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Abstract—Distributed learning requires a frequent
communication of neural network update data. For this, we
present a set of new compression tools, jointly called differential
neural network coding (dNNC). dNNC is specifically tailored
to efficiently code incremental neural network updates and
includes tools for federated BatchNorm folding (FedBNF),
structured and unstructured sparsification, tensor row skipping,
quantization optimization and temporal adaptation for
improved context-adaptive binary arithmetic coding (CABAC).
Furthermore, dNNC provides a new parameter update tree (PUT)
mechanism, which allows to identify updates for different neural
network parameter sub-sets and their relationship in synchronous
and asynchronous neural network communication scenarios. Most
of these tools have been included into the standardization process
of the NNC standard (ISO/IEC 15938-17) edition 2. We benchmark
dNNC in multiple federated and split learning scenarios using
a variety of NN models and data including vision transformers
and large-scale ImageNet experiments: It achieves compression
efficiencies of 60% in comparison to the NNC standard edition 1
for transparent coding cases, i.e., without degrading the inference
or training performance. This corresponds to a reduction in
the size of the NN updates to less than 1% of their original size.
Moreover, dNNC reduces the overall energy consumption required
for communication in federated learning systems by up to 94%.

Index Terms—Neural network coding, federated learning,
transfer learning, split learning, efficient NN communication,
ISO/IEC MPEG standards, federated batchnorm folding.

I. INTRODUCTION

N EURAL network compression has received increasing at-
tention in recent years and led to the specification of the
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international NNC standard ISO/IEC 15938-17 [1] in 2022 for
compressing full or “base” neural networks (NNs). This devel-
opment has been driven by a number of factors: First, more
and more applications in a variety of fields [2], [3], [4], [5],
[6] utilize machine learning and artificial intelligence. Second,
the underlying NNs became more and more complex with in-
creasing structure complexity, number of layers and number of
parameters per layer, such that current NNs have billions of pa-
rameters. And third, new distributed use cases have emerged,
where many devices share the training of NNs. One application
of this use case is federated learning (FL) [7], where a common
NN is trained on multiple client devices, each using a training
data subset. The training is orchestrated by a server, which ag-
gregates the trained NN variants (e.g., by averaging). Another
variant is federated distillation [8], where only soft labels, i.e.,
NN output data is exchanged. Here, clients may even train dif-
ferent NN architectures, as long as the last layer structure is
identical. Another application is split learning (SL) [9], where
NNs are split among devices, e.g., one device trains the first k
layers, while another device trains the remaining layers.

Federated learning systems are often used in cross-device or
cross-silo configurations with different communication charac-
teristics: Cross-silo systems mostly involve a number of active,
stable devices. For FL, this results in synchronous communica-
tion, i.e., all clients train and provide updates at all communi-
cation rounds. In contrast, cross-device systems involve much
more versatile, distributed and often mobile devices. This re-
sults in asynchronous FL communication with client devices
being inactive for a number of rounds.

Despite the benefits of distributed learning (e.g., basic
data protection due to keeping training data on local client
devices), it also encounters some challenges. Since NN data
is frequently exchanged between devices, the learning process
is constrained by the limited bandwidth of the communication
channel. Consequently, adequate compression to reduce the
large amount of communicated data might be required. Client
drift is also a major issue, as heterogeneities in training data,
model architecture, or the devices’ computational resources
can vary significantly, resulting in an overall difficult training
process. Robustness against adversarial devices and privacy
preservation are additional challenges in distributed learning
and subject of current research [10].

This paper focuses primarily on the communications cost
challenge and also aims at potential energy savings due to
compressed communication. In general, research on
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communication-efficient FL may be classified into two main
categories: Reducing the total number of bits transferred
per communication round and reducing the total number of
communication rounds, thus promoting local learning more.
Both can cause significant performance degradation and slow
down training. In summary, current developments of dis-
tributed NN systems require high data compression without
degradation of inference quality or convergence speed, flexible
communication, and also a reasonable benchmarking.

The paper is organized as follows: Section II presents related
work and our contributions. Section III describes communica-
tion in federated learning systems and the handling of sent and
received (difference) NNs. Section IV describes the proposed
difference NN coding (dNNC) method with new coding tools.
In Section V, experimental results and applications are discussed
and finally, the paper is concluded in Section VI.

II. RELATED WORKS AND OUR CONTRIBUTION

Distributed learning methods like those in [11], [12] preceded
Federated Learning, primarily in synchronized data center se-
tups with hardwired machines. Asynchronous strategies were
explored in [13], while [14] extended this to deeper NNs, shar-
ing parameter subsets to reduce communication costs. The term
of “Federated Learning” and its characteristics (i.e., training on
mobile devices with unbalanced, non-IID data and wireless com-
munication), was first introduced in [7]. Its baseline algorithm,
FedSGD, involves each client taking a gradient descent step
and communicating gradients to the server, which computes a
weighted average of client gradients.

The communication overhead can be reduced through two
basic concepts: 1) by reducing the communication frequency of
weight updates (communication delay), i.e., multiple local it-
erations of weight updates are performed before transmission;
or 2) by compressing the data to be transmitted, which typi-
cally involves one or several of the following approaches: (i)
reduction of parameters, e.g., deleting elements (pruning), set-
ting elements to zero (sparsification), or decomposing tensors,
(ii) reducing the precision (i.e., quantization), or (iii) performing
lossless compression such as entropy coding.

Communication delay: Federated Averaging (FedAvg) [7] is
the most fundamental algorithm for reducing the communication
frequency, in which the NN’s gradients are not communicated
after each forward-backward pass. FedAvg rather communicates
updated weights as a generalized form of gradients after clients
have performed multiple gradient descent iterations, and finally
averages the weights on the server side. In [15], the number of
local training iterations is adaptively adjusted so that the con-
vergence of the learning system is optimized with respect to the
wall-clock time. A communication-efficient delay method was
proposed in [16], where parameters of the deeper located layers
were communicated less frequently than those of the shallow
layers.

Quantization: In order to reduce communication cost, Tern-
Grad [17] quantizes the elements of the gradient vectors to three
possible values ∈ {−1, 0, 1}, reducing the upstream communi-
cation by 32/ log2(3) = 20.18×. However, at the cost of severe

accuracy degradation in more complex tasks. The signSGD [18]
method uses only the sign of the gradient elements as a biased ap-
proximation, resulting in 32× compression. QSGD [19] reduces
the communication cost of data-parallel stochastic gradient de-
scent (SGD) in a multi-GPU environment. The authors propose
a stochastic quantization scheme lowering the gradient’s preci-
sion from 32-bit to 8-bit and subsequently apply Elias coding to
the quantized gradients while fully preserving the accuracy of
the trained networks. Although stochastic quantization is a con-
venient strategy, Suresh et al. [20] argue that the resulting error is
sensitive to the gradient vector’s distribution. To address this is-
sue, a number of works proposes to randomly rotate the gradient
vectors prior to quantization [20], [21], [22]. The rotated vector

x ∈ Rd then tends to a normal distribution N (0,
||x||22
d ). Rota-

tions (and inverse rotations on the server side) can be efficiently
implemented by Walsh-Hadamard matrix products.

Sparsification methods select only a subset of the original
neural update elements and set the remaining elements to zero,
resulting in a sparse vector. Ström [23] presents an approach
where only gradients with a magnitude greater than a certain
threshold are communicated to the server. Since an appropri-
ate threshold is hard to determine and model-dependent, top-k
sparsification methods define a sparsity rate k, i.e., with k = 0.1
only 10% of the largest values are communicated [24]. On the
contrary, Stich et al. [25] randomly select the communicated
gradient elements (rand-k). Compared to quantization, sparsi-
fication techniques reduce the communication overload more
aggressively. For instance, if proper compression error accumu-
lation is used, the upstream communication can be sparsified to
more than 99.9% in a number of use cases [26], [27]. However,
considering also downstream compression using sparsification
techniques is not as trivial: data heterogeneity on the client de-
vices results in different sparsity patterns which can result in
a dense matrix when averaged with other client updates on the
server side.

