasoning (CKR) model
utilizing common-sense knowledge to address the remote em-
bodied visual referring expression in real indoor environments
(REVERIE) task [37]. Furthermore, Qiao et al. [38] proposed a
history-enhanced and order-aware pretraining with the comple-
menting fine-tuning paradigm (HOP+) for vision-and-language
navigation. The regions of interest (ROI) are extracted from an
image modality as image features using the Fast R-CNN al-
gorithm [39]. At the same time, texts are mapped as a token
representation, followed by applying a dual- or single-encoder
architecture.

Dual-encoder Architecture: The dual-encoder architectures
assign a separate transformer encoder to each modality and
learn the output embeddings separately. Then, several projec-
tion layers are added to both the vision and text encoders to
project the output embeddings to a shared latent space. Based
on this, LXMERT [40] and ViLBERT [4] introduce extra pre-
training tasks to enhance the performance of these encoders,
including masked multimodality modeling and multimodality
alignment prediction. 12-in-1 [41] is a vision-language mul-
titask learning model based on ViLBERT as the backbone.
VL-BERT [5] is pretrained on visual-linguistic and raw text
datasets. Considering the confounding effect, CATT [42] uses
causal attention to eliminate confounding effects in existing
attention-based visual language methods. The results demon-
strate that joint pretraining can improve the generalization of
complex sentences and enhance the performance of visual
representations.

Single-encoder Architecture: Different from the dual-encoder
architecture, the single-encoder architecture feeds text and im-
ages into a joint transformer encoder. The main challenge of
these models lies in the alignment of latent visual and tex-
tual spaces. To accomplish this goal, UNITER [7] introduces
four extra pretraining tasks, including masked language model-
ing, image-text matching, word-region alignment, and masked
region modeling. The results indicate that joint image-text
pretraining is more effective than separate pretraining on ei-
ther vision or language. Similarly, Pixel-BERT [43] applies
the pixel-level image feature to complement the language in-
formation, bridging the gap between ROI features and lan-
guage understanding. Oscar [44] aligns image and text modal-
ities in the same shared semantic space using the detected
object labels as anchor points. InterBERT [45] proposes a
broader range of masking operations and modality feature fu-
sion, and retains modality independence. VIILA [46] improves
generalization capabilities using adversarial and adversarial
fine-tuning.

B. Model Compression

Model compression seeks to minimize model size while re-
taining model performance, thereby reducing the neural net-
work footprint, increasing its inference speed, and reducing
energy consumption. Existing model compression methods in-
clude pruning, quantization, knowledge distillation and condi-
tional computation.

Pruning applies a binary criterion to identify weights for prun-
ing, with weights that match the pruning criteria assigned a value
of zero [47], [48], [49]. Pruned elements are trimmed from
the model, i.e., their values are zeroed and are excluded from
back-propagation. Based on this, several studies [50], [51] have
investigated the importance of model parameters and neurons
during the training process. The less important parameters and
neurons are then zeroed, which may negatively impact network
accuracy.

Model Quantization refers to reducing the number of bits rep-
resenting a number. It converts high numerical precision inte-
gers, e.g., usually 32-bit float, into low-precision integers, e.g., 8-
bit integers, thus effectively reducing computational cost and pa-
rameter size to accelerate model inference. For the transformer,
Q-BERT [16] implements a hybrid precision quantization for the
BERT model. For visual transformer, Liu et al. [52] proposed
quantizing similarity perception and ranking-aware quantiza-
tion for feed-forward networks and multi-head self-attention in
encoders. In addition, Gao et al. [53] proposed simultaneously
quantizing the activation function and weight parameter to re-
duce quantization errors.

Knowledge Distillation is a model compression method in
which a trained larger model is used as a teacher model to su-
pervise a smaller untrained model as the student. The knowl-
edge contained in the teacher model can then be transferred
to the student model through a special distillation operation.
Hinton et al. [11] used the category probability distributions
of the final classification layer as soft labels and minimized
the KL-divergence between the teacher and student models
for information transfer. Unlike using the final classification
layer for information transfer, BERT-PKD [18] further learns
from the intermediate layer. TinyBERT [54] performs knowl-
edge distillation during pretraining and task-specific fine-tuning
phases and uses data augmentation to improve the student model
accuracy.

