
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024 4749

CAU: A Causality Attention Unit for
Spatial-Temporal Sequence Forecast

Bo Qin , Fanqing Meng , Shijin Yuan , and Bin Mu

Abstract—Existing convolution recurrent neural networks
(ConvRNNs)-based memory cells majorly take advantage of gated
structures and attention mechanisms to extract discontinuous
latent associations for spatial-temporal sequence forecast (STSF)
problems, which may lead to serious over-fitting and spurious
relationships with correlated noise. It is a consensus that
incorporating cause-effect relationships in modeling can alleviate
these problems. In this paper, we propose a Causality Attention
Unit (CAU) to assist ConvRNNs by complementing the causal
inference ability in a plug-and-play way. Specifically, CAU serially
consists of the attention module and causality module. The
former is constructed by a spatial-channel attention layer, which
preliminarily generates the correlated future with the correlations
between historical memories and the current state. The latter
borrows the idea of transfer entropy (TE) to detect the latent cause-
effect relationships and precisely correct the correlated future. A
space-time exchange strategy for accelerating the calculation of
TE in CAU is also designed. CAU can be easily combined with the
existing ConvRNN cells, and we construct a simple general model
to predict long-term spatial-temporal series, which consists of
encoder/decoder and stacked CAU paralleled to stacked ConvRNN
cells. After determining the optimal model structure, we carry out
a series of experiments to evaluate model performance, including
comparisons with other advanced models, training loss analysis,
and multiple ablation and sensitivity studies. Experimental results
show that our proposed model can effectively improve the
performances of existing ConvRNNs to the state-of-the-are level on
representative public datasets, including Moving MNIST, KTH,
BAIR, and WeatherBench. The ablation and sensitivity studies
verify the superiority of CAU. The learned causal maps precisely
distinguish the pixel attributions and motion characteristics in
sophisticated entangled scenarios.
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I. INTRODUCTION

S PATIAL-TEMPORAL sequence forecasting (STSF) prob-
lem [1] is one of the most cutting-edge challenges, which

manifests in multiple research areas, such as video prediction
[2], [3], [4], traffic congestion estimation [5], motion/trajectory
prediction [6], and even weather/climate forecasting [7], [8], [9],
[10], etc. In recent years, deluges of advanced and efficient deep
learning (DL) frameworks are proposed emergently for tackling
the STSF problem, which has achieved landmark progress and
is driving our pursuit of more accurate forecasts.

The rapid developments of DL STSF models can be initially
summarized as starting from the design of convolutional re-
current neural networks (ConvRNNs), e.g., convolution long
short-term memory (ConvLSTM) [11] and convolution gated re-
current unit (ConvGRU) [12]. ConvRNN possesses not only the
typical capability of extracting spatial characteristics via con-
volutions but retains the ability to infer the future via multi-
ple gated structures (e.g., update, reset, and forecast gates) of
RNN. Though such models are the successful expansions of
conventional 1-dimensional LSTM to the 2-dimensional man-
ifolds, they still inherit some shortcomings inevitably, such as
the narrow temporal receptive field and restricted expressions
for complex scenarios (See Section II-A).

Furthermore, with the development of attention mechanisms
[13], researchers tend to leverage distinctive attentions to aug-
ment the capture of potential spatial dependencies and long-term
temporal memories, e.g., Memory attention unit (MAU) [14],
spatial-temporal attention based memory (STAM) [15], etc.
These attentions are usually hand-craftily designed to focus on
qualifying the detailed and crucial correlations between differ-
ent spatial and temporal states, which raises the upper limits
of describing the most significant variations in sequence evo-
lutions and broadens the practicalities in the real world (See
Section II-B).

The sophisticated variability of temporal memories and
the elusive uncertainty of spatial distributions are indeed the
toughest barriers to the STSF problem, which can be alle-
viated by customized attention mechanisms to some extent.
However, excessive focus on the correlation dependencies in
spatial-temporal contexts can lead to serious over-fitting of
training data and capture spurious relationships with unpre-
dictable noise [16], [17], especially when the objects in the scene
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are severely entangled. For instance, the arms of a walking man
are rotating and shifting, two pedestrians overlap each other in
the view of a camera, and the passing car is moving away and
shrinking. But the waving arms, as well as the overlapped pedes-
trians and the running car, are usually predicted very vaguely
or even disappear by many attention-based models. This is be-
cause the correlations are usually non-directional, which cannot
distinguish the causes and effects among disentangling abstract
features (or representations) in the top-level (so-called encoder)
of DL models [18], [19]. So, some significant information is mis-
taken for noise. Not to mention the captured associations may be
useless (spurious) that cannot contribute to deducting the future.

To solve the above problems, numerous efforts have been
paid on incorporating causality into the DL model. Causality
has unambiguous directions and exists in extensive time-series
data, especially non-stationary distributions, which is the key
to further performance improvement. At present, there has been
lots of pioneering work on causal mining using neural networks,
but few studies have focused on the STSF forecasts so far (See
Section II-C).

Therefore, unifying the causality in STSF modeling has great
significance. Suppose there is a frame 𝒳t that contains N grids
x
(i)
t ∈ 𝒳t (i = 1 : N ) and evolves along the timeline t. For the

prediction of a certain grid i, a direct formula x(i)
t+1 = ℱ(x

(i)
1:t) is

the common approach (ℱ(·) is the forecasting system, and 1 : t

represents the historical sequence). But when the other gridsx(j)
1:t

(j = 1 : N\i) also contribute to this prediction according to the
dynamical derivation or physical analysis, it is better to append
them as x

(i)
t+1 = ℱ(x

(i)
1:t, x

(j)
1:t ), which can effectively improve

forecast accuracy especially when there is a cause-and-effect
relationship between x

(j)
1:t and x

(i)
t+1. Take a common scene in

the Moving MNIST dataset as an example (See Fig. 1). The
digit “5” and “7” are sliding and bouncing in a fixed region.
When their previous locations are given in Fig. 1(a), the causal
inference helps infer the future states more accurately. As visu-
alized in Fig. 1(b) and (c), they are both monitoring the locations
of each other when they are entangled, which is because they
tend to distinguish the attribution of pixels during motions. In
addition, they are both monitoring the boundary before they are
about to bounce. These are the “causes” of their future vari-
ations, with which we can precisely predict the evolutions as
shown in Fig. 1(d). (Note that the sub-figures in Fig. 1 are all
the inference processes of our proposed model by visualizing
the learned causal maps.)

