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Modeling Subject Scoring Behaviors in Subjective
Experiments Based on a Discrete Quality Scale
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Abstract—Several approaches have been proposed to estimate
quality in subjective experiments while highlighting peculiar
subject behaviors. However, there is some room for improvement
in existing approaches, both in terms of robustness to noise
and the ability to accurately indicate several peculiar subject
behaviors in subjective experiments. This work advances the
state-of-the-art in three main directions: i) A new approach to
estimate the subjective quality from noisy ratings is proposed
and is shown to be more robust to noise than are four state-of-
the-art approaches; ii) a novel subject scoring model is proposed
that makes it possible to highlight several peculiar behaviors
typically observed in subjective experiments; and iii) our proposed
probabilistic subject scoring model results from the proof of a
theorem, whereas in previous approaches a probabilistic scoring
model is assumed a priori. This represents an important first step
toward models supported by a stronger theoretical foundation.
Numerical experiments conducted on several datasets highlight the
effectiveness of our proposal.

Index Terms—Subjective quality recovery, subject scoring
model, discrete quality scale, subject bias weights, subject
inconsistency.

I. INTRODUCTION

S EVERAL quality scales and rating approaches for con-
ducting subjective media quality assessments have been

proposed and standardized [1], [2], [3], [4], [5]. In this work,
we focus on modeling subject scoring behaviors in a subjective
experiment run on a discrete quality scale. Discrete scales are
widely used since they allow for an easier interpretation of the
rating task.

The raw individual opinion scores are typically affected by
noise caused by subject inconsistency and/or experimental con-
text influence factors (IFs). Thus, approaches to analyzing raw
individual ratings to identify subjects with peculiar behaviors
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and to mitigate the effects of noise sources have been investi-
gated [6], [7], [8], [9], [10].

In several related studies [7], [8], [11], [12], the authors argue
that the subject behavior can be reasonably captured by two
main characteristics, i.e., subject bias and subject inconsistency.
Subject bias is defined as the systematic tendency of a subject
to assign lower (negative bias) or greater (positive bias) quality
scores than the actual quality scores. For instance, a viewer with
low visual acuity is likely to be positively biased and vice versa.
Subject inconsistency, instead, captures the ability of a subject
to provide accurate ratings and to repeat them if asked to rate
the same stimulus several times.

In this work, we also rely on these two main characteristics,
i.e., subject bias and inconsistency, since from our point of view,
this approach possesses a feature that many other existing ap-
proaches lack. In particular, it establishes a clear and direct link
between two well-defined aspects of subject behavior and the
way subjects rate the stimuli. In many other approaches, in-
stead, “peculiarity” indices are introduced that are shown to be
accurate in measuring how peculiar a given subject is, but these
indices cannot be directly associated with any specific aspects
of the subject behavior, making it difficult to interpret the noise
sources.

This paper contributes to advancing the state of the art in three
ways.

1) We propose an approach called regularized maximum
likelihood estimation (RMLE) of subjective quality from
noisy individual ratings.

2) A novel probabilistic model to explain the choices of a
subject in a subjective test run on a discrete quality scale
is proposed.

3) The proposed probabilistic model is not assumed a priori,
as in previous works. Rather, our model is derived from
the proof of a theorem. This yields an approach with a
stronger theoretical foundation.

This work significantly extends our previous one [13] in which
we introduced only the RMLE approach. Here, we extend this
previous work by better motivating the RMLE approach and by
proposing a novel subject scoring model.

In the proposed RMLE approach, we define and estimate the
quality of a given stimulus by considering the contribution of
each of the opinion scores that can be chosen on the discrete
quality scale. This allows us to model the subject behavior by
directly investigating how the subject interacts with each opin-
ion score on the quality scale. In fact, we defined the total
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attractiveness of each opinion score on the quality scale and pro-
posed a probabilistic scoring model that provides an analytical
formulation of the choice probabilities of a given subject.

We conducted several numerical experiments to validate the
effectiveness of our proposals. The RMLE approach showed
greater robustness to noise in individual opinion scores than
did the other four state-of-the-art approaches. We also showed
that the proposed subject scoring model allows automatic iden-
tification of peculiar subject behaviors not directly observable
from the output of other approaches. Finally, unlike previous ap-
proaches in which subject behavior is modeled with a single bias
and inconsistency value for all stimuli regardless of their quality,
our proposed discrete-choice probability model can capture the
lower inconsistency of the subject at the extremes of the quality
scale.

The paper is organized as follows. In Section II, we discuss the
related work. The RMLE approach is presented in Section III,
followed by Section IV, where we derive the proposed subject
scoring model. In Section V, the model parameters are estimated
and interpreted. In Section VI, numerical experiments and re-
sults are presented; then, in Section VII, conclusions are drawn,
and future research directions are discussed.

II. RELATED WORK

Several authors have studied the factors that cause noise to
affect raw individual ratings obtained from subjective experi-
ments. Some of these factors include the following: experimen-
tal context influence factors [14], subject fatigue [15], and sub-
ject misunderstanding of the task that might yield, e.g., inverted
ratings [16].

In an attempt to minimize the effect of noise sources on raw
opinion scores, several approaches have been investigated to
subjectively assess the quality of media content [17]. These
methods include i) single stimulus-based approaches, where the
subject views and rates the processed signal exclusively; ii) pair
comparisons, involving subjects comparing the quality of stim-
ulus A to that of stimulus B then indicating which one has supe-
rior quality; and iii) double stimulus-based approaches, which
entail showing the source/reference content first then the pro-
cessed version and asking the subject to rate the quality of the
processed content relative to the reference content.

It has been empirically observed that pair comparison-based
subjective experiments are likely to yield more accurate results
than those of single stimulus-based experiments [18]. Unfortu-
nately, obtaining a full matrix of comparisons is time demand-
ing, making it difficult to conduct pair comparison-based ex-
periments with as many stimuli as can be done when adopting
a single stimulus-based approach. Additionally, while double
stimulus-based methods yield quality scores with tighter con-
fidence intervals, they require twice the time needed by single
stimulus approaches. Thus, methods aiming for higher accuracy
in raw ratings impose constraints on the maximum number of
stimuli that can be rated.

Beyond the practical limitations imposed by the approaches
that are likely to guarantee greater accuracy of the opinion
scores, there are noise sources that are not under the control

of the researcher when running the subjective test. For example,
a subject rating for a specific video sequence may be signifi-
cantly influenced by their personal preferences for the content,
such as liking or disliking the scene being presented [19]. There-
fore, several authors have proposed approaches to model subject
behavior in subjective tests to “clean” the raw opinion scores
from noise effects, regardless of the method used to collect the
scores [6], [7], [8], [9], [10], [20], [21].

The most basic approach for addressing noise when subjec-
tively measuring quality is to calculate the mean opinion score
(MOS) by averaging individual ratings. However, the mean oper-
ator is highly sensitive to outlier ratings, i.e., those from peculiar
subjects. To address this MOS limitation, various approaches,
including the algorithms recommended by ITU-R BT.500 [6]
and ITU-T P.913 [22], have been proposed for identifying and
excluding peculiar subjects before calculating the MOS.

However, the subject exclusion-based approach is perceived
by several authors [8], [9] as an approach that throws away more
data than should be discarded. In fact, it is very unlikely that a
subject wrongly evaluated all the stimuli they were asked to rate.
Therefore, by removing the subject from the dataset, one can lose
some reliable ratings. Recently, a few researchers have proposed
relying on advanced statistical methods to measure how peculiar
a subject is and to estimate the subjective quality of the stimuli
without excluding subjects from the dataset.

In [10], the authors proposed a generalized linear model-based
approach to estimate the actual subjective quality of the stimuli
from noisy individual opinion scores. The authors in [9] argued
that, when rating media quality is considered, any subject has a
certain probability of providing an inaccurate score. This proba-
bility is considered a measure of subject inaccuracy. The subject
rating is then assumed to be sampled from a mixture of two
discrete probability distributions. The first model considers ac-
curate ratings, while the second captures unexpected/unreliable
ratings. The authors then proposed an approach to estimate the
subject inaccuracy and to recover the actual subjective quality.
Although the probability value, which is defined as a measure
of subject inaccuracy, is shown to be effective, it is not directly
linked to particular characteristics of the subject behavior. This
lack of a direct relationship makes it difficult to interpret the
source of the noise observed in the data.