Conditional Computation refers to a class of algorithms in
which each input sample uses a different part of the model,
thereby reducing the average computational resource require-
ments, latency, or power consumption. The most widely used
method is adaptive inference, which usually inserts additional
early exiting classifiers between each of the two transformer
layers of the PTMs. After the input samples pass through the
encoder layers, the early exiting classifier determines whether
prediction confidence is sufficiently strong. The result is returned
once the early exiting classifier is sufficiently confident; other-
wise, the samples are passed to the next layer and the compu-
tation is repeated. DeeBERT [23] inserts additional classifiers
for each pair of transformer layers and adopts a two-stage train-
ing approach. First, the backbone of BERT is fine-tuned for
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TABLE I
CHARACTERISTICS OR TECHNIQUES OF PREVIOUS METHODS AND THE PROPOSED MSD METHOD FOR ADAPTIVE INFERENCE

downstream tasks. Then, it is frozen to fine-tune the early exit-
ing classifiers. Such a two-stage strategy brings extra costs for
computation and training time. RightTool [21] applies the early
exiting approach to BERT on the document ranking task. To en-
sure that the former layers can obtain powerful representation
ability, FastBERT [26] adopted the self-distillation strategy to
improve the stability of the EE classifier. PABEE [24] proposes a
patience-based exit strategy considering the consistency of early
exiting classifier predictions. The model will stop inference and
exit if the exit prediction remains constant for a preset time.
The performance of former layers is reduced due to the lack of
high-level semantic information in former layers.

C. Discussion

Table I summarizes the characteristics or techniques of ex-
isting approaches to adaptive inference. The EE strategy with
adaptive inference dynamically activates only some of the parts
in a model according to the properties of the input samples. The
immediate effect of activating fewer units accelerates informa-
tion propagation through the network in training and testing.

Based on this, DeeBERT [23] inserts additional EE classifiers
for each pair of transformer layers and adopts a two-stage train-
ing approach. RightTool [21] also applies the same EE struc-
ture in document ranking and sets different thresholds to allevi-
ate class distribution imbalance. Unfortunately, the information
learned by the former EE classifiers differs from that of the final
classifier, often resulting in divergent predictions. As a result,
the earlier the model exits, the fewer semantic features required
for the task are learned, thus degrading performance.

To address this shortcoming, PABEE [24] introduced a pa-
tience strategy to preserve the consistency of EE classifier pre-
dictions. Meanwhile, FastBERT [26] applied a self-distillation
approach to transfer knowledge from the final classifier to the
EE classifiers, improving the representation ability of the for-
mer layers. By directly introducing these methods into multi-
modal tasks, the EE classifiers are trained to mimic the outputs
of the final classifier without access to the modality-specific
behaviors. As a result, the semantic gap occurred between the
modality-specific behaviors of the teacher and the student, and
self-distillation was inefficient since the EE classifiers did not
carefully mimic the modality-specific prediction. Furthermore,
the two-stage training strategy of these methods increases com-
putational and training time costs.

This paper proposes splitting the multimodalities into sepa-
rate modalities to fill the semantic gap between modalities. It
adds them as extra inputs to promote the effective distillation
of each modality and obtain modality-specific information. Fur-
thermore, MSE is used to minimize the distance of feature maps

between the teacher and student model to guide the training and
further enhance the representation ability of the EE classifiers.

III. MULTIMODALITY SELF-DISTILLATION

Fig. 2 shows an overview of the proposed multimodality
self-distillation, unifying knowledge distillation and EE with
dynamic inference to accelerate the VL-PTMs. The last trans-
former layer is used as the teacher to guide the training of the
former layers, such that these layers can mimic the teacher’s
behavior. The texts and images are used as separate inputs for
self-distillation to learn the individual features of language and
vision, respectively. The confidence in each EE classifier is mea-
sured to determine whether the model should be returned to this
layer. The details of each module are presented as follows.