The above illustrations also work well in other scenarios. Rea-
sonable use of causality can identify and select the most valu-
able features from the historical state. In this paper, we propose
a Causality Attention Unit (CAU) to mine latent cause-effect re-
lationships overlooked by vanilla ConvRNNs according to the
above notion. Specifically, there are two sequential modules in
CAU: The attention module and the causality module. The at-
tention module uses the historical memories and current state to
preliminarily infer future variations, and the causality module
corrects such inferred variations with the help of transfer en-
tropy (TE) mathematically, which is a concept from informa-
tion theory and can be interpreted as the quantized cause-effect

Fig. 1. Example of using causal inference in the STSF problem for Moving the
MNIST dataset. (a) Represents the historical status. (b) and (c) Show the causal
maps for the digit “5” and “7” respectively, which means they are monitoring the
locations of each other for precisely distinguishing the pixel attribution and the
location of the boundary before bouncing. The gray arrows describe the motion
directions. (d) Represents the prediction results. Note that all the sub-figures are
the real results of our proposed model after refactoring and post-processing.

information (See Section III-C). Meanwhile, we also design a
novel way of space-time exchange to accelerate the calcula-
tion of TE, which originally has multi-level loops. The compu-
tational efficiency drops from 𝒪(N2) to 𝒪(N). CAU can be
easily combined with the existing ConvRNN cells, and then
we construct a simple general model, which consists of an
encoder, a decoder, and stacked CAUs paralleled to stacked
ConvRNN cells. This model can iteratively predict long-term
spatial-temporal series. After determining the optimal model
structure, we carry out a series of experiments on comparisons
with other ConvRNN-based STSF models, and model perfor-
mance evaluation via ablation and sensitivity studies.

Some scientific contributions are as follows:
� CAU can mine the latent causal relationships viaTE math-

ematically, which can be rapidly calculated by a space-time
exchange strategy and can be easily combined with the
existing ConvRNN cell (e.g., MIM, PredRNN++) in a
plug-and-play way.

� The simple general model based on CAU can effectively
improve the performances of existing ConvRNNs com-
pared to other advanced models on multiple public datasets,
including common scenarios (Moving MNIST dataset),
video predictions (KTH and BAIR datasets), and weather
forecasting (WeatherBench dataset).
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� The simple general model based on CAU is easier to con-
verge under the same training configurations because it has
no gated structures, which weakens gradient explosion and
vanishing.

� The visualized causal maps learned by CAU demonstrate
that CAU can precisely distinguish the pixel attributions
and motion characteristics in sophisticated entangled sce-
narios, such as rotating, shifting, and scaling in common
STSF problems.

The remainder of the paper is organized as follows. Sec-
tion II provides a summary of the literature regarding the ex-
isting STSF models. Section III depicts the methodology, in-
cluding the formalization of the STSF problem, the framework
of CAU, the interior implementation and accelerated calculation
of high-dimensional TE, and a simple general model based on
CAU. Section IV describes the experimental schemes, which
consist of the introduction of datasets, the comparison results,
and the performance evaluations. The conclusions and future
works are summarized in Section V.

II. RELATED WORKS

In this section, we introduce the development footprints of
DL STSF models from the most fundamental ConvRNN to
attention-augmented frameworks. Subsequently, we also illus-
trate some outstanding methods of performing causal inference
by neural networks.

A. ConvRNN-Based STSF Models

Due to the irreplaceable capability of resolving temporal
memories, RNN, e.g., LSTM and GRU, is the first structure
naturally considered in the STSF problem. [11] designs the
ConvLSTM by integrating the convolution and LSTM together,
which has a very low time-/resource-consuming in dealing with
spatial-temporal features. The same superiority is also reflected
in ConvGRU [12]. Furthermore, to extend the effective temporal
length (memories) that vanilla RNNs can handle, [20] proposes
PredRNN by adding more memory units in LSTM cells, and
[21] proposes PredRNN++ by adding a gradient highway unit
(GHU), which are all conducive to the preservation and transmis-
sion of longer-term memories. In addition, other novel upgrades
are also advantaged in dealing with non-stationary sequences,
which incorporate spatial dependencies and incorporate phys-
ical laws. For example, [22] designs the Memory in Memory
(MIM) module to individually resolve instantaneous and ten-
dency. [23] proposes E3D-LSTM to capture spatial features in
different timestamps by 3D convolution and increase the tem-
poral receptive field by a new memory unit named eidetic. [24]
introduces PhyDNet by constructing the simulations of dynam-
ical partial differential equations paralleled to the memory unit,
which effectively represents the prior physical knowledge.

Besides, there are many Transformer-based spatial-temporal
forecasting models proposed recently [25], [26], [27], [28],
which have further advanced prediction accuracy and quality,
demonstrating great potential. These models formalize the STSF
as the relationships mining from historical sequence with no

memory filtering/transferring involved during prediction itera-
tions. In this paper, we majorly focus on the ConvRNN-based
models. How to incorporating causality into Transformer-based
models is the future topic.

B. Attention Techniques for Video-Related Tasks

To overcome the common issues of information loss and gra-
dient disappearance in vanilla ConvRNN-based models for mul-
tiple video-related tasks, (self-)attention techniques are gradu-
ally applied for capturing comprehensive correlations among
different semantics (dimensions). Specifically, for STSF prob-
lem, SA-ConvLSTM (self-attention ConvLSTM) [29] is a suc-
cessful attempt in quantifying the associations between the cur-
rent state and historical memories, improving long-term and
teleconnections. Some other upgrades [30] contain more ef-
ficient and diverse structures based on (self-)attention, which
exhibit significant skills in the modulation of spatial-temporal
relationships at the pixel level. The adjustable spatial and tem-
poral receptive fields via attention mechanisms attract lots of
interest. Memory attention unit (MAU) [14] and its variation,
spatial-temporal attention based memory (STAM) [15], are two
representative memory cells, which can both optimally extend
the receptive fields. In addition, temporal attention unit (TAU)
[31] decouples the attention into intra-frame statics and inter-
frame dynamics, bringing a brand new insight into attention
utilization and improving prediction performance. In addition,
for other typical video-related tasks, such as action recognition
and anomaly detection, multiple attention techniques are cou-
pled in the temporal, pixel, or channel dimension to enhance the
discrimination of locating the key frames of action occurrence
and recognizing the key features of action type [32], [33], [34].
This shows that the customized attention mechanism, as a neu-
ral operator, can be applied to any dimension and exert positive
effects in a plug-and-play way.

In this paper, the proposed CAU performs the spatial-temporal
evolutions on the single-frame image alone the time lines. The
internal feature maps in CAU do not contain temporal dimen-
sions, so we choose the spatial-channel coupled attention mech-
anism, which can extract the multimodal (channel level) and
pixel (spatial level) dependencies of the decoded feature map of
a single-frame image simultaneously.