Conversely, several authors have embraced methods that en-
hance the interpretability of model results by establishing a
direct connection between model parameters and well-defined
subject characteristics. The authors in [7], [8], [11] assumed that
each raw rating of a subject derives from a normal random vari-
able. The mean of such a normal random variable depends on
the actual quality of the stimulus under evaluation and on the
subject bias, while the variance is determined by the subject
inconsistency and the complexity of the stimulus.

In this paper, we adopt a similar perspective as in [7], [8],
[11]; i.e., we assume that the subject behavior can be reasonably
modeled by bias and inconsistency concepts. In these previous
papers, subject bias is defined as a single real number. A pos-
itive (negative) number indicates a systematic tendency of the
subject to choose high (low) opinion scores on the quality scale.
Unfortunately, this approach to defining bias does not take into
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account the fact that a subject might also have a systematic ten-
dency to choose opinion scores that are significantly far apart
on the quality scale. Instead, we define subject bias by a vec-
tor of weights. Each weight indicates the subject tendency to
prefer each opinion score over the others. This enables our ap-
proach, as shown in Section VI, to highlight behaviors due to
positional bias, e.g., ternary and bimodal annotators, that cannot
be identified by previous approaches. Moreover, our approach
introduces a per-stimulus measure of inconsistency, while in
previous approaches only the overall inconsistency of a subject
across a whole dataset can be calculated. Our approach makes it
possible to automatically identify specific stimuli for which the
ratings of a given subject might be questionable. Finally, unlike
previous authors who used bias and inconsistency as the main
parameters of a probabilistic scoring model which they assumed
a priori, our proposed scoring model is mathematically derived,
thus yielding an approach with a stronger theoretical foundation.

We note that our proposed scoring model allows us to esti-
mate the probability that the perceptual quality of a given content
appeals to a subject with certain characteristics. In this respect,
our work resembles classical recommender systems [23]. With
the advent of deep learning, significant progress has been made
toward the design of effective recommender systems [24]. How-
ever, the problem we are considering remains difficult to address
with new deep learning-based recommender systems given that
the subjectively annotated datasets in media quality assessments
generally have a limited size, which prevents the effective use
of deep learning. Our work does consider the question of data
denoising, i.e., ground truth quality recovery, which, from our
point of view, goes beyond the typical scope of a recommender
system.

III. THE PROPOSED RMLE APPROACH

In this section, we describe our proposed RMLE approach
for estimating subjective quality from noisy individual ratings.
First, we introduce the notation used in this paper. Then, we mo-
tivate our proposal. Finally, the steps for obtaining the estimated
subjective quality are summarized.

A. Notation and Motivation

In this paper, we assume that subjective quality is evaluated
by using a standard discrete quality scale with a finite number
of available opinion scores. For instance, in the case of the five-
point absolute category rating (ACR) scale, the subject is offered
the following five opinion scores: Bad, Poor, Fair, Good and
Excellent.

We introduce the following sets and quantities:
� I: the set of stimuli that have been rated;
� J : the set of subjects that rated the stimuli in I;
� K: the set of opinion scores available on the quality scale;
� F : the set of influencing factors that might affect the ratings

of a subject;
� rji : the rating of the subject j ∈ J for the stimulus i ∈ I;
� R: all the ratings collected during the subjective test;
� nik: the number of subjects in J for whom the opinion

score for stimulus i ∈ I is k ∈ K.

TABLE I
SUMMARY OF THE NOTATION

For the reader’s convenience, we summarize the above nota-
tion and the definitions of the main parameters considered by
the scoring model proposed in this paper in Table I.

The MOS of any stimulus i ∈ I can be expressed as:

MOSi =
∑
j∈J

1

|J | · r
j
i =

∑
k∈K

nik

|J | · k (1)

The first equality in (1) indicates the main issue with the MOS:
when considering the MOS as the actual quality of a stimulus,
all individual ratings have the same importance, i.e., each one
of them is weighted with 1

|J | . This is problematic because it
implies that potentially unreliable ratings have an equal impact
on determining the quality of the stimulus as reliable ratings.

From the second equality, we can conclude that by weighting
each opinion score k ∈ K with the fraction nik

|J | , one obtains a
subjective quality estimator (the MOS) that attributes the same
importance to noisy and noiseless ratings.

Here, our main concern is to find a better way to weight the
different opinion scores offered by the quality scale to obtain
a more robust estimate of the quality. Specifically, our goal is
to introduce a weighting scheme that assigns less importance to
potentially noisy opinion scores while augmenting the weight
of reliable opinion scores, thus enhancing their contribution to
quality determination.

We therefore define the quality Qi of the stimulus i ∈ I as
follows:

Qi =
∑
k∈K

wik · k (2)

in which the weightswik, k ∈ K are different from the fractions
nik

|J | in (1) and are computed in the next section.
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B. Mathematical Formulation of the RMLE Approach

Let us assimilate the weight wik to the unknown probability
of choosing the opinion score k ∈ K when rating the stimulus
i ∈ I, i.e., the probabilities of the choices that are estimated
from a noiseless dataset.

If the raw ratings in R were noiseless, then the probability
of obtaining the observed ratings, also known as the likelihood
function, would be expressed as:

L(w) =
∏
i∈I

∏
k∈K

wnik

ik (3)

where w denotes a vector containing all the values wik, ∀i ∈
I, k ∈ K. The logarithm of L(w), called the log-likelihood
function, would be expressed as:

LL(w) =
∑
i∈I

∑
k∈K

nik · log(wik). (4)

The weights wik would then be obtained by finding the vector
w that maximizes the log-likelihood function LL(w).

Unfortunately, real datasets include noisy ratings. Without any
additional input, the MLE framework would consider all ratings
in the dataset reliable; hence, the obtained weights would not be
robust to noise. In fact, maximizing the LL(w) function would
result in estimating each weight wik as equal to the fraction nik

|J | ,
as in the noiseless case. However, we have already noted that
this weighting scheme is not particularly robust to noisy ratings.

To incorporate the noisy nature of the dataset into the MLE
framework, we introduce a regularization term as an additional
input to the estimation process of the weights wik.

This term is designed to penalize what we refer to as “surpris-
ing events” for a particular stimulus, meaning opinion scores
on the quality scale that seem to be chosen very infrequently
when rating that stimulus. We believe that noisy ratings for a
specific stimulus occur only sporadically, while accurate ratings
tend to cluster around a set of opinion scores that are commonly
selected.

To quantify how surprising the choice of opinion score k ∈ K
is for stimulus i ∈ I, we introduce the quantity Cik, which is
defined as follows:

Cik = −log

(
nik

|J |
)
. (5)

We observe that quantifying the surprise of an event based on
the logarithm of its probability is a well-established approach
in information theory [25]. The formula in (5) is therefore not
considered a peculiarity of this work.

We propose the following regularization term:

R(w) =
∑
i∈I

∑
k∈K

Cik · wik (6)

to be subtracted from the log-likelihood function LL(w) to ob-
tain the optimization problem whose solution yields the weights
wik ∀i ∈ I k ∈ K that we are seeking. The weights wik ∀i ∈
I k ∈ K are therefore obtained by solving the following opti-
mization problem:

max
w

[LL(w)− λ ·R(w)]

s.t.
∑
k∈K

wik = 1 ∀i ∈ I (7)

where λ is the regularization coefficient whose calibration is
discussed in Section VI.

Let us interpret the optimization problem in (7) to clarify how
the proposed regularization term enables a noise-aware estima-
tion of the weights w.

From the definition in (5), Cik assumes large values if the
opinion score k is not frequently selected, i. e., when nik is
close to 0, the logarithm outputs a large number.

By subtracting the regularization term R(w) from the log-
likelihood function LL(w), each value Cik is considered by the
optimization problem as a virtual cost to be paid by the objective
function, depending on the value attributed to the weight wik of
the opinion score k when estimating the quality of the stimulus i.
Therefore, to maximize the objective function, for each stimulus
i, opinion scores (those with large values of Cik) which are not
frequently chosen; hence, potentially noisy scores, receive less
weight (lower value of wik) in the optimal solution so that the
total virtual cost to be paid, expressed by the regularization term,
is minimized.