A. Early Exiting Classifier

Typically, a VL-PTM contains K layers of transformers
[55]. The multimodal input contains both image regions and
text words, which are then encoded as a representation se-
quence of both image and text, that is, V = {v1, v2, . . . , vo} and
W = {w1, w2, . . . , wq}, where o and q respectively denote the
number of visual regions and textual tokens. The corresponding
ground-truth label is y. A special token [CLS] is added to the
head of the sequence such that the corresponding hidden state
h
(k)
[CLS] ∈ Rdh in each layer is a joint representation of both im-

ages and texts. For the k-th layer, the encoding process of the
transformer is defined as follows:[

h
(k)
[CLS], h

(k)
v1

, . . . , h(k)
vo

, h(k)
w1

, . . . , h(k)
wq

]

= f (k)

([
h
(k−1)
[CLS] , h

(k−1)
v1

, . . . , h(k−1)
vo

,

h(k−1)
w1

, . . . , h(k−1)
wq

])
(1)

where f (k) denotes the k-th layer of the transformer encoder.
The standard approach of EE is to add EE classifiers in the in-
termediate layers, similar to the final classifier in the last layer.
Each EE classifier is a fully connected layer with softmax ac-
tivation. The EE classifiers take as input the joint embeddings
corresponding to the [CLS] token, that is, h(k)

[CLS] in the k-th
layer of the VL-PTMs, which is formulated as follows:

z(k) = W (k)
z h

(k)
[CLS] + b(k)z (2)

ŷ(k)z = softmax
(
z(k)

)
(3)
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Fig. 2. Overall architecture of the proposed multimodality self-distillation for fast inference of VL-PTMs.

whereW (k)
z ∈ RC×dh and b(k)z ∈ RC respectively represent the

weights and bias of the k-th EE classifier, and C denotes the
number of classes. The training objective of these classifiers is
categorical cross-entropy (CE) LCE , defined as follows:

LCE = −
K∑

k=1

I(y) ◦ log
(
ŷ(k)z

)
(4)

where y and ŷ
(k)
z denote the corresponding ground-truth label

and probability distribution of the k-th layer, respectively. I(y)
denotes a one-hot label and ◦ represents an element-wise mul-
tiplication operation.

B. Multimodality Self-Distillation

Using only the ground-truth label to train EE classifiers will
result in their representation abilities diverging from the final
classifier because of their different inputs. Thus, self-distillation
was applied to encourage EE classifiers in the former layers to
mimic the behavior of the final classifier and obtain rich semantic
information in the hidden representation h

(k)
[CLS]. As shown in

Fig. 3, the classifier in theK-th layer was regarded as the teacher
model, whereas the other EE classifiers in the former layers were
regarded as the student model. In knowledge distillation [11],
student models can learn from the distribution of teacher models
to improve their classification performance. The feature maps
z
(k)
s ∈ Rdp and z

(K)
t ∈ Rdp respectively of the EE classifier

(student) and the final classifier (teacher), are denoted as follows,

z(k)s = W (k)
s h

(k)
[CLS] + b(k)s (5)

z
(K)
t = W

(K)
t h

(K)
[CLS] + b

(K)
t (6)

Fig. 3. Overall architecture of the proposed multimodality self-distillation for
fast inference of VL-PTMs.

where h
(k)
[CLS] and h

(K)
[CLS] are hidden representations in the k-th

and the final transformer layers, and W
(k)
s , b

(k)
s ,W

(K)
t and b

(K)
s

are weights and biases associated with the EE classifiers and
the final classifier. Each EE classifier is required to mimic the
behavior of the final classifier. The self-distillation loss function
L(k)
KL measures the Kullback-Leibler (KL) divergence between

the k-th EE classifier and the final classifier, denoted as

p(k)s = softmax
(
z(k)s

/
τ
)

(7)

p
(K)
t = softmax

(
z
(K)
t

/
τ
)