C. Causal Inference for Video-Related Tasks

The most criticized points of (self-)attention are over-fitting
and easy-capturing of spurious correlations [16], which can be
alleviated by effective sparsity [35], [36] and causal inference
[37]. The latter is a more direct way, which can make more
concrete deductions that are not easy to change under sophisti-
cated scenes. However, for the STSF problem, existing works
are few and focus on integrating the (dilated) causal convo-
lutions into STSF models [38], [39], which only consider the
form but ignore the principle and measurement of cause-effect.
Meanwhile, these models often encounter the shortcomings of
local information loss, high computation complexity, and low
interpretability. For the other video-related tasks, causal infer-
ence has been pioneeringly applied in model training strategy
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to effectively explain the decision process of “black-box” mod-
els on the given results. For example, [41] uses causal graphs
to analyze the confounder effects of unsupervised training of
pseudo-labels and eliminates the negative effects of errors/noises
in pseudo-labels via blocking the backdoor effect paths, im-
proving the performance of anomaly detection. [42] analyzes
the spatial-temporal effects of the image-to-video adaption us-
ing a causal graph with counterfactual inference, and applies
the learned spatial-temporal migration features to compensate
for performance degradation during classifier migration. The
causal effects involved in the above models generally act at the
macro level, such as global temporal scale, appearance scale and
action scale, and only implicitly express the causal relationships
through the high degree of neural networks nonlinearity. Recent
years, some causal inference approaches are proposed in the di-
rected acyclic graph (DAG) learning in the areas of natural lan-
guage processing (NLP), such as text generation [40], which is
a big forward for sequence forecasting problems. However, due
to the difficult unification of the textual token and image token,
these advanced insights are hard to transfer into video-related
tasks to perform causal inference at micro (image patch or pixel)
level.

In this paper, the transfer entropy-based causal inference used
in our proposed CAU quantifies the causality of individual pixel
features of single-frame image within the spatial-temporal se-
quence, acting on a micro spatial scale with explicit mathemat-
ical implications.

III. METHODOLOGY

In this section, we first clarify the general formalization of the
STSF problem. Then, we illustrate our proposed Causality At-
tention Unit (CAU), which is implemented via transfer entropy
(TE) mathematically and can complement the existing meth-
ods with the ability of mining the latent causal relationships
hidden in spatial-temporal sequence. Meanwhile, we design a
space-time exchange strategy to rapidly calculate TE. Finally,
we propose a simple general STSF model based on CAU and
exhibit its detailed structure, especially the encoder and decoder.

A. STSF Problem Formalization

STSF problem can be typically regarded as using historical
τ sequential data 𝒳1:t to forecast the observed scene (ground
truth) 𝒳t+1 of the next time step, which can be depicted in (1),

�̂�t+1 = ℱ (𝒳1:t) (1)

where t is the current time and �̂�t+1 is the prediction result.ℱ(·)
represents the forecasting system. In general, this paradigm can
be iterated by multiple times by feeding the predicted results
into the right side of this equation to obtain a predicted sequence
�̂�t+1:T . The goal of the STSF problem is to optimize (2)

min

T∑
s = t+1

𝒬

(
𝒳s, �̂�s

)
(2)

where 𝒬 is the chosen quality assessment indicator, such as
SSIM (structural similarity) for human-eye perception and
MSE (mean square error) for distance measure of errors.

DL model, as a common solution, is a reliable tool for con-
structing the forecasting system ℱ, which can be usually decou-
pled into three parts with different effects as (3).

⎧⎨
⎩
Encoder : vt = ℰ (𝒳t)
Informer : ht+1 = ℐ (ht, vt)

Decoder : �̂�t+1 = 𝒟 (ht+1)

(3)

whereℰ (Encoder) is used to capture the current spatial-temporal
feature vt, ℐ (Informer) is used to make a memory inference
for the hidden state ht+1 of the next sequential time step with
hidden memory ht and vt (h0 is generally obtained by internal
initialization, and when the unit layer is more than 1, vt is usually
from the output of previous layer), and 𝒟 (Decoder) is used to
restore the feature to the predicted value �̂�t+1. ℰ and 𝒟 are
usually constructed by convolutional skeletons. ConvRNN, such
as some advanced variants (e.g., PredRNN, MIM, etc.), plays
the role of ℐ, which is a memory inference unit with varied
gated structures as (4). forgett(·, ·) serves as the forget gate and
inputt(·, ·) represents the input gate (∗ is convolution operator).
These three parts modulate closely to achieve more accurate
forecasts.

ht+1 = forgett (vt, ht) ∗ ht + inputt (vt, ht) ∗ vt (4)

ℐ is the key component of the STSF problem. Broadly
speaking, forgett(·, ·) and inputt(·, ·) are both with activation
functions in the interval [0, 1], and are tied as forgett(·, ·) +
inputt (·, ·) = 1. However, such architecture makes the forget
gate very easy to saturate (i.e., close to 1), especially when ad-
dressing long-term memories [43], which induces the gradient
vanishing and hampers memory updating. Meanwhile, although
multiple attention mechanisms are applied in ℐ to enhance the ex-
traction of discontinuous latent spatial-temporal dependencies,
they tend to “create” fake associations between two dependent
variables especially when they are influenced by the third latent
variable according to Reichenbach’s common cause principle
[19], which are spurious correlations. This is a very fatal issue
for the STSF problem, because the spurious correlations may
cause the feature of unrelated objects in the scene to be updated
together after receiving the same high attention weights, making
predictions blurry and distorted.

It is a consensus that complementing neural networks with the
ability of causal inference can effectively eliminate useless at-
tentions. The process of causal inference emphasizes the lagged
spatial-temporal relationships and imperceptible causes, which
is naturally suitable for predicting future scenarios in the STSF
problem. So, in this paper, we propose a Causality Attention
Unit (CAU) to achieve this purpose. It can perform the causal
inference paralleled to ConvRNN in a plug-and-play way.
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Fig. 2. (a) Represents the two serial modules (attention module and causality module) of CAU. (b) Shows the detailed calculation process of these two modules.

B. Causality Attention Unit: CAU

CAU has two sub-modules, which can be systematically de-
scribed in (5) (k = 1 : K represents the unit layer).⎧⎨

⎩
attention: fat+1 = 𝒜

(
hk
t , v

k
t

)
causality : fct+1 = 𝒞

(
hk
t , v

k
t , fat+1

)
output : hk

t+1 = fat+1 + fct+1

(5)

where 𝒜 and 𝒞 are the attention and causality modules respec-
tively. The former is to generate correlated future fat+1 accord-
ing to latent correlations, and the latter is to mine the cause-effect
relationships hidden in historical sequence, generating causal
future fct+1.