Our decision to regularize the likelihood function rather than
to utilize other established regularization techniques was pri-
marily driven by empirical findings. The maximum likelihood
estimation framework has demonstrated its effectiveness in the
development of subjective quality recovery methods [8], [9],
[11]. Our approach is to capitalize on this empirical evidence
to create a more robust quality recovery method. We needed a
new regularization term that aligns with the characteristics of
our problem with a similar order of magnitude as our likelihood
function to avoid unbalancing the objective function of the op-
timization problem in (7). As we could not find any existing
regularization term meeting these criteria, we opted to design
one from scratch.

While the RMLE approach is primarily designed for discrete
quality scales, it can also be adapted for analyzing data on con-
tinuous scales. This may involve dividing the continuous scale
into intervals and using the RMLE to weigh the ratings within
each interval. However, evaluating this adaptation is beyond the
scope of this paper.

As already mentioned, the weightwik can be interpreted as the
ground truth probability that the opinion score k ∈ K is chosen
when rating the quality of the stimulus i ∈ I. Hence, the ground
truth standard deviation of the opinion scores on the quality of
the stimulus i ∈ I can be expressed as:

stdi =

√(∑
k∈K k2wik −

(∑
k∈K kwik

)2)
(8)

Therefore, the 95% confidence interval (CI) of the recovered
quality of the stimulus i ∈ I can be estimated as follows:

CIQi
= Qi ± 1.96 · stdi√|J | (9)
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IV. A NOVEL SUBJECT SCORING MODEL

A. The Attractiveness of Opinion Score

In this paper, we consider that when assessing a stimulus, each
subject mentally evaluates the attractiveness of each opinion
score on the quality scale. This attractiveness is not directly ob-
servable, as some of its aspects are inherently subjective. How-
ever, we contend that this attractiveness is influenced by i) the
ground truth quality of the stimulus, ii) the subject systematic
preference for specific opinion scores over others, and iii) the
subject level of inconsistency. Therefore, we introduce:
� U j

ik, as the overall attractiveness attributed to the opinion
score k ∈ K by the subject j ∈ J when asked to rate the
stimulus i ∈ I.

To propose an analytical expression of attractiveness U j
ik, let

us first recall some well-known peculiar subject behaviors ob-
servable in subjective tests run with a discrete quality scale. The
authors in [16] identified the following eight main types of be-
haviors:

1) Positively biased annotators: subjects who tend to assign
high opinion scores;

2) Negatively biased annotators: subjects who tend to assign
low opinion scores;

3) Unary annotators: subjects who tend to assign the same
opinion score;

4) Binary annotators: subjects who tend to assign only the
lowest or the highest opinion score;

5) Ternary annotators: subjects who tend to assign the low-
est, middle and highest opinion scores;

6) Adversary annotators: subjects who assign inverted rat-
ings;

7) Spammer annotators: subjects whose data were randomly
assigned;

8) Competent annotators: subjects who are very accurate.
Clearly, these behaviors are not mutually exclusive, as a sub-

ject may exhibit multiple behaviors during the same experiment.
Nevertheless, they provide a solid foundation for designing sub-
jective scoring models. Here, we present them to better introduce
and to motivate our proposed scoring model. We describe them
in more detail in Section VI.

When examining the first five behaviors in the list, a crucial
observation becomes evident: When modeling the subject scor-
ing behavior, it is essential to acknowledge that subjects may
have inherent tendencies to favor specific opinion scores over
others, regardless of the stimulus. For example, unary, binary,
and ternary annotators prefer only one, two, or three opinion
scores from those available on the quality scale. Positively bi-
ased subjects lean toward higher opinion scores, while nega-
tively biased subjects tend to prefer lower scores.

To address the fact that a subject might systematically favor
certain opinion scores at the expense of others, we introduce the
following position bias weights:
� μj

k, i.e., the systematic tendency of subject j ∈ J to choose
opinion score k rather than another that contributes to de-
termining total attractiveness U j

ik.
With the exception of “Spammer annotators,” all other types

of annotators are supposed to make their choices on the quality

scale based on the ground truth subjective quality of the stimuli
they are assessing. Consequently, we consider that the attrac-
tiveness U j

ik also depends on the following:
� wik, i.e., the quality weight, computed by the RMLE ap-

proach, quantifies the importance of the opinion score k in
determining the quality of the stimulus i ∈ I.

Finally, to address subject inconsistency and to encompass
possible behaviors resembling “spammer annotators”, we as-
sume that the attractiveness U j

ik also depends on a random vari-
able:
� θjik models the effect of all the influencing factors that

might affect the choice of opinion score k ∈ K by subject
j ∈ J when rating the stimulus i ∈ I.

Summarizing the previous observations in a formula, we express
the total attractiveness of the opinion score k for subject j when
rating stimulus i as follows:

U j
ik = wik + μj

k + θjik. (10)

Let us denote by θjikf the random variable representing the
relevance of the influence of the specific factor f ∈ F . In prac-
tice, the number of IFs that might affect the choice of the subject
is truly large. Moreover, these factors are not expected to have
similar impacts on subject choice at all times. More precisely,
we believe that, in a given context, an IF might be considered
the most relevant. Hence, we assume that the subject choice on
the quality scale is mainly determined by the IF with the greatest
relevance.

Therefore, the stochastic term θjik of the attractiveness in (10)
can be written as

θjik = max
f∈F

θjikf . (11)

The attractiveness of opinion score k for subject j when eval-
uating stimulus i can be reformulated as follows:

U j
ik = wik + μj

k +max
f∈F

θjikf (12)

In practice, the complexity of IFs makes it difficult to hypoth-
esize a specific probability distribution that any of the random
variables θjikf , f ∈ F should follow. We therefore assume that
such a distribution is unknown. In the next section, under a mild
assumption about the shape of this unknown probability distri-
bution, we derive the probability of a particular subject selecting
a specific opinion score on the quality scale when evaluating a
given stimulus. This derivation forms the basis for modeling the
choices of each subject and, in turn, our proposed subject scoring
model.

B. Deriving the Proposed Subject Scoring Model

Since the number of IFs that might affect the choices of a
subject during a subjective test is truly large, it is reasonable
to assume that the cardinality |F| of the set F of IFs tends to
infinity.

Let us denote by pjik the probability that subject j ∈ J
chooses the opinion score k ∈ K when asked to rate the stimulus
i ∈ I. The expression of such a probability is the subject scoring
model we are looking for.
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To derive the probability pjik and thus our proposed scoring
model, we make a mild assumption on the shape of the unknown
probability distribution of each random variable θjikf to model
the effect of the IF f ∈ F .

In particular, let us denote byF j
ik(x) the unknown cumulative

probability distribution of any random variable θjikf f ∈ F .
We assume that two constants exist, α|F| and βj > 0, such that
∀i ∈ I, ∀j ∈ J , ∀k ∈ K:

lim
|F|→+∞

F j
ik

(
1

βj
x+ α|F|

)|F|
= exp

(−e−x
) ∀x ∈ R. (13)

At first, the assumption presented in (13) may appear to be
restrictive. However, this is not the case, as it holds true for nu-
merous commonly used probability distributions, including the
Gaussian, logistic, log-normal, exponential, Laplace, and Gum-
bel distributions, as shown in [26]. Therefore, by making this
assumption, we are not substantially limiting the applicability
of our proposed subject scoring model.

Let us note that the constant β is indexed by j ∈ J . This
finding is therefore subject specific. In particular, we later show
that this inconsistency is related to the subject. The constantα|F|
has no practical interpretation, as it is introduced only to imple-
ment a simple normalization trick that is useful for the proof of
Theorem 1, yielding our proposed subject scoring model.

Theorem 1: Under the assumption in (13) and assuming that
the random variables θjikf f ∈ F are independent, as the number
of IFs tends to infinity, i.e., |F| → +∞, the probability that
subject j chooses the opinion score k when rating the stimulus
i is:

pjik =
eβj(wik+μj

k)∑
k∈K eβj(wik+μj

k)
, k ∈ K, j ∈ J , i ∈ I. (14)

Proof: The opinion score k of the quality scale can be chosen
by the subject j when rating the quality of the stimulus i if and
only if the subject identifies that opinion score as one of those
having the greatest attractiveness.