Hybrid methods: Sparse Ternary Compression (STC) [27]
applies sparsification, ternarization and Golomb encoding to
weight updates. Due to extreme sparsification rates (>99.9%),
compression errors are accumulated throughout the training
process. Recently, Structured Sparse Ternary Compression
(SSTC) [28] has been proposed as an extension of STC. To our
knowledge, this is the only work that studies structured sparsity
(here, in the granularity of convolutional filters) in the context of
FL. However, the results are not very conclusive, since they are
based only on experiments with tiny three-layer convolutional
NNs (CNNs) and a more trivial MNIST [29] task. FedZip [30]
is another approach which uses a pipeline of non-uniform quan-
tization with k-means clustering, top-k sparsification and Huff-
man encoding.

Minors, namely Low-rank decomposition [31] and Federated
Distillation [8], [32], [33], are described in the Supplemental
Material B.

Surveyed state-of-the-art: There are a few very recent sur-
vey papers on communication efficiency in FL [34], [35], [36],
providing an overview on communication challenges and state-
of-the-art techniques for communication-efficient FL systems.
The meta-studies show that there are several shortcomings in
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the methodology of generating and presenting research results
in the field. Many works use unrealistic learning scenarios,
e.g., they do not provide benchmarks on tasks beyond the diffi-
culty of MNIST [29] or, at best, CIFAR-10 [37], both of which
are comparatively easy tasks to solve and less expressive in
making a statement about the performance of a compression
method. Alternatively, the use of non-standard datasets or a lim-
ited number of (possibly user-defined) models restricts compa-
rability. Moreover, the computational cost of (de)compression
is often ignored, even though it can be larger than the sav-
ings due to reduced communication [36]. The surveys also
show that most of the methods are applied to gradient data
rather than the weights of the models, although communication-
efficient paradigms such as FedAvg rely on updates to the
weights. Furthermore, in a majority of the approaches only
the upstream communication is compressed, i.e., the commu-
nication from server to clients remains uncompressed, leav-
ing a large potential for further savings in data communication
unexploited.

Our contributions: Motivated by the previously mentioned
shortcomings, we evaluate dNNC under a wide range of real-
world models, datasets, and system settings including feder-
ated and split learning, e.g., as recommended by FedML [38],
an open research library and benchmark for fair performance
comparisons. Our training scenarios explore modern and stan-
dard NN architectures such as Vision Transformers [39], Mo-
bileNetV2 [40] or EfficientNets [41], which are ignored by
the vast majority of works that continue to use VGGs [42]
from 2014. The applied coding tools yielded encouraging re-
sults for compressing multiple data types, coming from dif-
ferent underlying distributions and structures. Specifically, we
explore compressing weight updates but also gradients, and
feature maps, which we evaluate in a split learning (SL)
scenario. To our knowledge, no other published work has
tackled the compression of both up- and downstream in SL
communication. Other investigated learning scenarios include
partial client participation, training from scratch and trans-
fer learning, including large-scale image classification tasks
such as ImageNet [43] or Pascal VOC [44]. Additionally, we
compress both, up- and downstream communication in all
experiments.

Unlike the related works, our preprocessing tools are tailored
to the entropy coder, which exploits the properties of the prepro-
cessed weight updates and effectively reduces the bitstream size.
In summary, we propose a novel coding method for NN differ-
ence or update data, dNNC, which consists of highly optimized
coding tools, including:
� A parameter update tree (PUT) mechanism, i.e., a high-

level syntax that references a current NN coding unit to
any previously coded unit

� New and updated data reduction tools, optimized to dif-
ference NN statistics, as well as (structured) sparsification
methods that are leveraged in the coding stage, e.g., sig-
naling skipped rows rather than encoding them

� A BatchNorm folding method for enhanced compression of
BatchNorm updates in FL settings (FedBNF) that balances
local and global statistics, preventing client drift

� A novel temporal context adaptation (TCA), specifically
for improved context-adaptive binary arithmetic coding in
incremental update scenarios.

Most of the dNNC tools have been included into the upcom-
ing 2nd edition of the international NNC standard, which targets
efficient compression of NN updates, while communication-
specific tools like FedBNF ensure proper NNC operation in a
broader range of FL applications. Finally, we investigate the
energy consumption required for encoding and decoding and
compare it with energy savings resulting from much shorter
up- and download times of the compressed neural update
data.

III. CODING AND COMMUNICATION ARCHITECTURE

As presented in Section I, distributed NN systems with fre-
quent update requirements have developed and are widely used.
One major type of systems are federated learning or training
scenarios, where a server distributes an initial “base” NN to a
number of clients. These clients further train the NN on local
data, resulting in updated local versions of the NN. Then, the
local NN versions are sent back to the server, where all ver-
sions are aggregated (e.g., through parameter-wise averaging)
into a new server-side NN version. Finally, this new version is
again distributed to all clients and the training process is further
iterated.

A. System Overview

An efficient way for reducing traffic in distributed NN sys-
tems is shown in Fig. 1, where difference NNs are generated
and coded using the proposed dNNC method. First, an initial
or base NN may either be coded and sent (as shown in Fig. 1,
top, “Round 1”), or already be available at all clients. In the next
step, difference neural networks (dNNs) are generated after the
first local training round at each client. For this, the updated NN
is subtracted from its previous version parameter-wise. dNNs
can either be entire difference NNs or only contain a difference
subset, such as last-layer updates, which is a common use case
for transfer learning. Next, the dNNs are encoded with the pro-
posed dNNC technology into a bitstream to be transmitted to the
server. Then, the received client bitstreams are decoded, dNNs
are reconstructed and aggregated to a new server-side dNN (cp.
dNN2 in Fig. 1). Subsequently, in communication round 2 (cp.
Fig. 1), the server-side dNN is encoded and sent to the clients,
where it is decoded and reconstructed towards full NNs, using
our referencing mechanism, as explained in the next sub-section.

B. Parameter Update Tree (PUT)

The PUT is a novel mechanism that builds atop the recently
published NNC standard ISO/IEC 15938-17 edition 1 [1]. For
broad applicability in various distributed NN systems, the PUT
provides a referencing mechanism that relates dNNs to previ-
ously sent versions to enable proper reconstruction of NNs on
the server or clients. For this, the PUT mechanism utilizes the
high-level syntax (HLS) structure of the NNC standard, where
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Fig. 1. Distributed dNNC setup and communication example, using Parameter
Update Tree: Each coded and transmitted dNN is identified by the value pair
(parent_device_id; put_node_depth). Left: active client; right: client failure.

the coded bitstream consists of different data units; in particu-
lar a compressed tensor resides within the payload of an NNR1

compressed data unit (NNR_NDU) [45]. While the normative
bitstream only contains the reference data, server and client de-
vices can maintain their (non-normative) parameter update trees
to allow for flexible communication and to address the different
features and use cases in distributed NN systems:
� Federated learning, distillation, split and transfer learning,

and neural network updates,
� complete or partial NN update, i.e., any layer or tensor-

based update, such as last-layer updates, and
� synchronous and asynchronous NN communication.
The PUT mechanism represents incremental updates as a vir-

tual tree structure. Given a particular parameter and its PUT, the
parameter’s base model values are associated to the root node
of the PUT. An incremental update of a parameter corresponds
to a child node attached to the root node. Any node of the PUT
may further be updated by attaching child nodes in the same
manner. For the coded transmission, a compressed dNN bit-
stream is associated with specific PUT syntax elements, namely
parameter_id, parent_device_id and put_node_depth. The pa-
rameter_id identifies the respective parameter tensor within an
NN, to which the dNN refers to. The parent_device_id specifies
the server or client devices, and the put_node_depth refers to its
distance to the root node in its virtual tree structure.