As (5), CAU has two internal components, which are con-
nected sequentially. We model them respectively as shown in
Fig. 2(a). Note that there is no gated structure in CAU, because
CAU makes correlation and causality inferences along the time-
line, which plays a substitute role in memory filtering and up-
dating.

The detailed structures of attention (green shadow) and
causality (yellow shadow) modules are described in Fig. 2(b),
the operators of which are marked above the figure. Overall,
before feeding inputs into the attention module, we first con-
catenate (marked as || in (7)) the hidden state hk

t and current
status vkt , which is a simple but effective manner to couple all
memories. Then, after the propagation of these two modules, the
summation output hk

t+1 is passed into the decoder 𝒟 or the next
layer (k + 1).

The attention module is also the summation of two parts as
(6) (the green shadow of Fig. 2(b)),

fat+1 = 𝒜
(
hk
t , v

k
t

)
= pt + f̃t+1 (6)

where pt is the resolved previous (historical) memories and f̃t+1

is the residual correlated future. These two parts can be obtained
by (7) respectively, where Att(·) is the chosen attention layer,
and Conv(·) is used to resolve the coupled memories.

pt = Conv(hk
t ||vkt ), f̃t+1 = Att (pt) (7)

It is worth noting thatAtt(·) in the attention module should be
selected carefully. Considering the characteristics of memories
pt, which contains the resolved spatial features at the pixel level

with various semantics in different channels, the spatial-channel
attentions should be used for a comprehensive capture of sig-
nificant correlations, such as CBAM [44], Triplet [45], and CoT
[46]. We make a comparative study for determining the optimal
attention layer in Section IV-B.

As for the causality module, we use Transfer Entropy (TE) to
quantify the spatial-temporal causality (including the intensity
and direction) among all grids of a certain feature map, which
acts on memories pt to make causal inferences for causal fu-
ture fct+1 as (8) analogous to the attention matrix (the yellow
shadow of Fig. 2(b)).

fct+1 = 𝒞
(
hk
t , v

k
t , fat+1

)
= TE × pt (8)

Here, TE is constructed as an N ×N matrix, where N =
H ×W is the size of the feature map and H/W represents the
height/width. Finally, the correlated future in (6) and causal fu-
ture in (8) are added together as (5) to complement each other.

C. The Implementation of TE

In (8),TE is an information-theoretic measurement of causal-
ity proposed by [47], the calculation of which depends on both
the historical and predicted (future) information. Continuing the
example in the Introduction, taking the spatial-temporal features
(x(i) and x(j)) on two different grids (i, j = 1 : N ) of a feature
map as an example, the causal relationship quantified by TE
between them can be measured as (9),

tej→i =
∑

𝒫

(
x
(i)
t+1, x

(i)
1:t, x

(j)
1:t

)
log

𝒫(x
(i)
t+1|x(i)

1:t, x
(j)
1:t )

𝒫(x
(i)
t+1|x(i)

1:t)
(9)

where x
(i)
1:t is the historical feature on grid i, x(j)

1:t represents the

historical feature on grid j to be investigated, and x
(i)
t+1 rep-

resents the future feature to be predicted. 𝒫(·, ·, ·) is the joint
probability and 𝒫(·|·) is the conditional probability. According
to this formula, TE can be understood intuitively as the vari-
ations of the information entropy of x(i)

t+1 when x
(j)
1:t is known

or not. Extensive research indicates that TE does not need to
assume the form of the causal relationship between grids, which
is suitable for the long-time series analysis of nonlinear systems
[48].
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To circumvent the probability calculation in neural networks,
we rewrite (9) as conditional mutual information and divided
into a combination of several simple terms in (10).

tej→i = I(x
(i)
t+1;x

(j)
1:t |x(i)

1:t)

=ℋ

(
x
(i)
t+1, x

(i)
1:t

)
+ℋ

(
x
(j)
1:t , x

(i)
1:t

)
−ℋ

(
x
(i)
t+1, x

(j)
1:t , x

(i)
1:t

)
−ℋ

(
x
(i)
1:t

)
(10)

where I(·; ·|·) represents the conditional mutual information and
ℋ(·) (ℋ(·, ·) and ℋ(·, ·, ·)) represents the (joint) entropy. After
nested traversing i and j, we can get a cause-effect matrix TE ∈
RN×N as shown in (11), which is similar to the attention matrix.

TE =

⎡
⎢⎢⎢⎢⎢⎣

te1→1 te2→1 te3→1 · · · teN→1

te1→2 te2→2 te3→2 · · · teN→2

te1→3 te2→3 te3→3 · · · teN→3

...
...

...
. . .

...
te1→N te2→N te3→N · · · teN→N

⎤
⎥⎥⎥⎥⎥⎦ (11)

Following the such generic example, we independently learn
and mine the spatial-temporal causal relationships between in-
dividual grids of the correlated future fat+1 ∈ RC×H×W and
the previous memories pt ∈ RC×H×W (C represents chan-
nel). Specifically, we reshape both fat+1 and pt into RN×C

(N = H ×W ). For a memory feature p
(i)
t ∈ R1×C on an

individual grid i = 1 : N and the corresponding correlated
future state fa

(i)
t+1 ∈ R1×C , we use TE to identify and quan-

tify the causal contribution of states p(j)t ∈ R1×C of other grids
j = 1 : N on the inference of (p(i)t , p

(j)
t ) → fa

(i)
t+1 (Here, we

do not exclude i from the value range of j, because the causal
relationship of itself cannot be ignored). We mark this process
as tej→i = I(fa

(i)
t+1; p

(j)
t |p(i)t ) like conditional mutual informa-

tion in (10).
Before calculating tej→i, we set two transformation weights

Wp,Wf ∈ Rc×β (β is the hyper-parameter of hidden dimen-
sion, as shown in the two orange boxes in the yellow shadow of
Fig. 2(b)) to precisely assess the (joint) entropy of the histori-
cal state and correlated future state with [0, 1]-normalization as
(12),

hp
(i)
t = σ

(
Wp × p

(i)
t

)
, hf

(i)
t+1 = σ(Wf × fa

(i)
t+1) (12)

where σ is the sigmoid activation function. hp(i)t and hf
(i)
t+1

are the normalized entropy. We make a comparative study for
determining the optimal hidden dimension β in Section IV-B.
Subsequently, tej→i can be obtained by (13) analogous to (10)
and forms the cause-effect matrix TE. This process is shown in
the gray boxes of the yellow shadow in Fig. 2(b).

tej→i = I
(
hf

(i)
t+1;hp

(j)
t |hp(i)t

)
=ℋ

(
hf

(i)
t+1, hp

(i)
t

)
+ℋ

(
hp

(j)
t , hp

(i)
t

)
−ℋ

(
hf

(i)
t+1, hp

(j)
t , hp

(i)
t

)
−ℋ

(
hp

(i)
t

)
(13)

Fig. 3. Our proposed space-time exchange strategy for accelerating the calcu-
lation of TE in CAU. It requires replication of tensors and ordered concatenation.