Therefore, for a given stimulus i ∈ I, by subtracting or adding
the same constant to the attractivenessU j

ik of each opinion score,
the choice probabilities pjik of the subject j remain unchanged.
Hence, without loss of generality, the attractiveness of each opin-
ion score k can be modified by subtracting from it the constant
α|F| introduced in (13) and can be written as a function of |F|
as follows:

U j
ik(|F|) = wik + μj

k +max
f∈F

θjikf − α|F| (15)

The probability pjik can then be expressed as follows:

pjik = P

[
U j
ik(|F|) = max

k∈K
U j
ik(|F|)

]
(16)

Applying the total probability theorem [27], one can write:

pjik = P

[
U j
ik(|F|) = max

k∈K
U j
ik(|F|)

]

=

∫ +∞

−∞
P

⎡
⎣ ⋂
h∈K,h �=k

U j
ih(|F|) ≤ x

⎤
⎦

(
P
[
U j
ik(|F|) ≤ x

])′
dx (17)

Now, let us consider the probability P [
⋂

h∈K,h �=k U
j
ih(|F|) ≤

x], which holds:

lim
|F|→∞

P

⎡
⎣ ⋂
h∈K,h �=k

U j
ih(|F|) ≤ x

⎤
⎦

= lim
|F|→∞

P

⎡
⎣ ⋂
h∈K,h �=k

wik + μj
k +max

f∈F
θjikf − α|F| ≤ x

⎤
⎦

= lim
|F|→∞

P

⎡
⎣ ⋂
h∈K,h �=k

max
f∈F

θjikf ≤ x− wik − μj
k + α|F|

⎤
⎦

= lim
|F|→∞

∏
h∈K,h �=k

P

[
max
f∈F

θjikf ≤ x− wik − μj
k + α|F|

]

(18)

= lim
|F|→∞

∏
h∈K,h �=k

F j
ih((x− qih − μj

h) + α|F|)|F| (19)

=
∏

h∈K,h �=k

exp(−e−βj(x−qih−μj
h)) (20)

where for the equality in (18) and (19), we exploited the indepen-
dence of the random variables θjikf . To obtain (20), we exploit
the assumption in (13).

From (18) and (19), it is not difficult to observe that
P [U j

ik(|F|) ≤ x] = F j
ik((x− wik − μj

k) + α|F|)|F|. Therefore,
by using (13), the following limit holds:

lim
|F|→+∞

P
[
U j
ik(|F|) ≤ x

]
= exp(−e−βj(x−wik−μj

k)). (21)

By inserting (21) and (20) in (17) and by defining Aj
i =∑

k∈K eβj(wik+μj
k) as |F| → +∞, it follows that

pjik = P

[
U j
ik(|F|) = max

k∈K
U j
ik(|F|)

]

=

∫ +∞

−∞

∏
h∈K,h �=k

exp(−e−βj(x−qih−μj
h))(βje

−βj(x−wik−μj
k)

exp(−e−βj(x−wik−μj
k)))dx

=

∫ +∞

−∞
βj exp(−Aj

ie
−βjx)e−βj(x−wik−μj

k)dx

= eβj(wik+μj
k)

∫ +∞

−∞
βj exp(−Aj

ie
−βjx)e−βjxdx

=
eβj(wik+μj

k)

Aj
i

∫ +∞

−∞
βjA

j
ie

−βjx exp(−Aj
ie

−βjx)dx

=
eβj(wik+μj

k)

Aj
i
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=
eβj(wik+μj

k)∑
k∈K eβj(wik+μj

k)
. (22)

This proves the Theorem. �
Therefore, motivated by (14), we argue in this paper that the

rating rji of the subject j for the stimulus i is a realization of a
discrete random variable that can assume |K| possible values on
the quality scale, i.e.,

rji = DRV

(
pjik =

eβj(wik+μj
k)∑

k∈K eβj(wik+μj
k)
, k ∈ K

)
(23)

where DRV represents a discrete random variable.
Equation (23) represents our proposed subject scoring model.

In this model, the choice probability pjik considers the impact of
the ground truth quality of the stimulus through the weightswik,
the subject bias via the weightsμj

k, and the subject inconsistency
through the parameter βj , which characterizes the probability
distributions of IFs.

V. ESTIMATING AND INTERPRETING THE PARAMETERS OF THE

MODEL

The scoring model presented in (23) incorporates the bias
weights μ and the parameters β, both of which need to be esti-
mated for each subject. In this section, we outline our method-
ology for parameter estimation, and we provide insights into
the appropriate interpretation. Additionally, we introduce sev-
eral indices used by our scoring model to objectively identify
peculiar behaviors from individual raw ratings.

A. Bias Weight Estimation

To estimate the bias weights μj
k for subject j ∈ J and each

opinion score k ∈ K, we represent the rating rji of subject j ∈
J for stimulus i ∈ I with the array Rj

i containing |K| values
defined as follows:

Rj
i (k) =

{
1 if k = rji
0 otherwise

(24)

For instance, in an experiment using the five-point ACR scale,
the representation of the opinion score “Bad” is the array [1 0 0
0 0], while “Poor” is represented as [0 1 0 0 0], and so forth.

We then compute the deviation weights of the rating of subject
j from the actual quality of stimulus i for opinion score k as
follows:

μj
ik = Rj

i (k)− wik. (25)

The bias weight μj
k is estimated as follows:

μj
k =

∑
i∈I μ

j
ik

|I| . (26)

In brief, μj
k is estimated as the average deviation between the

importance that the subject j attributed to the opinion score k
(expressed byRj

i (k)) and the actual importancewik of that opin-
ion as computed by the RMLE approach.

Let us note that the sum of the bias weights μj
k of a given

subject j over all the possible opinion scores is equal to 0:

∑
k∈K

μj
k = 0 ∀j ∈ J (27)

since, by definition,
∑

k∈K Rj
i (k) = 1 and

∑
k∈K wik = 1.

Hence, (27) implies that for each subject and each stimulus,
certain bias weights are positive, signifying a preference for the
associated opinion scores, while others are negative, indicating
a tendency to avoid selecting those particular opinion scores.

We define the overall bias of the subject j ∈ J as follows:

bj =
∑
k∈K

k · μj
k. (28)

We argue that, by using the values of the bias weights μj
k and

the overall bias bj derived from the raw individual ratings, it is
possible to identify the behavioral characteristics of annotators,
such as unary, binary, ternary, positively biased, and negatively
biased ones. This is shown in more detail in Section VI.

Although the proposed model does not involve parameters
that directly and explicitly capture the behavior of adversary an-
notators, by exploiting the bias weights in (25), we formulate an
index that can also identify annotators with adversarial behavior.

More precisely, our idea is to first invert the ratings of all
subjects on the quality scale, i.e., to transform all subjects into
adversary annotators. By doing so, a subject that was origi-
nally an adversary annotator becomes a very accurate subject;
hence, his or her ratings deviate less from the actual quality
than those of all the other subjects who are now adversary an-
notators. In other words, the deviation weights μj

ik from the ac-
tual quality weights for that observer become small in absolute
value, while those of the other subjects assume larger values in
general.

Exploiting the observations made in the previous paragraph,
we define the index Ijadv, which establishes whether subject j
should be considered an adversary annotator as follows:

Ijadv =

(
1

|I||K|
∑
i∈I

∑
k∈K

|μ̄j
ik|
)−1

(29)

where μ̄j
ik represents the deviation weights computed as in (25)

after inverting the ratings of all the subjects in the dataset.
By taking the inverse of the average deviation from the actual

quality, we expect that the index Ijadv assumes large values for
adversary annotators and a lower value for all the other subjects.
This is verified in Section VI.

B. Parameter β and Subject Inconsistency

In this section, we discuss the link between subject incon-
sistency and parameter β. Subsequently, we derive an analyti-
cal expression for subject inconsistency within the framework
of our proposed subject scoring model. Finally, we detail our
methodology for estimating the parameter β for each subject.
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Considering the scoring model in (14), for a given subject
j ∈ J , the following holds:

lim
βj→0

pkik = lim
βj→0

eβj(wik+μj
k)∑

k∈K eβj(wik+μj
k)

=
1

|K| . (30)

Hence, if the parameter βj of the subject j is close to 0, this
indicates that the subjects vote by choosing at random one opin-
ion score among the |K| scores available on the quality scale. In
other words, subjects whoseβ parameters assume low values are
likely to be inconsistent. However, if βj assumes a large value
and the subject is not particularly biased toward a specific set
of opinion scores, i.e., the bias weights μj

k are very close to 0,
then the main factors determining the subject choice probabili-
ties are the weights wik. Hence, subject j would be particularly
consistent, as his or her choices are strongly based on the actual
quality of the stimulus under evaluation. In any case, if a subject
is not inconsistent, the β parameter does not tend to 0; therefore,
the probability of choosing a certain opinion score (see (23)) is
mainly determined by the total attractiveness (see (12)) of that
opinion score for that subject.