An example with two clients and a server is given in Fig. 1.
Here, the server’s parent_device_id is assumed to be 0, while
the two clients are associated with parent_device_id equal to 5
and 8, respectively. For each communicated data unit or dNN,
the value pair (parent_device_id; put_node_depth) is given. The
PUT mechanism is shown for three training rounds for an ac-
tive client on the left side and a partially inactive client on the
right side. Whenever a server or client receives a dNN, it can be

1NNR is an obsolete abbreviation for the NNC standard edition 1, but is still
used as a term in numerous syntax elements and stands for Neural Network
Representation.

uniquely associated to its virtual PUT. In the example in Fig. 1, it
is assumed that the root node is NN1 with value pair (0;0). Con-
sider round 2 at the left client i: When client i receives dNN2

with (0;1), it can reconstruct NN2, as the PUT parameter pair
(0;1) indicates that a dNN is received from the server with a
PUT node depth of 1, i.e., dNN2 has to be added to NN1. In
turn, the server receives in round 1 two dNNs with value pairs
(5;1) and (8;1), respectively. Therefore, the server identifies the
parent_device_ids 5 and 8 as clients i and k and averages them,
as they all have put_node_depth= 1 and thus belong to the same
communication round.

On the right side in Fig. 1, a partially inactive client is as-
sumed, i.e., after one training round the client becomes un-
available. The server averages the received updates from ac-
tive clients, i.e., client i only in this example. In the following
round 3, client k becomes active again, e.g., through notify-
ing the server. As the client is missing data from the previous
round, a full NN3 is sent to client k. This can be achieved by the
server through its virtual PUT, i.e., by identifying all required
dNNs and add them to the PUT root node (cp. dotted line in
Fig. 1). Client k then receives NN3 and can resume operation
by further train and create its new differential update dNN3,k.
Here, the mps_parent_signalling_enabled_flag syntax element,
as specified in the NNC standard, is used to communicate that
the bitstream represents a full NN and should not be added but
replace.

Note, that the PUT mechanism can be applied to different
synchronization mechanisms, e.g., also frequent full NNs might
be sent to all clients to allow for synchronization points.

IV. NEURAL NETWORK CODING APPROACH

Although our method focuses primarily on differential NN
coding, a complete distributed learning system also requires a
coding method for base or full NNs. We demonstrated this by
introducing the PUT in the previous section, where full NNs
are coded to provide the initial model to clients, to allow inde-
pendent synchronization points at regular intervals, or for newly
joining or rejoining clients. For full NN coding, the first edi-
tion of the NNC standard can be utilized (cp. Fig. 1, legend at
the bottom). NNC edition 1 was released in August 2022 [1]. It
established a toolkit of compression techniques for full neural
networks and specifies the decoding process and the compressed
representations of these networks. A complete overview of the
different coding pipelines, features and tools of NNC edition 1
can be found in [45].

For coding differential neural networks (dNNs), our proposed
dNNC coding method with encoder and decoder structure is
shown in Fig. 2. The encoding process starts with parameter
reduction methods, applied to the dNNs. These include unstruc-
tured and structured sparsification and pruning, as described in
Section IV-A. When coding dNNs—in contrast to coding NNs
— pruning and sparsification methods provide significant gains
due to the different statistics of NNs and dNNs: Full or base NNs
contain pre-trained parameters where it has been shown that the
highest possible coding performance can be achieved by apply-
ing uniform quantization followed by DeepCABAC [46], the
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Fig. 2. Overview of the dNNC architecture. The encoder comprises three
stages: 1) parameter reduction using sparsification and BatchNorm tools
(FedBNF); 2) quantization and scaling via specific uniform quantization and
local filter scaling (FS); and 3), entropy coding using row skipping (RS) and
temporal tools like Temporal Context Adaptation (TCA) and History Depen-
dent Significance Probability (HDSP), extensions of DeepCABAC. The decoder
reverses these stages: 1) entropy decoding with DeepCABAC and tensor row
filling; 2) value reconstruction; and 3) parameter expansion through BatchNorm
un-folding and structure reconstruction.

entropy coder of NNC. In contrast, dNNs contain parameter dif-
ferences and thus values with much smaller magnitudes. As also
observed by [47], the distribution of dNNs is more centralized
compared to NNs. In particular, many values can be set to 0, not
only through quantization, but also through parameter reduction
methods in order to increase coding gains.

Next in the encoding pipeline is a special BatchNorm fold-
ing method, FedBNF, (see Section IV-B). Then, quantization
is applied, using specific adaptive quantization parameter (qp)
optimization. Finally, the entropy coding stage applies tensor
row skipping (RS) and temporal context adaptation (TCA) (de-
scribed in Sections IV-C and IV-F, respectively) for optimized
arithmetic coding through DeepCABAC. At the decoder (Fig. 2,
bottom), the processing is inverted, starting with DeepCABAC
decoding and tensor row filling. Then, the decoded weight up-
dates are reconstructed and rescaled in accordance with FedBNF.

A. Sparsification and Pruning

In the following, we define the incremental NN weight up-
dates as ΔW

(t)
ρ = W

(t)
ρ −W

(t−1)
ρ , where Wρ represents all

model parameters, indexed by ρ, that are to be transmitted, and
t denotes the index of the current communication round. Our
proposed sparsification and pruning pipeline includes the fol-
lowing steps: 1) Parameter-wise statistics-adaptive sparsifica-
tion (unstructured); 2) Filter-wise / neuron-wise sparsification
(structured); 3) Pruning of sparsified structures (e.g., channel,
neuron or whole layers updates) by row skipping (IV-C).

1) Unstructured Parameter-Wise Sparsification: In a first
step, all absolute weight update values |ΔW (t)| below the
threshold θqp are set to zero, where

θqp =
4 + (qp mod 4)

2
· 2� qp

4 �−2. (1)

Here, the quantization parameter qp is an integer representation
used in the NNC standard to specify equidistant quantization

levels. Since quantization introduces a certain sparsity — sub-
ject to the used qp value — by assigning all absolute values
|ΔW (t)| < θqp to the quantization level zero, θqp ensures that
the sparsification method will contribute more to parameter spar-
sity than the follow-up quantization process.

Next, weight updatesΔW
(t)
ρ are sparsified further, depending

on a threshold which is based on the mean values μ and standard
deviations σ per parameter ρ:

∀ρ θρ = max(|μρ − δ · σρ|, |μρ + δ · σρ|), s.t. θρ > θqp.
(2)

δ is a hyperparameter to control the intensity of unstructured
sparsity. δ can be tuned iteratively until the model’s performance
falls below a tolerable level, e.g., -0.25% Top-1 accuracy. Al-
ternatively, δ can be set such that it introduces a specific target
sparsity in ΔW

(t)
ρ .

2) Structured Filter-Wise Sparsification: In contrast to un-
structured sparsification, structured sparsification aims at spar-
sifying whole regular groups of neighboring weight update
elements, rather than setting individual elements to zero. In
filter-wise sparsification, this group of elements is defined as
all elements that contribute to one particular output feature
of an NN layer. Consider a convolutional layer of dimension
[Co, Cin,K,K], where Co indicates the number of output chan-
nels (i.e., filters), Cin the number of input channels, and K the
kernel size. One output feature is created by a filter which in
turn is constituted by CinK

2 filter elements. Thus, in filter-wise
sparsification, we set εCoCinK

2 update elements of a convolu-
tional layer indexed by ρ to zero, with ε being the sparsity rate.
The criterium for a filter update ΔF to be sparsified is based on
its absolute arithmetic mean value:

∀ρ,m|ΔF̄ (t)
ρ,m|= |ΔW̄ (t)

ρ [m]| = 1

CinK2

Cin−1,K,K∑
i=(0,0,0)

|ΔW (t)
ρ [i]|,

m ∈ [0, 1, . . ., Co − 1]. (3)

After sorting the mean values of all Co filter updates of a layer
ρ in ascending order, the top εCo filters are set to zero. Similar
to unstructured sparsification, the structured sparsification can
be fine-tuned by tuning ε or be fixed to a specific rate.