Furthermore, we take advantage of the asymmetry of TE to
identify the both intensity and direction of causal relationships.
On the one hand, the larger tej→i, the greater the effect of grid
j on i, the more reliable causality. On the other hand, if tej→i >
tei→j , the feature of grid j is the effect while the feature of grid
i is the cause. We then use (14) to remove the “effect” and retain
the “cause”,

T̃E = max
(
TET − TE + diag (TE) , 0

)
(14)

where ·T represents the transpose and diag(·) represents the di-
agonal to supplement its own causality (e.g., te1→1, te2→2, etc.).
After such filter, we normalize the cause-effect relationships by
a mask-Softmax operator as (15).

T̃Ems = mask_softmax
(
T̃Ei,:

)
=

etej→i∑N
l=1 e

tej→i

(i, j = 1 : N, if tej→i �= 0)
(15)

We practically use the normalized causality map T̃Ems to
augment the historical memory pt to generate the causal feature
in (8).

D. The Accelerated Calculation of TE

The calculation of TE requires two levels of loops (i and
j), which is a time-consuming process. We use space-time ex-
change for acceleration. After in-depth analysis, two ingredi-
ents of tej→i are more difficult to compute: ℋ(hp

(i)
t , hp

(j)
t )

and ℋ(hf
(i)
t+1, hp

(j)
t , hp

(i)
t ), because they are related to the tra-

verse of i and j concurrently. Therefore, we design a replication-
cascade strategy to construct the traverse as shown in Fig. 3.

As shown in this figure, the historical state and the corre-
lated future are first replicated along the “Z-”axis, meanwhile
the replicated historical state also needs to transpose the second
and third dimensions, which is to construct a traversal cascade
for all different positions. Then, we cascade them in the required
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Fig. 4. Detailed structure of the encoder and decoder of our proposed model,
which both consist of stage blocks and transition blocks. CNR and TCNR are
our defined integrated components.

order and calculate their joint entropies respectively. Such oper-
ation can construct the traverse of n and l simultaneously. The
time-consuming is reduced from 𝒪(N2) to 𝒪(N) according to
mathematical analysis (N = H ×W represents the size of
the feature map). We also perform a validation experiment to
monitor the elapsed time of these two strategies when calculat-
ing T̃Ems under N = 16× 16 with our computing resource
mentioned in Section IV-A. The average time-consuming for
the former is 6.017 (ms) and that for the latter is 0.030 (ms),
which is nearly a 200-fold increase (two orders of magnitude of
acceleration ratio).

E. A Simple General Model for STSF Problem Based on CAU

As mentioned above, CAU can be easily combined with ex-
isting ConvRNN cells for solving the STSF problem. We build
a simple general model based on it according to (3), as in Fig. 4.

We use an encoder and a decoder respectively to resolve and
restore the spatial-temporal features hidden in the input sequence
in this model. Between the encoder and decoder, the stacked
CAU and ConvRNN cells are constructed in parallel. Analogous
to ConvRNN, each layer of CAU receives the output of the pre-
vious layer and maintains the individual historical memories.
The output of CAU is added to the output of ConvRNNs and
subsequently fed to the decoder to make forecasting end-to-end.
In this model, CAU assists in complementing the causal infer-
ence ability while ConvRNNs are performing memory updating.
The selection of ConvRNN cells is important, and we perform
experiments to verify the performance of CAU combined with
different ConvRNN cells (See Section IV-D).

As for the encoder and decoder, we construct the fully-
convolution networks respectively as shown in Fig. 5, which

Fig. 5. Architecture of our proposed model. CAU is constructed parallel to
vanilla ConvRNN cells in a plug-and-play way, which can complement the
ability of causal mining. CAU can be stacked in multiple layers.

are both composed of two integrated blocks, that is, the stage
block and transition block. The stage block consists of two CNRs
(TCNRs) with different convolution kernel sizes, which resolve
(restore) the spatial information by expanding (shrinking) the
channel. The transition block is also constructed by CNR or
TCNR, but the stride of the convolution layer is set as 2, which
compresses the redundant information by reducing the feature
maps and restores image details end-to-end by enlarging the
feature maps in the trainable way.

In general, using the residual connections or some pool-
ing/upsampling can effectively improve the performance of net-
work, such as bridging the short-cut in the stage block, using
the pooling/upsampling layers in the transition block. How-
ever, after extensive experiments, we find these two modifica-
tions are not suitable for improving the performance (See Sec-
tion IV-D). We summarize that the short-distance residual con-
nections produce the constant mapping easily, obviously pre-
venting the features from evolving with time lines and keeping
them align with historical features. In addition, the untrainable
pooling/upsampling may violently discard the crucial details or
introduce the redundant noise in the feature maps.

Subsequently, we tune the model configuration to the optimal
performance (See Section IV-B) and solve the STSF problem in
a common scenario (Moving MNIST dataset), video predictions
(KTH and BAIR datasets), and weather forecasting (Weath-
erBench dataset) to comprehensively evaluate its performance
(See Section IV-C). In addition, we also perform some ablation
and sensitive studies for our model (See Section IV-D).

IV. EXPERIMENTS

A. Experiment Schemes

Datasets: We select 4 different datasets from different scenar-
ios to evaluate the performance of CAU. 1© Moving MNIST
[49], the most widely used benchmark dataset for the STSF
problem, which is an ideal scenario of handwritten number
twisting and shifting. 2© KTH [50], a human performing video
dataset containing 6 different actions, including walking, jog-
ging, running, boxing, hand waving, and clapping. 3© BAIR
[51], an object-moving video dataset pushed by a robotic arm.
4©WeatherBench [52], a global hourly weather reanalysis data
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TABLE I
DESCRIPTION OF OUR CHOSEN DATASET AND EXPERIMENTAL SETTINGS FOR THEM

from 1979 to 2018, from which we collect the sub-sets of air tem-
perature and geopotential. The image size, training paradigm,
and testing paradigm are shown in Table I.