(8)
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L(k)
KL = τ2KL

(
p(k)s ||p(K)

t

)
(9)

where KL(•||•) denotes the KL-divergence, τ denotes the tem-
perature, which is used to control the softness of the distribution,
and τ2 compensates for the size of the gradient scaled by the soft
target, ensuring that there is no negative impact on the gradient
size. p(k)s ∈ Rdp and p

(K)
t ∈ Rdp respectively represent the soft

probability distributions of the k-th EE classifier (student) and
the final classifier (teacher). Notably, p(k)s are the soft probability
distributions using both textual wi ∈ Rdw and visual vi ∈ Rdv

modalities as input.
Considering that the input sample contains both image and

text modalities, we add each modality as an extra individual
input to the VL-PTMs separately, such that the students can
separately learn the effective information of the teacher model
toward a specific modality to fill the semantic gap between dif-
ferent modalities. By successively masking the inputs of visual
modality vi ∈ Rdv and textual modality wi ∈ Rdw , we respec-
tively obtain the output soft probability distribution of textual
modality p

(k)
w and visual modality p

(k)
v . Thus, two extra losses

of KL-divergence were introduced to each modality, respectively
denoted as,

L(k)
T−KL = τ2KL

(
p(k)w ||p(K)

w

)
(10)

L(k)
I−KL = τ2KL

(
p(k)v ||p(K)

v

)
(11)

where L(k)
T−KL and L(k)

I−KL respectively represent the self-
distillation loss functions of the textual and visual modalities.
The multimodality self-distillation (MS) loss LMS is defined as
follows:

LMS = λ

K−1∑
k=1

L(k)
KL + λw

K−1∑
k=1

L(k)
T−KL + λv

K−1∑
k=1

L(k)
I−KL (12)

where λs denote hyper-parameters used to balance the different
modality loss functions.

Using only the logits of the teacher for knowledge distillation
is insufficient to make the students imitate the teacher’s behavior
entirely. Inspired by Sun et al. [18], we also minimize the mean
squared error (MSE) between the input features of the student
and the teacher for each input modality.

L(k)
MSE = MSE

(
z(k)s , z

(K)
t

)
(13)

L(k)
T−MSE = MSE(z(k)w , z(K)

w ) (14)

L(k)

I−MSE = MSE
(
z(k)v , z(K)

v

)
(15)

where z
(k)
w and z

(k)
v respectively denote the feature maps of the

EE classifier (student) of the textual and visual modalities. Cor-
respondingly, the mean squared error between the multimodal
inputs is defined as follows:

LED = λ

K−1∑
k=1

L(k)
MSE + λw

K−1∑
k=1

L(k)
T−MSE

+ λv
K−1∑
k=1

L(k)
I−MSE (16)

where LED denotes the multimodality feature self-distillation
loss. The total training objective L of multimodality self-
distillation is formulated as follows,

L = LCE +LMS + LED (17)

Instead of using two-stage training in previous EE models, all
components for self-distillation in the proposed method can be
trained using a standard back-propagation algorithm in an end-
to-end manner.

C. Adaptive Inference

Inspired by Teerapittayanon et al. [56], the features learned in
the former layers are sufficiently robust to provide easy examples
to obtain a performance similar to that of the final layer, such that
the EE classifier can accelerate the inference. Conversely, hard
examples must be propagated through the classifier in the latter
layers. In practice, most samples are relatively easy; therefore,
adaptive inference can be applied to force the model to exit early
to reduce the inference time and computational cost.

To determine whether inference can be terminated at a spe-
cific layer, the output distribution of the k-th EE classifier is
determined by an entropy value E(k), calculated as follows:

E(k) = −
∑
dp

z(k)s log z(k)s

= ln

⎛
⎝∑

dp

exp
(
z(k)s

)⎞⎠−
∑

dp
z
(k)
s exp

(
z
(k)
s

)
∑

dp
exp

(
z
(k)
s

) (18)

where dp denotes the dimensionality of the hidden representa-
tion of the EE classifier. Here, E(k) measures the uncertainty in
the output of the EE classifier, i.e., z(k)s . The higher the entropy
value, the higher the EE classifier’s uncertainty. If the uncer-
tainty E(k) is lower than a preset threshold F, the EE classifier is
sufficiently confident to achieve performance competitive with
the final classifier. The model then takes the prediction of the EE
classifier as the result, and immediately suspends the inference
of the latter layers. Otherwise, it continues to execute on the next
layer until it falls below the required threshold.