By default, we sparsify all filter updates that have absolute
mean values below 0.9

Co

∑Co−1
m=0 |ΔF̄ (t)

ρ,m|, which is compatible
with many neural architectures. For fully connected layers, Co

neurons directly map Cin input features to Co output features,
thus sparsifying εCo neurons sets εCoCin update elements to
zero. One-dimensional parameter types, such as BatchNorm or
bias parameters are excluded from sparsification.

B. FedBNF: Federated BatchNorm Folding

Batch Normalization (BN) [48] is a technique to normalize
the input activations of an NN layer per data batch for more
stable training. Especially in modern and lightweight architec-
tures such as the MobileNet family, BatchNorm parameters are
ubiquitous. To recap, a BatchNorm module consists of a set of
four vector parameters of length Co: running mean E, running
variance Var, and two learnable scale- and shift- vectors γ and
β. The output y of an input x of a BatchNorm layer is defined
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as

y =
x− E(x)√
Var(x) + ε

· γ + β (4)

with ε being a constant factor, e.g., 1e− 5, for numerical sta-
bility. The role of BN in federated learning has hardly been ex-
plored. To mitigate feature shifts in non-IID data, FedBN [49]
proposes to not synchronize local BN parameters with the global
server model. SiloBN [50] synchronizes only the scale and shift
parameters. Other work proposes to even replace BN with Group
Normalization [51] in FL applications.

BatchNorm folding (BNF) [52] is a technique which defers
BatchNorm parameters by merging them with the preceding NN
weight layer. In the context of incremental update compression,
BNF is not fully applicable because the original set of parameters
is not reconstructable after folding and hence cannot be re-used
to continue their learning process, e.g., at a certain client after
receiving an aggregated and folded update of the BatchNorm
modules by the server.

To implement BNF in a federated scenario (FedBNF), we
propose to, first, BN-fold a local copy of the clients’ model
parameters by updating all γ and β parameters with their folded
versions according to

∗
γ =

γ√
Var(x) + ε

,
∗
β = β − ∗

γ · E(x). (5)

The resulting representation of the folded network
∗
W (t−1) is

stored locally. Next, the unfolded model W (t−1) is trained
to generate W (t), then BNF is applied using (5), i.e.,
∗
W (t) = BNF(W (t)), and finally Δ

∗
W (t) =

∗
W (t) −

∗
W (t−1) is

computed and transmitted to the server, which per se saves 50%
of the BN partitions within the bitstream, since Var and E are

skipped at encoding. Note that
∗
W (t) with Var = 1 and E = 0

generates identical inference results as W (t).
In the encoding stage, we use a dedicated data unit pay-

load type, NNR_PT_BLOCK, for compressed data units
(NNR_NDUs), which encodes the folded BN parameters to-
gether with their associated weight layers in one block, shar-
ing one unit header. The header typically contains meta-
data such as layer names, device IDs, dimensions, and any-
thing else required for reconstruction (the bitstream must
be self-contained). Since, for instance, the dimension of
the BN parameters can be derived from the dimensions
of the associated weight parameters, the shared header can
be represented more compactly compared to using separate
headers.

On the server S, all received client updates Δ
∗
W

(t)
c with

c = i ∈ N are decoded, aggregated by averaging and added to

its internal model state. Subsequently, the server update Δ
∗
W

(t)
S ,

including the averaged statistics updates Δ
∗
γS

(t) and Δ
∗
βS

(t),
is broadcasted to the client instances, where client BN modules
are updated as follows:

γ(t+1)
c = (1− η) · γ(t)

c + η ·
√

Var(t)c + ε · ∗
γS

(t) (6)

β(t+1)
c = (1− η) · β(t)

c + η · (E(t)
c · ∗

γS
(t) +

∗
βS

(t)) (7)

with
∗
γS

(t) =
∗
γc

(t−1) +Δ
∗
γS

(t)and
∗
βS

(t) =
∗
βc

(t−1) +Δ
∗
βS

(t).
The momentum hyperparameter η ensures that local BN

statistics adapted to client data domains are maintained, while
preventing client drift by adding some level of aggregated global
knowledge.

C. Tensor Row Skipping (RS)

Enforced by the quantization and the sparsification methods
presented in Section IV-A, a large amount of update parameter
values is set to zero. The resulting statistics are utilized in the
entropy coding stage by skipping (i.e., pruning) matrix rows
that are entirely zero. If a 2D matrix is arranged, such that each
row corresponds to an output channel, i.e., a weight update of a
specific filter ΔF (t)

ρ of an NN layer ρ, then all-zero rows can be
omitted. For this, we developed a tensor row skip method, which
introduces a specific skip_row_flag to be encoded for each row of
the matrix. This flag determines, whether the values in a row are
encoded (skip_row_flag = 0) or skipped (skip_row_flag = 1).
Consequently, whenever the decoder receives a skip_row_flag
equal to 1, no further binary symbols (bins) are decoded for the
corresponding row, and all contained values are inferred to be
zero.

D. Quantization Optimization (IQO)

Iterative quantization parameter (qp) optimization (IQO) is
a straightforward search for an improved performance-bitrate
trade-off. Per iteration, the qp value increases by qp_step. The
qp value is an integer representation used in the NNC standard
to specify a float step size s which is multiplied by each decoded
integer value. s is derived from the integer quantization values
qp and qp_density as follows:

mul = 2qp_density + (qp mod 2qp_density) (8)

s = mul · 2� qp

2qp_density �−qp_density. (9)

We use qp_density= 2 such that s = 2 · θqp, see (1).
After increasing the qp value, the compressedΔW (t) is added

to the prior base model W (t−1) to build an updated model Ŵ (t).
Then, the performance degradation of the updated model Ŵ (t),
potentially caused by quantization, is evaluated. If the obtained
performance per remains above a reference performance perref,
the qp value iteratively increases. As perref, we use the resulting
test performance when ΔW (t) is quantized using the initial qp
value. Iterations stop if per < perref for three consecutive iter-
ations. Finally, the best performing qp among all iterations is
used to continue training.

E. Filter Scaling (FS)

Local filter scaling equips convolutional (and fully-
connected) layers with additional trainable scaling factors at
each output element. The trained values of the scaling factors
are then multiplied with the respective outputs of equipped con-
volutional filters and neurons. Fig. 3 illustrates the technology.
As comprehensively studied in [53], our proposed filter scaling
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Fig. 3. Filter Scaling method: 1) A forward-backward pass with fixed scal-
ing factors is performed, updating the model’s weights. 2) The difference NN
(dNN) with respect to the previous model state is calculated, compressed, and
added to the previous model state. 3) The loss of the model — updated with the
compressed dNN — is computed and backpropagated to update only the scaling
factors. Step 3) may be repeated for n iterations to compensate for client domain
shifts and the compression error in the dNN.

mechanism accelerates and regulates the entire federated learn-
ing process by enhancing some features in the filter space while
diminishing others. Additionally, it motivates extra sparsity in
the updates and thus achieves higher compression.