Model Settings and Training: We conduct all the subsequent
experiments on a server with a GPU of NVidia RTX 3090, and
all models are optimized with Adam [47] for MSE (mean square
errors). In addition, we have first carried out a series joint tuning
experiments to determine optimal major hyper-parameters un-
der our computing resource (See Section IV-B). To summarize,
Triplet is selected as the attention module in CAU, the block
number in encoder/decoder is 3, the CAU number is 3, and the
hidden dimension for the calculation of TE is 48. For a more
robust training effect, we set a “warm-up” phase in the early
training epoch. In this phase, the recurrent training of model
just uses the standard label rather than the previous time step’s
prediction, and the “warm-up” length is equal to the input length
as shown in Table I. After the “warm-up” phase, the model per-
forms the formal iterative prediction. The “warm-up” phase can
make the model load more correct memories and guide a pre-
cise/rapid direction of parameter learning in the early training
epoch. We set the “warm-up” phase as 50 epochs for the subse-
quent experiments.

Metrics: We select 3 different metrics to evaluate model
performance, including MSE (lower is better), PSNR (peak
signal-to-noise ratio, larger is better), andSSIM [53] (structural
similarity, larger is better). These three metrics focus on not only
the prediction errors at the pixel level but the human-eye per-
ception of the predictions. The precise equations of these three
metrics can be referred to as (16) to (18).

MSE =
1

κ

t+κ∑
s=t+1

(
�̂�

(i)

s −𝒳(i)
s

)2

, i = 1 : N (16)

PSNR = 10 · log10
(
MAX2

MSE

)
(17)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

luminance =
2μ2

�̂�

μ2
𝒳
+c1

μ2

�̂�

+μ2
𝒳
+c1

contrast =
2σ

�̂�𝒳
+c2

σ2

�̂�

+σ2
𝒳
+c2

structure =
σ
�̂�𝒳

+c3

σ
�̂�
σ𝒳+c3

SSIM = luminancea · contrastb · structurec

(18)

where �̂�
(i)

s and𝒳(i)
s are the ground truth and prediction result on

the grid i in the predicted sequence respectively, κ represents the
sequence length. In PSNR, MAX is set as 255. In SSIM , μ

̂𝒳

(μ𝒳) is the average for �̂� (𝒳), and σ
̂𝒳

(σ𝒳) is the corresponding
standard deviation. σ

̂𝒳𝒳
represents the covariance, a = b =

c = 1 for fair measurement of every ingredient of SSIM , c1,

c2, and c3 are all trivial values for preventing the denominator
from being 0.

B. Determination of the Optimal Structure

The interior structure of CAU consists of many adjustable
modules that influence the model performance. Here, we majorly
divide them into two categories according to different scales:
The structure-level macro design and the parameter-level micro
design. The former contains the choice of attention module in
CAU and the depth of encoder/decoder, and the latter contains
the hidden dimension of the causality module and the stack num-
ber of CAU in the entire network. We first determine the optimal
combination for the macro design and then tune the parameters
of the micro design with the help of the Moving MNIST dataset.
Note that other parameters also affect the model performance,
such as the convolution kernel (channel and size). We omit the
tuning process of these parameters because these are not the
focus of this paper. In addition, we have adjusted them to the
optimal in the subsequent experiments.

Macro Design: For the attention module, we have selected
3 candidates according to the review of [54]: CBAM [44],
X-Linear [55], Triplet [45], Coordinate [56], and CoT [46].
They are all plug-and-play spatial-channel attention techniques
and have different characteristics. CBAM calculates the spatial
and channel attentions individually and is the most widely used
technique. X-Linear exploits the spatial-channel-wise bilinear
attention distributions to capture the 2nd (or even infinity) order
interactions between the multi-modal features. Triplet focuses
on the cross-domain interactions between spatial and channel
levels and aggregates their information together. Coordinate in-
corporates the position encoding of feature maps into the capture
of spatial-channel attention. CoT capitalizes on the contextual
information among input keys to guide the learning of dynamic
attention matrix and thus strengthens the capacity of visual rep-
resentation. These five types of attention mechanisms can cover
most other options according to their motivations and imple-
mentations, and we select one from them for CAU.

For the depth of the encoder/decoder, we can deepen the model
by increasing the number of stage modules before the transition
module. (To ensure the size of the encoded features is not too
small, we fix the number of transition modules to 2). Considering
the above factors, we carry out an experiment to evaluate the joint
effects of the attention module and model depth. Here, the CAU
number is 1 and the hidden dimension is 36. The result is shown
in Table II.

The effects of different attention modules are not much differ-
ent with fluctuation of no more than 1 under the same block num-
ber, among which Triplet exhibits slightly high performance.
This is because Triplet stresses the discriminative interactions of
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TABLE II
JOINT EFFECTS ON PERFORMANCE WITH MULTIPLE MACRO DESIGNS, WHICH

CONTAIN DIFFERENT ATTENTION MODULES IN CAU AND BLOCK NUMBERS OF

ENCODER/DECODER

TABLE III
JOINT EFFECTS ON PERFORMANCE WITH MULTIPLE MICRO DESIGNS, WHICH

CONTAIN DIFFERENT CAU NUMBERS AND HIDDEN DIMENSIONS FOR ENTROPY

CALCULATION IN TE OF CAU

features in different angles, which is useful for capturing the ro-
tating or shifting of the object during temporal evolutions. CoT
also possesses a comparable performance, because it empha-
sizes the neighborhood interactions, strengthening the localized
historical memory correlations and spatial-temporal dynamic
evolutions. On the other hand, the larger block number has a
significant performance improvement. Because a deeper struc-
ture favors resolving and restoring the spatial features.

According to the best performance, we use Triplet as the
attention module in CAU and the block number in the en-
coder/decoder is set as 3 in the subsequent experiments.

Micro Design: The number of stacked CAUs affects the ef-
ficiency of memory propagation, and the hidden dimension β
is closely related to the accuracy of entropy calculation in TE.
These are two critical parameters. We design an experiment to
determine the optimal combination of them. The result is shown
in Table III.

Overall, more CAUs bring an obvious performance gain. But
stacking CAU also induces a large computational load, and the

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT MODELS ON THE MOVING MNIST

DATASET

Fig. 6. Predictions of different methods on the Moving MNIST dataset
(10 → 30).

improvement rate gets slower with the CAU number from 1 to
3. Meanwhile, increasing the hidden dimension β undoubtedly
promotes the points of MSE and SSIM , which makes the
calculation of entropy more precise. The parameter settings for
this experiment are the widest adjustable ranges under our com-
puting resources. In the future, more complex parameter deter-
minations will be performed on larger-scale high-performance
devices.