The right part in Fig. 2 shows the adaptive inference of
VL-PTMs. Intuitively, the former classifiers predict the easy
samples, whereas the latter classifiers predict only the hard ex-
amples. Based on this, adaptive inference can drastically im-
prove efficiency by reducing computation requirements on the
portion of easy examples in the dataset.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset: We conducted experiments on different multi-
modal datasets to evaluate the effectiveness of the proposed mul-
timodality self-distillation model inference. Descriptive statis-
tics of the datasets are shown in Table II.
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TABLE II
DESCRIPTIVE STATISTICS OF THE DATASETS

� Visual entailment (SNLI-VE) is used to predict whether a
given image semantically contains an input sentence. The
model’s performance was measured using the classification
accuracy over three categories: entailment, neutral, and
contradiction.

� Visual question answering (VQA) refers to answering
content-related questions for an image. The dataset was
divided into three subsets: train, val, and test. The test sub-
set was further divided into test-dev and test-std for online
evaluation.

� Natural language for visual reasoning (NLVR2) deter-
mines whether the correspondence between a pair of im-
ages and natural language captions is consistent.

2) Inference Time Measurement: The runtime of the VL-
PTMs is highly dependent on the hardware environment and is
thus unstable in most cases. Following Xin et al. [23] and Zhou
et al. [24], we gradually adjusted the threshold F to measure the
time reduction ratio ρ by comparing the adaptive inference with
the original execution with complete layers, that is, the ratio of
the EE layers to the originally required total layers for all sam-
ples. For a K-layers model, the time reduction ratio ρ of the
inference is measured by

ρ=

∑K
k=1 k ×m(k)

K ×M
(19)

where m(k) denotes the number of samples exited at the k-th
layer, and K and M respectively denote the number of layers and
samples.

3) Implementation Details: Both UNITER [7] and Oscar
[44] were used as the backbone model of VL-PTMs. They all
included 12 layers and 768 hidden dimensions. For the VQA and
SNLI-VE datasets, we fed image and text pairs into UNITER.
Then we extracted the joint embeddings corresponding to the
[CLS] token with a fully connected layer as the final represen-
tation of the input image and text pairs. For the NLVR2 dataset,
each input sample contains a description text with two images.
The two outputs of the text and image were integrated using a
bi-attention layer for classification. The AdamW optimizer [57]
was used for the training. The learning rate and weight decay
were 8e-5 and 0.01 for VQA, 7e-6 and 0.01 for SNLI-VE, and
3e-5 and 0.01 for NLVR2, respectively. The maximum length of
the input text was 128. Using the grid search strategy, the opti-
mal settings of λ, λw and λv were respectively 0.5, 0.25 and 0.25
for VQA and SNLI-VE, and 0.7, 0.15, and 0.15 for NLVR2.

B. Baselines

To comprehensively evaluate the proposed multimodal-
ity self-distillation, comparative experiments were conducted

against various knowledge distillation, and early exiting meth-
ods as well as several complete VL-PTMs, including Visu-
alBERT [58], UNITER [7], LXMERT [40], UNITER-KD,
UNITER-EE. The UNITER-KD denotes the original UNITER
model, which was compressed using conventional knowledge
distillation. The UNITER-EE denotes that an EE method was
introduced into the UNITER model. An EE classifier was added
to each intermediate layer of UNITER.

C. Hyperparameters Fine-Tuning

Several hyperparameters may affect the performance of the
proposed MSD method in downstream tasks. Fig. 4 shows
the optimal settings for selecting different hyperparameters de-
pending on the final performance of the development set. We
fine-tuned each parameter to obtain the optimal value, which is
then fixed so that the other parameters can be fine-tuned in turn.