F. Arithmetic Coding Stage

As arithmetic coding core, DeepCABAC (context adaptive
binary arithmetic coding) [46] is utilized. This method has been
incorporated in NNC edition 1 [45], and is thus also used for
base NN coding. DeepCABAC consist of three stages, which
are described in more detail in [45], [46]:

1) Binarization: Each non-binary symbol or data element to
be encoded (e.g., a quantized weight) is decomposed into
a series of binary decisions (bins) in order to uniquely
identify each symbol.

2) Context modeling: A probability model (context model) is
assigned to each bin and associates a probability estimate
with the bin.

3) Binary arithmetic coding: An arithmetic coding engine
encodes each bin according to its estimated probability.

For binarization of a dNN, a parameter element to be transmit-
ted is encoded in the following way: First, a bin called sig_flag
is encoded which determines whether the element is equal to
zero or not. If the sig_flag is equal to 1, a further bin sign_flag
is encoded which denotes the sign of the element. Then a series
of (usually ten) abs_level_greater_x flags signals whether the
absolute value is greater than x. If this leaves a remainder, it is
encoded using an exponential Golomb code.

Each context model employs a backward-adaptive state-based
probability estimator, which maintains an internal state repre-
senting the probability estimate. After processing a bin, the state
is updated based on the processed value: if a 1 is processed, the
probability estimate for bin = 1 increases, while processing a 0
decreases the probability. The degree of this adjustment is con-
trolled by adaptation rate parameters. DeepCABAC employs
sophisticated context modeling, allowing it to adapt to a wide
variety of input distributions. For encoding of the incremental
parameter updates, dNNC adapts the context modeling stage of
DeepCABAC in order to account for the temporal dependency
of successive dNNs.

1) Temporal Context Adaptation (TCA): A proper choice of
the context model can improve the coding efficiency if bins
with similar statistics are assigned to the same context model. In
dNNC, the temporal dependency of successive incremental up-
dates can be exploited in the context modeling stage. For this, we
developed the following context modeling scheme for the three
CABAC elements: sig_flag, sign_flag and abs_level_greater_x
flags. The context selection of a particular value qi for each of
the three elements is based on the corresponding or co-located
value qi,co in the same layer of the previous incremental update.
Here, one of two individual context models is assigned for each
element, as follows:
� For sig_flag: If |qi,co| > 1, context model Csig,0 is chosen,

otherwise Csig,1.
� For sign_flag: If qi,co < 0, context model Csign,0 is chosen,

otherwise Csign,1.
� For each abs_level_greater_x flag: If |qi,co| ≥ x, context

model Cagx,0 is chosen, otherwise Cagx,1.
Note that, if the previous incremental update is not available,

e.g., if the current incremental update is the first to be transmit-
ted or qi,co is equal to zero, the standard context modeling as
described in [46] is applied.

2) History Dependent Significance Probability (HDSP): Pa-
rameter updates in successively sent dNNs show temporal cor-
relations. For a particular parameter element, the probability of
a significant (non-zero) update for this element depends on its
updates from previous communication rounds. For this, HDSP
adds a new context model for encoding the sig_flag of the dNN
update elements. Compared to TCA, the selection is based on
whether any of the updates of the parameter element were sig-
nificant in previous communication rounds [54].

V. EXPERIMENTAL RESULTS

This section presents our experimental results: First, Sec-
tion V-A describes the experimental setup. Then, Section V-B
presents in-depth dNNC coding results in different tool com-
binations. In particular, the results cover Federated Averag-
ing (FedAvg) [7] and SplitFed [55], comparing training from
scratch vs. transfer learning models, conducting ablation stud-
ies on sparsification and comparing vision transformers (ViTs)
vs. CNNs in terms of communication efficiency. Our analysis
includes a comparison of coding results with NNC edition 1
and other state-of-the-art approaches. Next, we take a more
in-depth look at partial client participation, i.e., a more real-
istic setting where only a fraction of clients sends updates to the
server per round. Afterwards, we show some advantages and
limitations of data-driven optimization which aims to further
reduce the communication overhead of the system by utiliz-
ing validation data. Finally, in Section V-B3, results on energy
and runtime measurements are presented, alongside considera-
tions justifying the additional computational effort introduced
by our proposed dNNC pipeline, as well as exploring potential
applications.

A. Experimental Setup, Test Data and Assessment

We perform experiments using CIFAR-10 and CIFAR-
100 [37], ImageNet-200 (for which we randomly sampled 200
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Fig. 4. Coding results with successively enabling data-free compression tools in the following order: quantization (qp) only → + sparsification + row skipping
(RS) → + FedBNF → + TCA → + HDSP. In each experiment, 16 clients train a global model via the FedAvg paradigm. The transparent curves denote the variance
of the local client performances per communication round and the line plots with markers, those of the global model.

classes from the ImageNet-1k [43] with 500 samples per class)
and Pascal VOC [44] datasets. The batch size is 32 in all FL
settings and 64 in the SL settings. An Adam optimizer [56] with
an initial learning rate of 1e− 3 is used for training from scratch
and 1e− 5 for transfer learning. Unless otherwise specified, un-
structured sparsity was fixed to 80%. Structured sparsity was
chosen such that all filter updates below the average filter mean
|ΔF̄ (t)

ρ | were sparsified (and row-skipped). For FedBNF, we
used a momentum η in a range [0.2, 0.4]. We use error accu-
mulation in all FL use cases. For a more in depth description
of the experimental environment, models, hyperparameters, the
datasets employed, and data preprocessing, we refer to the Sup-
plemental Material C.

B. Data-Efficient Distributed Learning Communication

1) Coding Results of Federated Averaging (Basic Setting):
First, we discuss the coding results of the whole training process
shown in Fig. 4. Here, each marker in the graphs corresponds to
one communication round, indicating the Top-1 accuracy of the
global server model after aggregating the clients’ updates and
the cumulative sum of communicated data. Here, the upper-left-
most curve in the charts yields the most communication-efficient
FL with minimum cumulative data rate at non-degrading system
accuracy.

The transparent curves display the variance of the local client
performances on the test data set. Each color represents a par-
ticular compression pipeline. As a default setting (blue), we use
uniform quantization with a step size of s = 2 · θqp according
to (1) (e.g., qp = −22 corresponds to ≈ 0.0234) and arithmetic
coding as described in Section IV-F.

By successively switching on tools, we demonstrate the indi-
vidual impact of each tool on the overall coding performance.

In a first step, we apply 80% unstructured sparsity, our default
structured sparsification and the row skipping (RS) mechanism
to the weight updates (orange). As a second tool, we turn on our
proposed federated BatchNorm folding (FedBNF) along with its
corresponding coding block structure (green). This is followed
third by TCA (Temporal Context Adaptation) (red) and fourth by
HDSP (History Dependent Significance Probability) (purple).

Different tool settings show different effects: For instance,
sparsifying 80% (70% in the MobileNetV2 use case) of the up-
date elements can either reduce the overall number of bytes
transmitted by more than 20%, as in the CIFAR-100 use case
with ResNet-56, or might even increase the overall number of
bytes, as in the MobileNetV2 use case with federated learn-
ing of ImageNet-200. In the latter case, the neural architecture
appears to be more sensitive to structured sparsification meth-
ods of weight updates, requiring more communication rounds
to achieve the baseline accuracy of the uncompressed scenario
(shown as a dotted line in the diagrams). This could be due
to the extensive use of depth- and group-wise convolutions in
MobileNets, where information exchange between channels is
limited, so that updates of entirely sparse channels lead to slower
convergence of the system. On average, the sparsification meth-
ods with a fixed rate of 0.8 reduce the communication traffic
by 11.2%. Our FedBNF method achieves substantial reduction
in communicated data in all use cases: On average, 17.7% can
be saved. In the learning-from-scratch use cases, coding gains
by TCA and HDSP are comparably small, however their appli-
cation is lossless. On average, TCA reduces the data traffic by
3.4% and HDSP by 0.02%.