For instance, for subjects who tend to provide lower (larger)
scores that are accurate, i.e., correlated with the ground truth
quality of the stimuli under evaluation, the bias weights corre-
sponding to low (high) opinion scores on the quality scale are
significantly greater than those of the others. As a consequence,
from (12), we conclude that low (or high) opinion scores are
more attractive for this type of subject. Therefore, since this
type of subject is not inconsistent, i.e., β does not tend to 0,
our scoring model in (23) simply indicates that they have a high
probability of choosing a lower (or higher) opinion score when
evaluating the quality of any stimulus. Thus, our scoring model
can perfectly capture their tendency to provide lower (respec-
tively higher) scores.

Let us note that a subject inconsistency in rating a particu-
lar stimulus is influenced not only by the stimulus quality but
also potentially by the subject bias. For instance, subjects tend
to exhibit lower inconsistency when rating stimuli that are of
extremely low or high quality. Additionally, a subject with a
strong positive bias may predominantly use the upper part of
the quality scale, leading to reduced variance in their choices.
Consequently, we should not consider that a single parameter,
βj , can account for all aspects of the inconsistency of subject j.

In fact, we define the inconsistency σ2
ij of subject j ∈ J on

stimulus i ∈ I as a function of parameter βj , quality weights w
and subject bias weights μ. More precisely, we use the variance
of the discrete probability distribution determined by the |K|
probabilities pjik, k ∈ K as the measure of the inconsistency
of the subject j on the stimulus i. The variance is computed as
follows:

σ2
ij(β, μ, w) =

∑
k∈K

k2 · pjik −
(∑

k∈K
k · pjik

)2

(31)

We define the overall inconsistency of the subject j ∈ J as
the average of the valuesσ2

ij(β, μ, w), i ∈ I over all the stimuli,

i.e.,

σ2
j (β, μ, w) =

1

|I|
∑
i∈I

σ2
ij(β, μ, w) (32)

To estimate the parameter βj for each subject j ∈ J , we rely
on a least squares approach. In particular, we estimate the pa-
rameterβj such that the theoretical overall inconsistency defined
in (32) is as close as possible to the variance in the differences
between the actual quality scores of the stimuli and the ratings
of the subject. Therefore, we first compute:

s2j = Var(Q−Rj) (33)

where Var represents the variance of a set of values and Q and
Rj are two arrays containing the actual subjective quality of all
stimuli computed by the RMLE approach and all the ratings of
the subject, respectively j.

We then estimate βj as the value that minimizes the function
l(βj) defined as follows:

l(βj) =
(
s2j − σ2

j (βj , μ, w)
)2

(34)

Let us note that when estimating the parameter βj , the quality
weights w and the bias weights μ are already known, which is
why the function l in (34) depends only on βj .

VI. RESULTS

In this section, we evaluate the effectiveness of our approach
through a series of computational experiments.

A. Experimental Settings

For the experiments, we considered five datasets, namely, the
VQEG-HD1, the VQEG-HD3, the VQEG-HD5 [28], the Net-
flix Public [8] and the ITS4S [29] datasets. Each VQEG dataset
comprises ratings from 24 subjects for approximately 160 stim-
uli. In contrast, the Netflix public dataset contains ratings from
26 subjects for 70 processed video sequences, and the ITS4S
dataset includes ratings provided by 27 subjects on the quality
of 514 stimuli.

Since there were cases where for a given stimulus, no subject
chose a specific opinion scorek (for instance, when the quality of
a given stimulus was particularly poor, no one chose Excellent),
we need to compute Cik, which involves the logarithm of zero
(see (5)), when the number of subjects was nik = 0. In this case,
we set the ratio nik

|J | to a very small real number ε = 10−16. We
experimentally determined that there is no advantage to using a
number smaller than that value.

To use our proposed RMLE approach in practice, the regular-
ization weight λ must be estimated. To do so, we considered λ to
be i) directly proportional to the number of stimuli rated by each
subject to account for noise stemming from subject fatigue; ii)
inversely proportional to the number of subjects, as larger subject
pools provide more informative datasets; thus, the log-likelihood
function LL(w) should carry more weight than the regulariza-
tion term R(w); and iii) directly proportional to the number of
possible opinion scores on the quality scale, which accounts
for the expectation that subjects tend to vote more consistently
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when they have fewer options on the quality scale, as seen in the
greater reliability of subjects in pair comparison-based tests.

Therefore, in our experiments, the value of λ was set to

λ =
1

2
· |I||K|

|J | (35)

The constant 1
2 was experimentally determined to be a reason-

able proportionality factor for ensuring that our RMLE approach
is more robust to noise than are the other quality estimation ap-
proaches used in our experiments.

Let us note that this method for estimating λ may not be
the optimal choice. Nonetheless, our results, obtained with this
straightforward approach to estimating λ, are highly promising,
as shown in the following sections.

We compared the proposed RMLE approach to four differ-
ent state-of-the-art approaches to estimate the subjective quality
from noisy raw individual ratings: the MOS, the ITU-T Rec
BT.500, the approach proposed in [8], [11] as implemented in
the publicly available Netflix SUREAL software [30] and a very
recent quality recovery approach called ZREC proposed in [12].

For the sake of completeness, SUREAL software is built upon
a subject scoring model in which the rating rji provided by sub-
ject j for stimulus i follows a Gaussian distribution, i.e.,

rji = qi + bj +N(0, σj) (36)

where qi is the actual quality of the stimulus i and bj is the bias
of the subject j. σj is the inconsistency of the subject j, and
N(0, σj) is a realization of a Gaussian random variable with a
mean equal to 0 and a standard deviation equal to σj .

To estimate the parameters of the above model, the SUREAL
software exploits an iterative algorithm called alternating projec-
tion (AP). The AP algorithm initializes the ground truth quality
values with the MOS values. During each iteration, each subject
bias and inconsistency are estimated with the mean and stan-
dard deviation of the differences between the subject ratings and
the current ground truth quality values, respectively; the ground
truth quality values are then updated by performing a weighted
sum of the subject ratings after removing their bias. The weight
or contribution of each subject in determining the ground truth
quality of each stimulus is defined as the inverse of the square of
their inconsistency. The iterative procedure continues as long as
the Euclidean norm of the difference between the quality values
calculated in two successive iterations is greater than 10−8.

It is important to highlight that the AP algorithm utilized by
the SUREAL software was endorsed by the ITU in 2021 as the
most comprehensive method for subjective quality recovery (as
per Section 12.6 of ITU-R P.913 [22]). As the latest standardized
approach, the AP algorithm has recently served as the primary
benchmark for evaluating newly proposed methods by various
authors [12], [31]. Consequently, in the results section, we also
consider SUREAL software as the primary benchmarking ap-
proach. In particular, in all our numerical experiments, we use
the latest version of the SUREAL software, i.e., the one imple-
menting the AP algorithm.

B. Effectiveness of the Proposed RMLE Approach

We compared the robustness of each of the considered meth-
ods to noise. In practice, following the approach in [9], we added
synthetic noise to four datasets and evaluated, for each quality
recovery approach, the root mean square error (RMSE) between
the ground truth quality (the MOS obtained from the scores in
the original dataset without any modifications) and the estimated
quality scores from the noisy dataset. The primary objective was
to show that the RMLE approach, when applied to noisy ratings,
can yield a more accurate estimate of the ground truth quality
than can the other methods under consideration. This form of
comparison is a standard practice in the literature for assessing
the effectiveness of subjective quality recovery methods [8], [9].