For the temperature τ in (5) and (6), we try to select the
superior values in the set of temperature candidates in 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, as shown in Fig. 4(b). VQA, SNLI-VE, and
NLVR2 perform best at τ of 3, 2, 5, respectively.

The balance coefficients λ, λw, and λv in (10) are used to
balance the information of different modalities. We also use
different combinations for the grid search while ensuring that
the different balance coefficients sum to 1. As shown in Fig.
4(a), the proposed method performs best on the VQA dataset
when λ is set to 0.5 and both λw, and λv are set to 0.25. The
proposed method performs best on the NLVR2 and SNLI-VE
datasets when λ is set to 0.7 and both λw, and λv are set to
0.15. This illustrates that the information of different modalities
has different effects on the model in different tasks. Once these
parameters are exceeded, the performance of the optimal settings
will degrade. The results indicate that appropriate parameters
can improve the performance of early exiting for accelerating
inference.

D. Comparative Results

To fairly compare the proposed method with the baseline,
we tuned the time reduction ratio ρ of the proposed method
to be consistent with that of the corresponding baselines. Dif-
ferent expected ρ values were obtained by adjusting the confi-
dence threshold F. For original the VL-PTMs (e.g., UNITER,
LXMERT, VL-BERT (Large), and Visual-BERT), ρ is 100%.
Tables III and IV compare the accuracy under a certain time
reduction ratio of the proposed UNITER-MSD and Oscar-MSD
against the baselines. Experiments with different VL-PTMs as
the backbone demonstrate the effectiveness and generalizabil-
ity of the method. Both UNITER and Oscar were used as the
backbone for these baselines.
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Fig. 4. Hyperparameters fine-tuning on different datasets.

TABLE III
EXPERIMENTAL RESULTS FOR COMPARING BASELINE METHODS ON MULTIMODAL DATASETS WITH UNITER BACKBONE

Compared to the original complete VL-PTMs, the proposed
UNITER-MSD and Oscar-MSD significantly improved effi-
ciency and reduced inference times with little performance loss.
Compared to the original complete UNITER, the performance
of the UNITER-MSD decreased by 1.22% and 1.34% respec-
tively in SNLI-VE and NLVR2, but the efficiency improved
by 50% (ρ ∼ 50%) in both SNLI-VE and NLVR2. Further-
more, UNITER-MSD achieved extremely competitive results
but faster inference than the original VisualBERT in NLVR2.
Oscar-MSD outperformed LXMERT and VisualBERT on the
time reduction ratios (ρ ∼ 50%).

With different time reduction ratios ρ, the proposed UNITER-
MSD and Oscar-MSD outperformed the KD and EE methods.
For ρ ∼ 50%, UNITER-MSD outperformed UNITER-KD by
2.23% and UNITER-EE by 0.86% on the SNLI-VE dataset.
Similar improvements were observed in the other datasets. This
was because multimodality self-distillation allowed the perfor-
mance of EE classifiers to approximate that of the final classifier
closely and to learn high-level information. If the time reduc-
tion ratio requirement ρ changes, a new student model must
be trained from scratch using KD. Thus, it does not apply to

different platforms with different requirements of ρ. Conversely,
the proposed UNITER-MSD can perform adaptive inference by
adjusting the threshold F to provide a different ρ with robust
performance.

E. Ablation Experiments

Table V presents the results of the ablation experiments
to evaluate each component’s effectiveness in the proposed
UNITER-MSD. We successively removed one or more loss
functions, that is, LMS in (12) and LED in (16). UNITER-MSD
w/o MS indicates the removal of LMS . UNITER-MSD w/o ED
indicates the removal ofLED. UNITER-MSD w/o MS & ED in-
dicates the removal of bothLMS andLED, that is, UNITER-EE.
UNITER-MSD w/o SD denotes EE strategy and separate modal-
ities as inputs, and without KD. As indicated, the removal of
each component of the proposed method will degrade the per-
formance, indicating that the LMS and LED loss functions are
indispensable to performance improvement. Namely, the main
advantage of UNITER-MSD comes from the proposed multi-
modality self-distillation and self-distillation with MSE.
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TABLE IV
EXPERIMENTAL RESULTS FOR COMPARING BASELINE METHODS ON MULTIMODAL DATASETS WITH OSCAR BACKBONE