Table I shows the number of bytes communicated and the
communication rounds required to achieve at least 99% of the
target performance φ, which is the peak performance of the
uncompressed scenario. The “uncompressed communication”
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TABLE I
OVERALL CODING RESULTS FOR 100 COMMUNICATION ROUNDS (50 IN TRANSFER LEARNED SCENARIOS)

TABLE II
TRADE-OFF BETWEEN STRUCTURED AND UNSTRUCTURED SPARSIFICATION

column shows the number of communication rounds (#rounds)
at whichφwas achieved (within the overall budget of rounds that
is 100 for training from scratch and 50 in the transfer learning
setting). The

∑
data-column reports the sum of communicated

neural update data within #rounds. In the “compressed commu-
nication” column, Δacc. indicates the loss in accuracy which is
constrained to be less than 0.01φ. Additionally, Δ#rounds in-
dicates the number of communication rounds differing from
the uncompressed scenario. We chose the quantization parame-
ter qp such that the compressed scenarios converge within 120
rounds and 60 rounds for the “from scratch” and “transfer learn-
ing” settings, respectively. The reported compression ratio (with
CR= 100× compressed data

uncompressed data %) includes high-level syntax (HLS),
e.g., tensor name strings, identification numbers, coded data unit
structures, etc., which can account for up to 9% of the transmit-
ted data (e.g., in the CIFAR use cases). This is mostly caused
by the tensor name strings, which could be replaced by inte-
ger identifiers if server and clients specified a lookup table for
reconstruction.

2) Ablation Studies on dNN Sparsification: We examined the
effects and coding contribution of unstructured sparsification,
structured sparsification, and tensor row skipping individually
in an ablation study (as only their combined effect is shown in
Fig. 4’s coding results). Accordingly, Fig. 5 shows example spar-
sification results for ResNet-56 on CIFAR-100 and ResNet-20
on CIFAR-10. The curves labeled “struct_mean” represent our
default structured sparsification, which at communication round
t sets all filter updates ΔFρ of a layer ρ that have absolute mean

values below 0.9
Co

∑Co−1
m=0 |ΔF̄ (t)

ρ,m| to zero (cp. IV-A2). Curves
labeled “RS_struct_mean” show the same configuration with
row skipping (RS) enabled, resulting in a reduction of trans-
mitted data of up to 7.8% compared to the sparsification-free
setting (cp. Table II). For the ResNet-56 use case, enabling row
skipping reduces the amount of communicated data by 1.8%.
In comparison, curves labeled “struct_sparsity_0.80” show the
results when 80% of each layer’s filter updates are sparsified,

Fig. 5. Ablation study on the effects of unstructured and structured sparsifi-
cation and tensor row skipping. Every 10th datapoint plotted (for visibility).

resulting in slower convergence (in fact, the train runs do not
converge within the given budget of communication rounds).
In contrast, setting 80% of the update elements to zero using
our unstructured sparsification method does not result in slowed
convergence (cp. curves labeled “unstruct_sparsity_0.80”). Fi-
nally, the synergistic combination of structured sparsification,
row skipping, and unstructured sparsification (cp. curves labeled
“RS_both_sparsity_0.80”) results in the most communication-
efficient runs. For instance, it achieves up to 19.9% reduction
in communication cost for ResNet-56, while maintaining the
accuracy of the uncompressed baseline.

In the federated transfer learning setting, the behavior of
sparsification tools varies significantly. Due to the relatively
small learning rate and minimal changes in client weights,
the model differences ΔW inherently exhibit high sparsity,
particularly after uniform scalar quantization. Consequently,
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unstructured sparsification alone has minimal impact, while
structured sparsification can yield higher overall compres-
sion rates than a combination of both, as evident in Table II
(please refer to Supplemental Material D-A for detailed result
plots).

3) Coding Results of FedAvg (Transfer Learning Setting): In
transfer learning, the client networks already have some knowl-
edge in a related domain. Here, we install networks that are
pre-trained on ImageNet-1k and then learned on the data do-
main of Pascal VOC. For this setting, we deploy ResNet-18 and
ViT/B-16 as NN architectures. First, we compare the training
pattern of the ResNet-18 setup with the use cases of the previ-
ous section, i.e., training from scratch. Then, we compare the
training pattern of ViTs vs. ResNets.

Relative to learning-from-scratch, in transfer learning the in-
dividual tools in our proposed compression pipeline contribute
quite differently to the overall compression rate: For example,
FedBNF has a rather limited effect (1.5% reduction) which
is also due to the reduced number on BatchNorm modules in
ResNet-18. In contrast, TCA and HDSP have a much larger im-
pact with 15.4% and 0.9%, respectively. Another salient point is
that the local client accuracies are at the same level as the global
server model and there is much less variance in client accuracies
(cp. Fig. 4). With compression ratios of 0.64% and 0.11% (cp.
Table I), the transfer learning scenarios are generally more com-
pressible. This is consistent with the intuition that there is only
some adjustment of certain weights to the new, unseen data, i.e.,
the elements of the absolute weight update have a smaller mag-
nitude on average, which introduces high sparsity. Since the NN
models converge faster in the transfer learning setting, gradient
descent is — already in early update rounds — more directed and
smoother, which is beneficial to Temporal Context Adaptation
(TCA). It works best, when the elements to be encoded behave
similarly in subsequent rounds of communication, e.g., if they
always have the same sign and range. This increases the likeli-
hood of the use of certain context models, which in turn allows
the coder to represent the weight update elements with fewer
bits.

ViTs [39] may set new standards in FL: compared to ResNets,
Vision Transformers (ViTs) converge faster in our experiments,
e.g., after only 20 rounds compared to 49 in the ResNet case, and
achieve higher accuracies, e.g., 78.5% accuracy versus 72.6%
(cp. Table I). Moreover, the neural update data to be transmit-
ted is much more compressible: using the default compression
pipeline (e.g., without FedBNF, since not directly applicable
to ViTs), ViT communication can be reduced by 893×, while
ResNet-18 communication is reduced by 103× (please refer to
Supplemental Material, Fig. D.1, for result plots). To match the
best global accuracy of ResNet-18, the ViT experiment requires
82% less data to be transmitted and 30% fewer rounds of com-
munication to be performed. However, in terms of on-device
complexity, the ViT architecture requires considerably more
computational and memory resources. ViTs could give rise to
new compression technologies due to their decomposable ar-
chitecture, and we consider it a part of future studies to further
investigate ViT dNN-compression in FL.

4) Comparison of Coding Results With NNC Edition 1 and
State-of-The-Art: Compression techniques in FL lack compara-
bility as discussed in the surveyed state-of-the-art and our contri-
butions Section II. However, comparing approaches is essential;
Sparse Ternary Compression (STC) [27] and FedZip [30] are of-
ten considered superior. E.g., STC and FedZip excel established
benchmarks like FedAvg [7], signSGD [18], and DGC [26] in
the trade-off between number of communication rounds and
number of bits communicated. FedZip uses a pipeline of top-k
sparsification, non-uniform k-means quantization and Huffman
encoding. Actually, FedZip uses three encoding methods: Huff-
man code, encoding of address positions in address table and
encoding differences of address positions in address table. For
each round t we chose the smallest resulting bitstream size
among these three options. In STC, top-k sparsification is ba-
sically followed by uniformly quantizing the remaining top-k
elements to their mean population magnitudes such that top-
k ∈ {−μSTC, 0, μSTC} (i.e., ternarization), followed by Golomb
code.