As in [8], [9], [11], the robustness of the MOS as a qual-
ity recovery method was also tested. In fact, as already men-
tioned, the MOS computed from the original dataset without
adding synthetically simulated noise to the dataset was con-
sidered the ground truth or reference quality. Then, noise was
added to the dataset. The MOS computed after adding the noise
to the dataset was evaluated against the ground truth quality,
i.e., the MOS obtained from the noiseless dataset. For instance,
looking at Fig. 1(a), it can be said that when replacing 8%
(0.08 on the x-axis) of the opinion scores of all subjects in
the VQEG-HD1 dataset with a random integer number sampled
between 1 and 5, the RMSE between the MOS values com-
puted from the original dataset and those computed on the cor-
rupted dataset is approximately 0.16 (y-axis). By repeating this
process with different percentages of random ratings, we ob-
tained the curves for the MOS shown in Figs. 1 and 2. These
curves allow us to evaluate the robustness of the MOS to added
noise.

The noise was synthetically added to each dataset by using two
different procedures: i) All subjects have a small probability of
providing an inaccurate rating when scoring quality; thus, a frac-
tion of the ratings of each subject corresponding to this probabil-
ity was randomly selected to be replaced with a random integer
number between 1 and 5; ii) The ratings of 50% of the subjects
were kept unchanged, whereas the ratings of the other subjects
were modified as described above. We believe that our first pro-
cedure reasonably simulates the introduction of noise, particu-
larly in subjective experiments involving non-expert annotators
or those conducted in uncontrolled settings such as crowdsourc-
ing experiments. Our approach also applies well to experiments
with a large number of stimuli where subject fatigue may influ-
ence the quality of ratings of all subjects. The second approach
might be more suitable for simulating noise in subjective ex-
periments that involve both highly competent annotators, such
as experts, and naive subjects, who might occasionally provide
inaccurate ratings due to the complexity of the stimuli they are
assessing.

Figs. 1 and 2 present the obtained results when simulating the
noise when using the first and the second procedures, respec-
tively. For the first noise simulation procedure shown in Fig. 1,
the less noisy condition consisted of assuming that all subjects
provided inaccurate scores with a probability of 0.04, i.e., 4%
of the opinion scores of all subjects were converted into random
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Fig. 1. Robustness of the different approaches to synthetically adding noise to individual ratings. All the subjects are assumed to have a certain probability
(x-axis) of scoring inaccurately. The experiment was run with 30 different seeds. The average RMSE and the 95% confidence interval computed from the 30 RMSE
values are shown. Let us note that the curves related to MOS, ZREC and SUREAL overlap in Fig. 1(a) .

Fig. 2. Robustness of the different approaches to synthetically adding noise to individual ratings. Fifty percent of the subjects are assumed to have a certain
probability (x-axis) of scoring inaccurately. The experiment was run with 30 different seeds. The average RMSE and the 95% confidence interval computed from
the 30 RMSE values are shown.

integers between 1 and 5. The probability of all subjects incor-
rectly scoring a stimulus was then progressively increased to 0.1,
i.e., 10% of the ratings of all subjects were modified. A similar
interpretation holds for Fig. 2, but in this case, the noise affects
only 50% of the subjects. Additionally, higher probabilities of
providing inaccurate ratings were considered, up to 0.25.

When noise affects the score of all subjects (see Fig. 1), for al-
most all considered noise levels, the proposed RMLE approach
recovers quality scores with the lowest RMSE with respect to
the ground truth. In fact, the RMLE curve lies below all the
others, showing that the robustness of our proposal to noise
is the greatest among the other approaches. For the case in
which only the ratings of half of the subjects in the original
dataset are affected by noise (see Fig. 2), our RMLE approach
showed the best performance, while the SUREAL software and
ZREC outperformed the MOS and the ITU-T Rec. BT.500. In
general, the SUREAL software and ZREC showed similar per-
formances. This is not surprising because both approaches use
the inverse of the inconsistency to weight the contribution of
each subject to the determination of the ground truth quality.
The main difference is that SUREAL analyzes the scores as
gathered on the quality scale, while ZREC works on Z scores
that are obtained by subtracting from the original ratings the
MOS and dividing the result by the standard deviation of the
ratings.

C. Identifying Peculiar Subject Behaviors

In this section, we assess the ability of our approach to iden-
tify annotators with peculiar scoring behaviors by comparing
it to the model used in the SUREAL software and the ITU-T

Rec BT.500. We simulate the ratings of annotators displaying
unary, binary, ternary, adversary, and spammer behaviors, which
are five of the eight behaviors outlined in Section IV. The other
three behaviors (positively biased, negatively biased and compe-
tent annotator) can easily be recognized, as detailed later, from
the data gathered during an actual subjective experiment. For this
reason, in this experiment, we considered the ratings collected
during an actual subjective test, i.e., the Netflix public dataset.
We also simulated an additional peculiar scoring behavior typi-
cally observed in subjective tests, that we named “bimodal anno-
tator”, i.e., subjects that tend to avoid the extremes of the quality
scale [2] and provide ratings normally distributed around Poor
and Good depending on whether they judge the quality as not
satisfying or satisfying.

For our analysis, we augmented the Netflix Public dataset,
which originally included 26 real subjects, by introducing six
virtual subjects. These virtual subjects were designed to simulate
the behaviors of a unary, binary, bimodal, ternary, adversary,
or spammer annotator. We subsequently applied the SUREAL
software, ITU-T Rec BT.500, and our proposed approach to the
integrated dataset. This method allowed us to assess the ability of
the three approaches to accurately identify the simulated peculiar
behaviors.

To simulate the ratings of the six virtual subjects, we first
identified the most accurate annotator, i.e., the real subject with
the lowest bias and inconsistency (subject #17 in Fig. 3(a) and
(b)). We refer to this subject as “gold subject” in the following.
By using the gold subject ratings, we generated the following
six virtual subjects:

Unary annotator: These subjects tend to score as Fair for
almost all stimuli; we randomly selected 90% of the ratings of
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Fig. 3. Comparison of the output of the SUREAL software (red bars in Fig. 3(a) and (b)) to that of our proposed approach on the Netflix public dataset integrated
with the simulated ratings of peculiar subjects. In addition to the bias and inconsistency values computed by both approaches, our proposal also outputs the matrix
of bias weights in Fig. 3(c) and the index in Fig. 3(d). Such additional output makes our approach more complete than is the SUREAL software, as it enables us to
determine the source of the inconsistency of any particular subject.

the gold subject and set them equal to 3. The remaining 10%
were kept unchanged.

Binary annotator: These subjects tend to choose Bad or Ex-
cellent: we randomly selected 90% of the ratings of the gold
subject. Selected ratings less than or equal to 2 were set to 1,
those equal to 3 were changed to either 1 or 5, and those greater
than or equal to 4 were set to 5. The remaining 10% of the ratings
were kept unchanged.

Bimodal annotator: These subjects feel that they are not ex-
perts and therefore tend to avoid the extremes of the quality
scale, i.e., Bad and Excellent. Instead, they prefer to select Poor
when judging the quality as not satisfying and Good otherwise.
To simulate the ratings, we randomly chose 90% of the ratings of
the gold subject. Any selected rating smaller than 3 was turned
into 2, any rating greater than 3 was changed into 4, and any
rating equal to 3 was changed into either 2 or 4 with equal prob-
ability. The remaining 10% of the ratings were kept unchanged.

Ternary annotator: These subjects tend not to express inter-
mediate opinion scores, i.e., Poor and Good. To simulate the
ratings, we again chose 90% of the ratings of the gold subject at
random. A rating of 2 was turned into either 1 or 3 with equal

probability, and a rating of 4 was turned into either 3 or 5. The
remaining 10% of the ratings were kept unchanged.

Adversary annotator: We simply inverted all the ratings of
the gold subject on the quality scale; e.g., when the gold subject
rated as 1 (Bad), we turned it into 5 (Excellent) and vice versa,
as well as 2 into 4 and vice versa.

Spammer annotator: The simulated ratings were obtained by
substituting 90% of the rating of the gold subject with a random
integer number uniformly sampled in the range from 1 to 5.

Fig. 3 presents the outcomes achieved by applying both the
SUREAL software and our proposed approach to the Netflix
Public dataset, which was augmented with the simulated rat-
ings of peculiar virtual subjects as previously described. The
ratings of these virtual subjects were generated by using 30 dif-
ferent random seeds. As such, except for the adversary annotator,
where randomness was not a factor in the simulation, the statis-
tics shown in Fig. 3 for the virtual subjects represent the average
of 30 values.