According to the best performance, we set the CAU number
as 3 and the hidden dimension β as 48 in the subsequent exper-
iments.

C. Comparisons With Other ConvRNN-Based STSF Models

In this section, we compare the results of our proposed
model and other representative STSF models on the four chosen
datasets. Specifically, the comparisons of quantitative metrics
are depicted in Tables IV–VII, and the comparisons of visual
quality are presented in Figs. 6–9. Note that some results of
other models are either collected from the official papers or re-
made by the official codes.

Moving MNIST: Fig. 6 illustrates the forecasting results,
where our model obviously outperforms the other methods with
sharper edges and more accurate placement of digits. Specif-
ically, the visual qualities of these models are similar before
T = 20, while the prediction qualities of PredRNN++ and
E3D-LSTM drop steadily after T = 24. In addition, there is



4758 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Fig. 7. Predictions of different methods on the KTH dataset (10 → 40).

little difference between our model and MAU in human-eye per-
ception, but our model has improvements numerically as shown
in Table IV, which are not easy to detect.

For the comprehensive comparison, we also add the official
records of other STSF models on this dataset. From Table IV,
though our model has not achieved the best performance, it can
still compensate for the causal mining ability of the basic Con-
vLSTM units, bringing the performance of it up to first-tier
level. In addition, our model is not a sequence-input model
and has no gated structures, which means it has fewer train-
able parameters and easy convergence (See Section IV-D), sav-
ing a lot of time and computation resources. It is worth noting
that our model does not achieve the best performance on this
dataset, which are SimVP [26] (23.8@MSE, 0.948@SSIM )
and MogaNet [25] (15.67@MSE, 0.966@SSIM ). Instead of
using ConvRNN-based structure, they both utilize the autore-
gression to predict the future directly via the conv-skeleton or
the transformer-style models. This may be a better choice trend
for prediction accuracy. However, our model emphasizes more
on temporal memory transfer of correlation and causality, which
can effectively help bring the performance of multiple Con-
vRNN modules up to first-tier level, and is more in line with
the laws of development of things in the physical/natural world
and the human understanding of the spatial-temporal evolution
of objects.

KTH: Our model can achieve excellent performance on the
KTH dataset as shown in Fig. 7. Previous models (PredRNN++
and E3D-LSTM) can only forecast the rough position and
boundary of the standing man, but our model can predict finer
and clearer movements, such as arm waving and clapping. Com-
pared with STAM (the upgrade of MAU), our model has a slight
improvement, especially afterT = 35, exhibitting more precise
description of motion details.

Table V shows the numerical comparisons between our model
and other models. Our model gains improvements on these two
measurements both, especially when extending the forecast lead
time from 10 to 30. On the other hand, the performance of our
model can maintain a high level with the forecast lead time
increases. We speculate that our model is less affected by ac-
cumulated errors during forecasting iteration. Because it re-
ceives one-frame data as input, which contains fewer errors.
While most other models receive sequential data as input, which
involves more uncertainties. Besides, the performance of our

TABLE V
SAME WITH TABLE IV, BUR FOR THE KTH DATASET

TABLE VI
SAME WITH TABLE IV, BUR FOR THE BAIR DATASET

model is comparable to the conv-skeleton model SimVP [26],
the 20-step performance of which achieves 33.72@PSNR and
0.905@SSIM , and the 40-step performance of which achieves
32.93@PSNR and 0.886@SSIM . This also reflects the high
degree of consistency and generalization of our model in iterated
forecasts.

BAIR: This dataset contains more sophisticated scenarios and
actions, but our model can also forecast future frames with the
better visual quality compared with other models as shown in
Fig. 8. It can be seen from two aspects. On the one hand, the
background (objects) of the predictions maintains a high con-
sistency, which shows little change as the lead time increases.
On the other hand, although the robotic arm is blurred to some
extent, its position and size can be predicted more accurately
compared to other models.

Table VI shows the quality measurements. It indicates that
our model can achieve comparable MSE and SSIM scores,
which exhibits the superiority of our proposed model.
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Fig. 8. Predictions of different methods on the BAIR dataset (10 → 40).

Fig. 9. Predictions of different methods on the WeatherBench dataset (24 → 96). The above sub-figure is for temperature, and the below sub-figure is for
geopotential.

WeatherBench: Fig. 9 shows the prediction results of temper-
ature and geopotential respectively. As for this dataset, all of the
models can achieve a high-level performance, which is because
the weather changes in the hour scale are very few.

Numerically, our model still leads the way in this dataset.
Table VII displays the comparison results. From 24-hour to 96-
hour forecasts, our model has achieved the best scores on all

metrics, which shows that it has a good potential for inference
of weather evolution.

Summary of Four Datasets: For the 4 chosen datasets, our
model can effectively improve the performance of existing Con-
vRNN cells in a plug-and-play way with outstanding quantitative
scores and visual quality, reaching the SOTA level, especially
in the long-term forecasts. It implies that our proposed CAU
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TABLE VII
SAME WITH TABLE IV, BUR FOR THE WEATHERBENCH DATASET (10→10)

Fig. 10. Comparisons of performance on the testing set during training be-
tween our model and others. The left sub-figure is for the Moving MNIST
dataset, and the right sub-figure is for the WeatherBench dataset (temperature).

is an effective tool for mining causality hidden in long-term
spatial-temporal evolutions, which is exactly the lack of vanilla
memory units.

D. Performance Evaluations

Training Process Analysis: During the training process of the
4 chosen datasets, an interesting phenomenon occurs: Our model
converges faster than other models on the testing set. For exam-
ple, Fig. 10 shows the performance curves of 4 different models
as the training epochs increase on Moving MNIST and Weath-
erBench (T300) datasets, which is the average result of 20-time
training. The blue lines belong to our model, which has a larger
slope than others, especially in weather forecasting. This indi-
cates that time-/resource-consuming will be saved.

We think this is majorly due to the non-gated structure of CAU
compared to traditional RNN. During the training of RNN, the
gradient vanishing (or explosion) easily shows up, especially in
a non-stationary series and long-term propagation. The gated
structures may exacerbate this phenomenon by generating a
quite strict gated mask, because it is shared by all frames and
easily ignores location-variant anomalies, such as rotation and
scaling, etc. Therefore, the performance curves of gated-based
RNN models (PredRNN++, E3D-LSTM, MAU) are gentler.
CAU has no gated modules, the training of which is easier to
converge.