Fig. 6 displays coding results varying the sparsity for STC and
FedZip, compared to dNNC’s default setting (as described in
Section V-B1). Complementary data on communicated bits per
method is detailed in Table III. Notably, we benchmark dNNC
without accounting for high-level syntax (HLS) in the bitstream,
consistent with STC and FedZip. #rounds indicates the commu-
nication rounds until convergence (or best accuracy within spec-
ified budget of rounds: t = 120 for FL from scratch and t = 60
for transfer FL).

Our dNNC method achieves convergence in all four use
cases, requiring the least amount of data transferred. Except for
CIFAR-100, where FedZip converges faster, dNNC exhibits the
fastest convergence in the other use cases. For the implemen-
tation of the other coding methods we used publicly available
software repositories of the STC and FedZip authors (we refer
to the Supplemental Material C-E for details).

Using FedAvg [7] and FedAvg + NNC edition 1 [45] com-
pression as baselines, Table IV demonstrates the superiority of
our proposed preprocessing and additional coding tools. It shows
the average data transmitted per communication round between
16 clients and a server (as executed in the previous Sections V-B1
and V-B3).

Our proposed dNNC compression pipeline reduces the Fe-
dAvg communication overhead by 98% on average. Compared
to the NNC-compressed baseline, the data-free dNNC tools fur-
ther reduce the amount of communicated data by 37%, on av-
erage. On top of this, data-enhanced approaches can reduce the
average data transmitted per round even further, e.g., to 0.46 MB
for the ResNet-20 use case with iterative qp optimization en-
abled, which then corresponds to a 60% saving in communica-
tion compared to the NNC edition 1 baseline (cp. the following
Section V-B5 on fine-tuned NN compression).

5) Fine-Tuned Neural Update Compression Using Data: At
the cost of additional local computation, the neural update data
can be compressed further. We have implemented two of our
approaches for data-driven optimization, namely filter scaling
(FS) and iterative qp optimization (IQO). Obviously, it is also
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Fig. 6. Comparative results with state-of-the-art compression schemes for FL, Sparse Ternary Compression (STC) [27] and FedZip [30]. Each color represents
a sparsity rate, the main tuning parameter for STC and FedZip. “Default setting” implies that all data-free dNNC tools are enabled, according to the configuration
outlined in main coding results Section V-B1. Every 8th datapoint plotted (for visibility).

TABLE III
COMPARISON OF DNNC WITH FEDZIP AND STC (SPARSE TERNARY COMPRESSION)

TABLE IV
AVERAGE COMMUNICATED DATA IN MEGABYTES PER COMMUNICATION

ROUND WITH 16 CLIENTS

Fig. 7. Fine-tuned, i.e., data-enhanced, neural update compression. Left: Filter
Scaling (FS); right: Iterative qp optimization (IQO). Every 4th datapoint plotted
(for visibility).

possible to fine-tune additional hyperparameters, such as the
sparsification rate or the BNF momentum η, so that it changes
adaptively during training. However, these experiments can be
quite time-consuming and are rather straightforward from an
algorithmic background.

Fig. 7 presents the resulting training curves of FS and IQO.
For the proposed filter scaling method, we use an initial learning
rate of 1e− 2 for training the scaling parameters. The scaling
parameters are trained separately for additional 5 local rounds
while the rest of the NN parameters is fixed. During training,
the learning rate for scaling parameters is scheduled by i) a
cosine annealing learning rate scheduler with warm restarts
(CAWR) or ii) by a linear scheduler. CAWR achieves higher
accuracies in the later communication rounds whereas the linear
scheduler is more beneficial in the early rounds. Both settings

drastically speed up training in the sense that already in early
communication rounds comparably high global accuracies
are achieved (e.g., >60% acc. in round 5, cp. Fig. 7, top).
The target accuracy of the ResNet-18 transfer FL use case is
exceeded in round 43, with a total of 405 MB of data trans-
ferred, a reduction of 9% compared to the best data-free setting
(cp. Table I).

For IQO, only model inference is required, no additional train-
ing. However, it may take several iterations of increments of the
qp value to find an optimal solution in terms of rate-distortion.
We use qp_step = 1 as the increment and tolerate a model degra-
dation of up to −0.25%. Compared to the best data-free setting,
enabling IQO in the ResNet-20 FL use case further reduces the
amount of data to be communicated from 65 MB to 54 MB
(−17%).

6) Partial Client Participation / Asynchronous Communica-
tion: In distributed learning scenarios, often only a fraction of
the clients is able to simultaneously transmit their dNNs to the
server. Whether for connectivity or other capacity restrictions,
it is crucial that the system can converge under such conditions.
Therefore, we study the impact of the proportion of participating
clients. Intuitively, a gradual reduction in active clients should
reduce the total amount of data transmitted, but interestingly, we
observe the contrary when the participation p is less than 25%
(using 64 clients). We found that the server update is less sparse
in that case. This is because only a portion of the dataset is effec-
tively trained per round. Thus, for an unrepresentative subset of
clients, certain weight update elements remain that interfere with
minimizing the global loss function (and that might be averaged
out with higher client participation p). Overall, the best perform-
ing experiments in terms of data-efficient and fast learning are
those with coarse quantization and medium client participation
(e.g., qp = −24, 0.25 ≤ p ≤ 0.5). In summary, it is a trade-off
between the number of active clients and the degree of com-
pression. A low number of active clients and high compression
concurrently are associated with additional rounds, slower con-
vergence, and potentially more data traffic. For details on the
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implementation and result plots we refer to the Supplemental
Material D-C.

7) Coding Results of SplitFed Learning Settings: The
SplitFed (SFL) [55] approach combines the benefits of FL [7]
and Split Learning (SL) [9] by parallelizing SL communication
through enabling clients to engage with i) a main server that
hosts the respective server-side portions of the client networks
and ii) a fed server which aggregates the client-side model por-
tions in a FedAvg manner. The communication then involves
sending activations, called smashed data, of the so-called cut
layer to the server, and subsequently receiving the gradients of
the smashed data from the server which hosts the remaining parts
of the client models.

With this different communication scheme, new challenges
for NN data compression arise. First, the amount of commu-
nicated data can be much higher compared to FL, because the
activation space is larger than the latent weight space. Further-
more, it scales with the size and number of input samples (e.g.,
smashed data from convolutional layers sums up to [batch_size
× output_channels× feature_height× feature_width]×32 byte
(for full precision), which can be in the range of several dozen of
megabytes for one single forward-backward pass of one client).
Second, local learning (for communication delay) is not possi-
ble because in the default S(F)L setting, client splits do not in-
clude the classifier part of the net, and thus any non-transmitted
smashed data directly leads to the exclusion of the associated
mini-batch from the overall training. Also, due to the nature of
the underlying data, different distributions apply; for example,
feature maps in the upstream domain may have much larger val-
ues and variances compared to gradient data in the downstream
domain, depending on, e.g., the activation functions and learning
rates used.

In our experiments, we split the ResNets and EfficientNet af-
ter their first block and the MobileNetV2 architecture after the
second block, so that the resulting client portions are between
10 kB and 68 kB in size, which fits well in the RAM of typical IoT
device processors such as microcontrollers. Since smashed data
and gradients have quite different distributions, and for speed-up
reasons, we constrain the number of quantization levels depen-
dent on the underlying data’s dynamic range. We tested sev-
eral bitwidths b ∈ 2, 3, 4, 6 bit (cp. Supplemental Material D.3).
As a clipping range, we used the 99.95th percentile P99.95%

of the absolute values of the underlying data distribution. The
step size is s = P99.95%/2

b−1 for unsigned representations (e.g.,
positive valued ReLU activations) or s = P99.95%/(2

b−1 − 1)
for signed representations. From these step sizes we derive a
qp = �s · 2�log2 s� + 4(�log2 s� − 1)� with � � being the round-
ing function. It turned out that quantization did not decrease the
global accuracy when using b = 3 bit and b = 4 bit for the CI-
FAR and ImageNet experiments, respectively. For the upstream,
we obtained an average qp ≈ �0.51� within a range of [−3, 5].
For the downstream, we obtained an average qp ≈ �−56.87�
within a range of [−72,−27]. Although much finer quantization
levels are applied to the gradient data, they are on average more
compressible than the smashed data, e.g., up to 2.6× in the case
of ResNet-20, which might be different if the cut layer was at
a deeper location in the network and the feature maps might

TABLE V
ENERGY CONSUMPTION FOR FL COMMUNICATION AND TRAINING

be sparser. However, this would also increase the computing
and memory requirements of the client devices. Table I (bottom
rows) shows the compression results for training 20 clients in a
SplitFed fashion. Interestingly, the compressed communication
leads to faster convergence (overall less communication rounds
required).