TABLE V
RESULTS OF THE ABLATION STUDY OF THE PROPOSED UNITER-MSD MODEL

Specifically, UNITER-MSD without MS and ED performed
0.82% lower than UNITER-MSD on the SNLI-VE dataset, and
0.26% lower on NLVR2 for ρ ∼ 60%. Without the MS and ED
loss function, the former layers only learned low-level features
that are not competent for the final classification. Furthermore,
UNITER-MSD w/o SD performs better than UNITER-MSD w/o
MS & ED, illustrating the effectiveness of different modalities
as additional inputs for multimodal learning and for filling the
semantic gap between modalities.

A similar observation can be obtained that the accuracies
of UNITER-MSD without MS and without ED were lower
than that of UNITER-MSD by 0.53% and 0.49%, respec-
tively, for NLVR2, and 0.44% and 0.37% for SNLI-VE for
ρ ∼ 40%. There was no MS loss function or reduction in model
performance. This indicates that multimodality self-distillation
encourages the former layers to learn useful information about
specific modalities. Furthermore, UNITER-MSD without MS
simultaneously distills texts and images. Unfortunately, if one
modality is dominant, the distillation of the other will fail, lead-
ing to a performance decline. Without the ED loss function, the
EE classifiers are too shallow to learn enough information for
classification.

To further examine the effect of adding individual modalities
in multimodality self-distillation, we removed the loss func-
tions of text (T) and image (I) modalities in LMS and LED.
UNITER-MSD w/o MS-T&I indicates the removal of LT−KL

and LI−KL in LMS , UNITER-MSD w/o ED-T&I indicates the
removal ofLT−MSE andLI−MSE inLED, and UNITER-MSD
w/o MS-T&I & ED-T&I indicates the removal of the LT−KL

and LI−KL terms in LMS and LT−MSE and LI−MSE in LED.
Note that removing the loss functions of individual modalities
(T&I) still retains the loss function of the joint modality LKL

in LMS and LMSE in LED. That is, comparing UNITER-MSD
and w/o MS-T&I (or w/o ED-T&I) can show the effect of indi-
vidual modalities, and comparing w/o MS-T&I (or w/o ED-T&I)
and w/o MS (or w/o ED) can show the effect of the joint modal-
ity. The results show that the performance degradation from
UNITER-MSD to w/o MS-T&I is greater than that from w/o
MS-T&I to w/o MS. Comparing UNITER-MSD, w/o ED-T&I
and w/o ED also shows similar results. These findings indicate
that adding individual modalities in self-distillation contributes
more than using the joint modality. To further verify the ef-
fectiveness of individual modalities, we measured the KL di-
vergence of the final layer output and the other former layers’
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TABLE VI
NUMBER OF PARAMETERS AND TRAINING TIME FOR DIFFERENT MODELS SNLI-VE.

Fig. 5. KL divergence between the final layer output and the outputs of the
other former layers before and after removing individual modalities.

outputs to see if their outputs are similar, as shown in Fig. 5.
Compared with UNITER-MSD, the KL divergences increased
after removing individual modalities (T&I), indicating that the
outputs of the final layer and the other former layers diverge
without the help of individual modalities. This also shows that
using individual modalities as an additional knowledge source
improved self-distillation effectiveness.

F. Performance-Time Tradeoff

To explore whether the proposed UNITER-MSD and
UNITER-EE performance varies with ρ, Fig. 6 presents the
inference time-performance trade-off curves for SNLI-VE and
NLVR2.

For the same ρ, the proposed method obtained a better ac-
curacy than UNITER-EE. The performance of UNITER-EE de-
creased sharply as ρ gradually decreased. As shown in Fig. 6, the
proposed method has a high-performance improvement for the
low-level early exiting classifier, demonstrating that relatively
high performance is guaranteed even when the inference time is
reduced. It also shows that the performance of existing EE meth-
ods decreases significantly with the inference time. This limits
the usefulness of the existing EE methods in meeting higher
inference requirements. Conversely, the proposed method can
guarantee good performance while reducing the inference time,
making it more robust and efficient than the existing EE methods.