First, we investigated the overall subject bias and inconsis-
tency values computed by both approaches, as shown in Fig. 3(a)
and (b), respectively. The results showed that, for all subjects,
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both approaches estimated similar overall subject bias values.
Although the overall inconsistency values computed by the two
approaches are not equal in absolute terms, the Spearman rank
order rank correlation coefficient (SROCC) is 0.99. In other
words, given a pair of subjects, both approaches always agree
on which one is the most inconsistent. Therefore, if one limits
the analysis to overall subject bias and inconsistency, the two
approaches can be considered quite similar.

Nevertheless, examining overall bias and inconsistency alone
may not provide a comprehensive analysis of subject behavior.
In fact, looking only at those values, it is not possible to distin-
guish between the simulated peculiar behaviors. For instance,
from the results in Fig. 3(b), we surmise that both approaches
identified the spammer and the adversary annotator as being very
inconsistent. If the analysis is limited to the overall bias and in-
consistency values, these two subjects are considered equivalent,
and their ratings have a very low contribution to the determina-
tion of the ground truth quality since they are both considered
very inconsistent. Instead, with more information that makes
it possible to explain the source of inconsistency between the
two subjects, the ratings of the adversary annotator can be eas-
ily recovered, and only the ratings of the spanner annotator can
receive low consideration.

The previous example compares and illustrates the limits of
approaches that rely on only an overall bias and inconsistency
value, such as the SUREAL software, to analyze each subject
behavior. However, our approach introduces the bias weights
shown in Fig. 3(c) and the index in Fig. 3(d), which make it
possible to distinguish between peculiar behaviors.

Fig. 3(c) shows the bias weights introduced in (26). Interpret-
ing these weights makes it possible to identify the simulated
unary, binary, bimodal, and ternary annotators. It is evident that
these subjects assign substantial positive bias weights to the sin-
gle, double, and triple opinion scores they are predisposed to
choose. Hence, after observing the overall inconsistency values
in Fig. 3(b), examining the bias weights in Fig. 3(c) may make
it possible to determine whether the observed inconsistency de-
rives from one of these four behaviors.

In fact, when looking at the output of the SUREAL software
in Fig. 3(a) and in Fig. 3(b), one might erroneously conclude
that the Bimodal and Ternary annotators are not peculiar sub-
jects since their inconsistencies are comparable to those of sev-
eral other real subjects. However, through the bias weights in
Fig. 3(c), our approach clearly highlights the strong tendency of
these two annotators to use only 2 and 3 opinion scores, respec-
tively. It is clear that a unary or binary annotator might be more
prejudicial than a bimodal or ternary annotator. However, from
our point of view, it is still important to have approaches that
can automatically highlight bimodal and ternary annotators. Bi-
modality generates, for example, slight inaccuracies in subject
ratings at the extremes of the quality scale. In fact, a bimodal
annotator would choose Poor as the opinion, with high proba-
bility, even when shown a stimulus for which Bad would be a
better fit. Ternary annotators quantize the quality scale and thus
implicitly use a different scale than the one proposed by the test
designer.

The index for identifying adversary annotators, defined in
Section V, is shown in Fig. 3(d). As expected, corresponding to
the simulated adversary annotator, the proposed index assumes
a very large value compared to those of the other subjects. This
shows that the proposed index can effectively determine whether
an observed overall subject inconsistency derives from an ad-
versarial behavior.

With regard to the ITU-T Rec BT.500, we calculated the num-
ber of times it managed to recognize and to reject each type
of peculiar behavior during the 30 repetitions of the experi-
ment. The unary, bimodal and ternary annotators were never
rejected. The binary annotator was rejected 24 times out of the
30 repetitions, whereas the adversary and the spammer anno-
tators were rejected 21 and 17 times, respectively. Hence, the
ITU-T Rec BT.500 clearly showed lower performance than did
our approach, which recognized all the simulated peculiar be-
haviors.

As mentioned in Section IV, when subjects rate stimuli, it
is unlikely that they consistently adopt only one of the six be-
haviors simulated in this section. Their actual behavior may be a
combination of several of these peculiar behaviors. For example,
a subject might be competent at the beginning of a test but turn
into a spammer annotator toward the end due to fatigue. Conse-
quently, the bias weights of actual subjects in Fig. 3(c) may not
be sufficient to entirely characterize a subject’s behavior. Nev-
ertheless, they do provide valuable insights in some cases that
can be subject to further analysis.

For instance, from the overall bias values shown in Fig. 3(a),
let us note that subject #10 is particularly positively biased.
Considering the matrix of bias weights in Fig. 3(c), this bias
can be explained by the high tendency of the subject to select
Excellent as the opinion score. In fact, the bias weights of sub-
ject #10 for Bad, Poor and Fair are all negative, which indi-
cates that the subject tends not to use the left part of the quality
scale. In contrast, positive bias weights are observed for Good
and, in particular, for Excellent, yielding an overall positive
bias.

Fig. 3(b) shows that subjects #6, #7 and #14 had the high-
est overall inconsistency values. According to the bias weights
in Fig. 3(c), subject #6 is slightly more attracted by the opin-
ion scores at the extremes of the quality scale, i.e., Bad and
Excellent, since positive bias weights are observed only in cor-
respondence with these opinion scores. Therefore, one might
hypothesize that the observed inconsistency can be partly ex-
plained by potential binary annotation behavior. For subject #7,
the negative bias weights corresponding to Excellent show that
the subject tends not to choose that opinion score. Unfortunately,
this is not fully compensated for by the choice of the closest opin-
ion score to Excellent, i.e., Good. Instead, Fair is chosen. This
may explain the inconsistency observed. Finally, looking at the
bias weights of subjects #14, a similar pattern can be observed
as in the case of a unary annotator. In particular, the opinion
score Fair exhibits a positive bias weight, while all the other
bias weights are negative. This indicates that subject inconsis-
tency might partially derive from a high tendency to choose
Fair.
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Fig. 4. Standard deviation of the opinion score (SOS) (seen as a measure of inconsistency) as a function of the MOS. Each point corresponds to one stimulus in
the corresponding dataset. The blue curves are a second-order polynomial least square fitting. As expected, subjects showed lower inconsistency at the extremes
of the quality scale.

In summary, our proposed approach, which introduces bias
weights and allows for analysis at the level of each single opin-
ion score, offers a preliminary means of investigating the sources
of overall inconsistency and bias in a subject. This approach goes
beyond the output of the SUREAL software, which, by design,
does not provide guidance on explaining the observed overall in-
consistency so that potential issues in the subjective experiment
can be addressed. When using our approach to analyze raw rat-
ings, in addition to estimating the actual quality of the stimuli
with the RMLE approach, to gain insights into the scoring be-
havior of each individual rater, we recommend to also conduct
the analysis shown in Fig. 3 on the dataset being examined.

D. Modeling Subject Behavior at the Extremes of the Quality
Scale

Empirical observations have shown that subjects tend to ex-
hibit less inconsistency when rating stimuli of very low or very
high quality. In [32], the authors argued that a second-order
polynomial function is suitable for linking the MOS and the
standard deviation of the opinion score (SOS), which is con-
sidered a measure of inconsistency between subjects. This is
known within the media quality assessment community as the
“SOS hypothesis”.

In Fig. 4, we analyzed the link between the SOS and the MOS
in four datasets. Each point in the figure represents a stimulus.
The blue curves are obtained by performing a least square fitting
of the MOS values to the SOS values by using a second-order
polynomial function.

In accordance with the SOS hypothesis, the shape of the blue
curves in Fig. 4 clearly illustrates that lower SOS values are
prevalent at the extremes of the quality scale in all four subjective
experiments. This implies that subjects tend to provide similar
opinion scores when rating stimuli of very high or very low
quality.

At the individual level, each subject is therefore expected to
exhibit lower inconsistency at the extremes of the quality scale.
An effective subject scoring model should capture this aspect
of subject behavior. However, it is worth noting that, by design,
the scoring model employed by the SUREAL software does not
account for that aspect of the subject scoring behavior. In fact,
the model in (36) assumes that the rating rji of subject j for
any stimulus i is affected by the inconsistency (σj). Therefore,
according to the SUREAL scoring model, given two stimuli ob-
tained from the same source, one with very low quality and the

other with a quality score in the middle of the scale, a subject
would show the same level of inconsistency when asked to rate
these two stimuli. However, this finding contrasts with the ob-
servations made from the results shown in Fig. 4 and thus with
the SOS hypothesis.