Ablation and Sensitive Studies: To validate the effectiveness
of the sub-modules (i.e., attention and causality modules) and the
robustness of the model structure, we carry out the following four
experiments in this section. Note that for a fair comparison, we
uniformly use the Moving MNIST dataset as the STSF scenar-
ios, and the other hyper-parameters are set the same. Table VIII
shows the results.
� Exp.1: Remove one of the sub-modules of CAU.

TABLE VIII
ABLATION AND SENSITIVITY STUDIES ON THE MOVING MNIST DATASET FOR

CAU

� Exp.2: Swap the two sub-modules of CAU.
� Exp.3: Use short-cut residual connections in stage block

and pooling/upsampling layer in transition block
� Exp.4: Add a gate module in CAU (Appending a vanilla

RNN above two modules in CAU).
� Exp.5: Exchange other spatial-temporal cells parallel to

CAU.
As for Exp.1, we find that the absence of sub-modules leads to

a severe performance drop, especially when removing the causal
module, theMSE score has dropped 6 points. This indicates the
effectiveness of our proposed causality module and particularly
the combination of attention and causality.

As for Exp.2, the reverse of attention and causality modules
causes performance loss to a certain extent. We think this is due
to the failure of the attention module. When swapping the atten-
tion and causality modules, CAU will first perform the causal
inference and then compute the correlations between different
grids based on the causality-augmented features. However, the
causality-augmented features have already filtered the spurious
associations (with a mask-Softmax operator), which means the
attention modules make a repetitive and ineffective contribution.
So our proposed formalization is a better choice for the order of
attention and causality modules.

As for Exp.3, these two structures both influence the model
performance. Specifically, using pooling/upsampling layers in
the transition block has a more severe impact on STSF models.
The short-cut residual connections tend to homogenize predic-
tions, which is not good for distinguishing variations over time.
Pooling/upsampling layers with no learnable parameters may
discard important spatial information and introduce redundant
noise, which lead to large uncertainties in resolving and restoring
spatial features. It provides a solid suggestion for the construc-
tion of the encoder/decoder of future STSF models. In addition,
in order to fully utilize the advantages of residual connections,
the feature maps in the encoder can be “remotely” connected to
the decoder, which eliminates the constant mapping and makes
the STSF model recognize more spatial-temporally discrimina-
tive features to improve performance, like [14].

As for Exp.4, the gated structures are serious handicaps for
CAU from the experiment results. This is major because the
mask-Softmax operator in CAU has been equivalent to a gated



QIN et al.: CAU: A CAUSALITY ATTENTION UNIT FOR SPATIAL-TEMPORAL SEQUENCE FORECAST 4761

Fig. 11. Visualization of causal maps learned by CAU during prediction. The
big image is the prediction result and the two small images are the causal maps in
(a)–(j). Specifically, the causal maps with orange (green) borders are the causal
maps of the pixel in the small orange (green) box on prediction results.

structure from the aspect of the memory filter. If other gated
structures are added, the output of the entire CAU will become
extremely harsh (i.e., the memory filtering will become very
strict), which is very likely that the gated unit is all 0. In a word,
the gated modules are not suitable for integration in CAU.

As for Exp.5, the exchange of other spatial-temporal cells
indeed helps improve the performance of CAU. The paralleled
spatial-temporal cells complement the insufficiency of the CAU
for memory propagation, so the better the long-term memory
processing, the better the performance. It can be seen from the
table that the MIM cell is a better choice for CAU, which is
good at capturing the changes between memories, maintaining
both instantaneous and tendency. On the other hand, CAU, as
a plug-and-play unit, has strong robustness and can effectively
improve the performance of existing models simply.

Visualization of Causal Maps: To interpret what CAU has
learned, we choose a typical scenario in the Moving MNIST
dataset and visualize the learned causal maps of the crucial
pixel as shown in Fig. 11. In this figure, the big image in ev-
ery sub-figure represents the prediction results of CAU, and two
small images are the visualizations of causal maps of the cor-
responding pixel in colored boxes (marked as orange and green
pixels respectively) on the big image, which are both the “head”
of each digit.

Although the position characteristics of these two pixels are
similar, their causal maps are quite distinctive. As for the pixel of
digit “2” (the causal maps of which are the orange small images),
the sensitive regions of the causal maps are usually at the tail
of digit “2” and merely located at the head, such as in (a)–(d).
While as for the pixel of digit “7” (the causal maps of which
are the green small images), the significant regions just spread
around it. The tail of digit “2” and the head of digit “7” will meet
and mix together during the whole evolution as shown in (f)–(h).
This shows that CAU can find the most critical regions of object
evolution in the image and make prominent processing.

Meanwhile, the causal maps of these two pixels also imply
that they are “monitoring” each other, especially when two digits
are entangled. For example, there are two obvious highlighted
regions in both causal maps in (a)–(g). But when the two digits
are far apart, the individual causal maps tend to focus only on
their own changes, such as in (h)–(j). It indicates the causal maps
learned by CAU exhibit a good semantic segmentation ability,
clearly separating the positions of the two digits. This is also the
reason why the predictions of CAU are clearer and sharper.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a Causality Attention Unit (CAU)
to improve the prediction accuracy and visual quality for the
STSF problem. It contains two sequential attention and causality
models, playing a significant role to compensate for the ability
of ConvRNN-based models to mine causal relationships via the
superiority of transfer entropy (TE). In addition, a time-space
exchange strategy is designed to accelerate the calculation of
TE, a simple general model for STSF problem based on CAU
is constructed. To evaluate the model performance, we carry
out multiple comparison experiments with other STSF models
on four different public datasets (i.e., Moving MNIST, KTH,
BAIR, and WeatherBench), accompanied with some ablation
and sensitivity studies. The experiment results indicate that our
proposed CAU-based model can effectively improve the quanti-
tative measurements and visual qualities of existing ConvRNN
cells (e.g., MIM, PredRNN++) in a plug-and-play way, reach-
ing the SOTA level. The visualization of the learnt causal maps
demonstrates that CAU is an outstanding tool for distinguish-
ing pixel attribution and motion state in sophisticated entangled
scenarios.

The demand for accurate forecasts is endless. In the future,
we will make better use of the causal module in CAU, identify-
ing key patterns (e.g., saliency map) interpretably. In addition,
we will also continue to optimize and reduce the high memory
occupation in TE’s computation caused by the necessary tensor
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replication, and then explore the application of CAU in more
research areas and datasets for a more comprehensive causal
relationship mining.
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