G. Analysis of Model Efficiency

To better analyze the model’s efficiency, Table VI shows
the model’s training time, size, and reduced inference time.

As indicated, the proposed EE strategy with multimodality
self-distillation aims to provide more efficient inference with
limited performance loss. Due to the introduction of multimodal-
ity self-distillation in the training of the proposed EE strategy,
the overall training time has been increased by 2.37×. However,
the inference speed has also been accelerated by 3.07×. Con-
sistent with KD and other EE strategies, the proposed method
trades off increased training costs with accelerated inference
time. The difference is that the proposed method can dynami-
cally adjust the acceleration ratio according to different running
platforms, while KD needs to retrain the model for the new
platform.

H. The Effect of Multimodality Self-distillation

Fig. 7 illustrates a detailed analysis of the effects of multi-
modality self-distillation. The test samples were first divided
into several groups according to the layers at which the sam-
ples exit. Performance was calculated for each group. For
both UNITER-EE and UNITER-MSD, relatively poor perfor-
mances were obtained for the former layers. In contrast, the
latter layers (layers 9–11) all achieved a performance similar
to that of the final classifier in the 12th layer. That is, the ear-
lier the model exits, the lower the performance of the model
is achieved. On both SNLI-VE and NLVR2 dev datasets, the
proposed UNITER-MSD outperformed UNITER-EE by 0.75%
and 3.0% on average in all layers, respectively. In the latter
layers (layers 9–12), the performances of UNITER-EE and
UNITER-MSD were similar. In the former layers (layers 1–
6), UNITER-MSD outperformed UNITER-EE by 0.87% and
4.78%, particularly in the first two layers. The rationale is that
the former layers of the proposed UNITER-MSD can mimic
the final classifier’s behavior to improve the EE classifiers’
performance.

Fig. 8 describes the number of samples that exit early at differ-
ent layers with different time reduction ratios ρ. The UNITER-
KD permanently discards the former six transformer layers in
the UNITER of the model and thus can only obtain a fixed ρ in
one distillation; the proposed UNITER-MSD can dynamically
change the confidence threshold F to satisfy the requirement and
obtain different ρ. If the requirement of ρ is strict, 79.92% and
83.50% of the samples tend to exit as soon as possible (layers
1–6) on SNLI-VE and NLVR2, respectively. If the requirement
of ρ is slightly lenient, the hard samples (51.40% and 44.85%)
will choose to exit at the latter layer (layers 9–12), thereby im-
proving model performance. Conversely, both easy and hard
samples will be treated equally and exited at the final classifier
using KD.
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Fig. 6. Performance-time trade-off curve on SNLI-VE and NLVR2 datasets of UNITER-MSD and UNITER-EE.

Fig. 7. Performance of early exiting classifiers of UNITER-EE and UNITER-MSD on SNLI-VE and NLVR2 datasets.

Fig. 8. Statistics of the number of samples that exit early at different layers on SNLI-VE and NLVR2 datasets.

V. CONCLUSION

This paper proposes a multimodality self-distillation method
for the fast inference of VL-PTMs to improve existing EE strate-
gies. The classifier in the final layer is used to distill all EE classi-
fiers in the former layers so that the EE classifiers can mimic the
behavior of the final classifier to improve performance. To fill the
semantic gap between modalities, the multimodalities are split
into separate modalities as an extra individual input to encour-
age the effective distillation of each modality. Furthermore, the
MSE was introduced to minimize the distance of feature maps
between the teacher and student models and further enhance the
representation ability of the EE classifiers. Experiments showed
that the proposed method outperformed the KD and EE strate-
gies for the same time reduction requirement, and performed
competitively even if the model exited very early.

Future work will explore the problem of mutual interference
that can exist in self-distillation between different layers.
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