However, our proposed subject scoring model considers sub-
ject inconsistency at the level of the single opinion score. Indeed,
the random variable θjik, as introduced in (10) to represent sub-
ject inconsistency, is defined for each opinion score k ∈ K. This
feature allows our approach to locally model subject inconsis-
tency along the quality scale.

Fig. 5 shows the average inconsistency of each subject as
defined in (31), as a function of the quality of the stimulus. On
average, the proposed subject scoring model estimated lower
inconsistency values for stimuli whose quality is in the range
from 1 to 1.5 and from 4.5 to 5, compared to what happens
in the middle of the quality scale. Hence, the proposed model
captures the lower inconsistency of the subjects at the extremes
of the quality scale.

Fig. 6 shows the link between the quality of the stimulus and
the estimated inconsistency for each individual subject in the
Netflix public dataset, including the peculiar subjects simulated
and discussed in the previous section, both for the SUREAL
software (Fig. 6(a)) and for our proposed model (Fig. 6(b)). As
already mentioned, the SUREAL software outputs a constant
inconsistency over the whole quality scale (see Fig. 6(a)). This
precludes the possibility of locally analyzing the accuracy of
the subject on the quality scale. In Fig. 6(b), instead, one can
observe the ability of our approach to predict lower inconsis-
tency for each individual subject at the extremes of the qual-
ity scale. For instance, subject #7 is particularly inconsistent
when rating stimuli of very high quality. This finding is con-
sistent with the observations made on his or her behavior in
the previous section; i.e., the subject tends not to use Excel-
lent as an opinion score but does not choose Good as the direct
alternative.

Interestingly, observing how the analysis in Fig. 6(b) brings
to light the sections of the quality scale where the six simulated
peculiar subjects are prone to exhibit higher levels of incon-
sistency. As anticipated, the adversary and spammer annotators
display substantial inconsistency across the entire quality scale.
Conversely, the unary annotator, by frequently selecting Fair,
exhibited somewhat lower inconsistency in the middle of the
quality scale. The binary annotator shows significant inconsis-
tency in the middle of the quality scale.
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Fig. 5. Average inconsistency of the subjects, computed according to our proposed method, as function of the quality of the stimulus being rated. The blue
curves are a second-order polynomial least square fitting. The proposed subject scoring model captures the fact that subjects are expected to rate the stimuli more
consistently, with either very low or very high quality.

Fig. 6. Inconsistency of each subject as a function of the quality of the stimulus. SUREAL software computes an overall subject inconsistency value that does
not depend on the quality of the stimulus under evaluation. However, our proposed model captures the lower inconsistency of the subjects at the extremes of the
quality scale.

E. Assessing the Uncertainty on the Estimated Subjective
Quality

In this section, we used our proposed RMLE approach and
SUREAL software to estimate the quality of subjectively an-
notated datasets without adding synthetic noise, as described
in Section VI-B. For the experiment, we considered five differ-
ent datasets, i.e., the four datasets used in Section VI-B plus the
ITS4S dataset [29]. Even without the addition of synthetic noise,
the ratings in these datasets exhibit some level of noise due to
inherent subject inconsistency. For example, in [33], the authors
identified a processed video sequence (PVS) in the Netflix pub-
lic dataset where a subject rated the quality as Bad, while the
mode of the ratings for that PVS was Excellent. With respect to
stimuli in the ITS4S dataset, the same authors identified a PVS
where subjects uniformly chose opinion scores ranging from
Poor to Excellent. In these cases, the MOS does not provide a
suitable estimate of quality. Therefore, these examples also em-
phasize the importance of applying quality recovery approaches
to datasets collected in highly controlled environments.

Following the approach of [11], [12], [34], we benchmarked
the performance of our proposed quality recovery approach on
real datasets by showing that its estimated subjective quality
suffers lower uncertainty than that estimated by the SUREAL
software. As in the aforementioned previous papers, here, the
level of uncertainty in the estimated subjective quality is mea-
sured by the size of the CI. In particular, the larger the CI is, the
greater the uncertainty in the estimated quality.

Table II summarizes the results of the experiment. After run-
ning the SUREAL software and the proposed software on each
dataset, we first evaluated the similarity between the quality re-
covered by the two methods by computing the Pearson linear
correlation coefficient (PLCC), the Spearman rank order cor-
relation coefficient (SROCC), and the RMSE. The results in
Table II show that, in general, both approaches recovered very
similar subjective qualities. In fact, very large correlation coeffi-
cients (> 0.99) and low RMSE values (< 0.14) were observed.
This highlights the consistency of our proposal with the prior art
on data gathered in highly controlled environments.

We now delve into the results concerning the sizes of the con-
fidence intervals (CIs) for the estimated subjective quality when
using both methods. As shown in Table II, it is evident that, in
general, the proposed RMLE method results in smaller CIs on
average. Thus, although both approaches yield very similar esti-
mates of subjective quality on the analyzed datasets, our method
produces estimations that tend to be associated with lower un-
certainty.

As in [12], in Table II, we provide the percentage by which
the application of each of the two methods reduces the size of
the CIs in comparison to what would be obtained from the MOS
and the SOS of the raw data. For example, the application of
our RMLE approach to the ITS4S dataset yielded subjective
quality estimates with CIs whose size was reduced on average
by 27%. The percentages in Table II can therefore be considered
an indication of how much noise has been removed from the data
by the applied quality recovery method. Higher values therefore
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TABLE II
COMPARING THE PROPOSED RMLE APPROACH TO THE SUREAL SOFTWARE IN TERMS OF UNCERTAINTY ON THE ESTIMATED SUBJECTIVE QUALITY

Fig. 7. CIs estimated by the SUREAL software (left) and the proposed RMLE
method (right) as a function of the recovered quality of the stimuli in the ITS4S
dataset. qSUREAL and qRMLE are the qualities recovered by the SUREAL
software and the proposed RMLE approach, respectively.

indicate better performance: for 4 out of 5 datasets, our proposal
did better than did the SUREAL software.

Fig. 7 shows the CIs estimated by the SUREAL software and
our method as a function of the recovered quality on the ITS4S
dataset. Our proposal yielded small CIs on average (see the leg-
ends), as already mentioned. An interesting observation that can
be drawn from Fig. 7 is that, for extremely low-quality stimuli,
the proposed RMLE approach calculates CIs that are smaller
than those of other stimuli. This highlights the crucial aspect
that, in the computation of CIs, our approach considers the high
accuracy of subjects when rating stimuli of very low quality. In
contrast, the SUREAL software computes CIs of uniform sizes
regardless of the quality of the stimuli being assessed. Conse-
quently, the CIs computed by the SUREAL software may be less
realistic than those obtained from the proposed RMLE approach.

VII. CONCLUSION

In this paper, we focused on modeling subject behavior in sub-
jective tests conducted on a discrete quality scale. An approach
called regularized maximum likelihood estimation (RMLE) was
first proposed to estimate the actual subjective quality from noisy
individual ratings. The proposed RMLE approach combines the
traditional MLE framework with a regularization term that is
meant to attribute less weight to ratings that are potentially
noisy in the dataset. The model then outputs the actual con-
tribution/weight of each opinion score to the determination of
the actual subjective quality of each stimulus.

An analytical expression of the overall attractiveness of each
opinion score for each subject was proposed by using the quality
weights estimated by the RMLE approach together with the in-
troduction of subject inconsistency and bias weights. Under the
reasonable assumption that the subject select the opinion score
with the highest attractiveness, we analytically derived a novel
subject scoring model that provides the probability of choos-
ing each opinion score on the quality scale when a subject with
specific characteristics is asked to rate a given stimulus.

Computational experiments showed that the proposed RMLE
approach is more robust to noise in individual opinion scores
than are four state-of-the-art alternative approaches. Moreover,
the analysis of bias weights introduced by our proposed ap-
proach provides potential insights into the peculiar behavior
underlying an observed subject inconsistency. Finally, the pro-
posed subject scoring model effectively captures the typical
quadratic link between subject inconsistency and stimulus qual-
ity.

Future work includes finding a better theoretical foundation
for the estimation of the regularization coefficient. Furthermore,
although our model allows for a more detailed analysis of the
data, as evidenced by the computational results, it also involves a
greater number of parameters than does the model implemented
by the SUREAL software. We plan to develop a more parsimo-
nious model in terms of the number of parameters.
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