C. Energy Efficiency and Runtime Analysis of dNNC

dNNC not only reduces communication bandwidth, but even
provides net energy savings. For the experiments, we used a
Jetson Xavier NX series device for energy consumption moni-
toring and additionally estimated the energy required for com-
munication between server and clients by summing the energy
consumed by the routers and the client instances (i.e., the Jetson
Xavier NX) during the download and upload of weight updates.
We follow the recommendations by Qiu et al. [57] and formu-
lated the overall energy consumption for communication Ecom

as

Ecom =

t∑
j=1

N∑
i=1

Ici,j ·
(
bsD
rD

+
bsU
rU

)
· (ER + Eidle,i), (10)

with t being the total number of communication rounds, N the
number of clients, Ici,j an indicator function for client i being
active in round j, bsD and bsU the down- and upstream bit-
stream sizes, rD and rU the download and upload speeds, ER

the power of the router and Eidle the power of the hardware of
the idle clients. In our setting, we measured an Eidle of 2.25 W
for the Jetson Xavier NX and calculated an ER = 10.2 W,
D = 66.52 MBit/s and U = 22.51 MBit/s, in accordance
with [57] (i.e., the median country-specific download and upload
speeds as reported on Speedtest 2 and router power as reported on
The Power Consumption Database3). The energy consumption
for encoding Eenc, decoding Edec and training Etrain is directly
measured on the Jetson board as described in the Supplemental
Material C-F.

Table V shows the estimated and measured energy consump-
tion for federated learning the VOC and CIFAR-100 use cases.
Overall, the energy savings for transmitting dNNs at a fraction
of their original size out weight the additional energy required
for en- and decoding, i.e., (Ecom,c + Eenc + Edec) << Ecom,uc.
Thus, dNNC provides significant savings in the overallEcom, es-
pecially for the larger ResNet-18 where Ecom is in the regime of
Etrain, dNNC saves up to 94% of the required kWh for commu-
nication. Fig. 8 displays the energy consumption separately for

2https://www.speedtest.net/global-index
3http://www.tpcdb.com/list.php?page=1&type=11

https://www.speedtest.net/global-index
http://www.tpcdb.com/list.php{?}page=1&type=11
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Fig. 8. Energy consumption on server side and average energy consumption
of clients for downloading, decoding, encoding and uploading neural network
updates. The energy consumption is aggregated over 60 communication rounds
for the VOC task and 120 rounds for the CIFAR-100 task. Labels with suffix “_c”
mark experiments with default compression, i.e., using uniform quantization and
the DeepCABAC codec. Experiments labeled with suffix “_c+” show energy
consumption using our proposed dNNC compression pipeline with data-free
tools, i.e., sparsification, row skipping, FedBNF and Temporal Context Adap-
tation.

server and client side, distinguishing between energy consump-
tion for down- and upload as well as encoding and decoding
of NN updates. Note that, at the server, encoding is only re-
quired once, while decoding is required for N received client
updates.

Runtime analysis is used in ISO/IEC MPEG standardization
activities as a means for comparing and assessing encoder and
decoder complexities, given that comparable experiments were
carried out on similar hardware and resource utilization settings,
e.g., parallelization. Similar to this approach, we also express the
coder’s time complexity as a function of the input data length n,
i.e., the coding algorithm has a time complexity of O(n), i.e., it
processes each symbol of the input sequence once. Note, that this
is a simplification and the actual performance may be affected
by specific coding choices or implementation details. Table VI
shows the measured required average runtimes on the Jetson
board which is indicated as a real-world hardware platform
for FL applications by the FedML [38] open research library.
Runtimes are averaged over all clients i ∈ N and communica-
tion rounds j ∈ t and complement the energy consumption in
Table V. Additionally, Table VII presents runtimes for learning
under the environmental settings of our main experiments in
Section V-B1.

TABLE VI
AVERAGE PROCESSING TIMES FOR DECODING, TRAINING AND ENCODING PER

CLIENT DEVICE i AND COMM. ROUND j ON THE JETSON BOARD

TABLE VII
AVERAGE PROCESSING TIMES FOR DECODING, TRAINING AND ENCODING PER

CLIENT DEVICE i AND COMM. ROUND j ON THE GPU CLUSTER

D. Applications

Our proposed dNNC method benefits any distributed neu-
ral learning paradigm with a large number of client devices,
high frequency of communication rounds (including continu-
ous learning) or large NN architectures. All these characteris-
tics generate data volumes that result in high communication and
energy costs, or high latency due to low bandwidth, and thus a
larger delay in the learning process.

In real-world applications, FL is being explored in au-
tonomous vehicles such as self-driving cars, which generate a
huge amount of data (mostly from visual sensors), which poten-
tially leads to communication and response delays during trans-
mission and processing on a server. Therefore, [58] investigates
training models locally in the vehicle and transmitting com-
pressed versions of parameter updates to a global server model.
[59] found that the ability to share data through car-to-car com-
munication can solve the problem of interrupted or unreliable
data transfer and improve driving experience. In the health sec-
tor, FedHealth [60] was proposed as one of the first FL frame-
works to accomplish accurate and personalized healthcare by
aggregating patient data from wearables in a privacy-preserving
manner. Furthermore, FL is used for a range of website applica-
tions, such as movie recommendation systems with >150,000
clients [61] or personalized e-commerce. For the latter, [62]
presents a model that is trained in a distributed way and pro-
cesses the relationships between users, videos, and products to
provide videos online with ads tailored to the user and video
semantics. In industry, FL is used for machinery fault diagno-
sis [63] to solve the problem that each client (i.e., machine)
has insufficient training data and therefore cannot learn its own
fault diagnosis model. For smart cities, e.g., in combination with
autonomous vehicles, FL can also play an important role in pre-
dicting traffic flows [64] or improving traffic sign classification
for vehicles by exploiting unlabeled smart city data [65].
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VI. CONCLUSION

This article presented dNNC, a novel coding method for var-
ious synchronous and asynchronous distributed learning sce-
narios, including federated, split, and transfer learning. dNNC
comprises tools especially tailored to the update data occurring
in these scenarios: The parameter update tree (PUT) identifies
updates of neural network partitions uniquely and provides a
flexible high-level syntax interface for update management by a
systems layer. The new compression and low-level coding tools
— optimized structured and unstructured sparsification, feder-
ated BatchNorm folding, reversible pruning for tensor update
rows, temporal context adaptation and history dependant sig-
nificance coding — have been designed considering the special
characteristics of the update data and have mostly been included
into the 2nd edition of the NNC standard. dNNC achieves coding
gains of up to 60% over NNC edition 1 and compresses updates
to less than 1% of their original size without significant perfor-
mance degradation of the learning system. Furthermore, dNNC
saves up to 94% of the energy required for communication. In
conclusion, dNNC significantly reduces the required bandwidth
and energy cost for communication, and thus improves the effi-
ciency of distributed learning.
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