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Uncertain Facial Expression Recognition via
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Abstract—Deep models for facial expression recognition achieve
high performance by training on large-scale labeled data.
However, publicly available datasets contain uncertain facial
expressions caused by ambiguous annotations or confusing
emotions, which could severely decline the robustness. Previous
studies usually follow the bias elimination method in general tasks
without considering the uncertainty problem from the perspective
of different corresponding sources. This article proposes a
novel method of multi-task assisted correction in addressing
uncertain facial expression recognition called MTAC. Specifically, a
confidence estimation block and a weighted regularization module
are applied to highlight solid samples and suppress uncertain
samples in every batch. In addition, two auxiliary tasks, i.e., action
unit detection and valence-arousal measurement, are introduced
to learn semantic distributions from a data-driven AU graph
and mitigate category imbalance based on latent dependencies
between discrete and continuous emotions, respectively. Moreover,
a re-labeling strategy guided by feature-level similarity constraint
further generates new labels for identified uncertain samples
to promote model learning. The proposed method can flexibly
combine with existing frameworks in a fully-supervised or weakly-
supervised manner. Experiments on five popular benchmarks
demonstrate that the MTAC substantially improves over baselines
when facing synthetic and real uncertainties and outperforms the
state-of-the-art methods.

Index Terms—Facial expression recognition, uncertainty, action
unit, valence, arousal, multi-task learning.

I. INTRODUCTION

FACIAL expressions carry essential information for per-
ceiving human emotions and attitudes in daily commu-

nications. Automatic facial expression recognition (FER) from

Manuscript received 11 April 2023; revised 22 June 2023; accepted 19 July
2023. Date of publication 10 August 2023; date of current version 2 February
2024. The work of Dr. Yang Liu was supported in part by the Finnish Cultural
Foundation for North Ostrobothnia Regional Fund Towards Crowdsensing Fa-
cial Affect Encoder for Trustworthy Mental Wellbeing under Grant 60231712
and in part by China Scholarship Council in the preliminary version of this work
under Grant 202006150091. This work was supported in part by the Academy
of Finland for Academy Professor Project EmotionAI under Grants 336116 and
345122, in part by ICT 2023 Project TrustFace under Grant 345948, in part by
the University of Oulu & The Academy of Finland Profi 7 under Grant 352788,
and in part by the Ministry of Education and Culture of Finland AI Forum
project. The Associate Editor coordinating the review of this manuscript and
approving it for publication was Mr. Jingkuan Song. (Corresponding author:
Guoying Zhao.)

Yang Liu and Guoying Zhao are with the Center for Machine Vision and Signal
Analysis, University of Oulu, FI-90014 Oulu, Finland (e-mail: yang.liu@oulu.fi;
guoying.zhao@oulu.fi).

Xingming Zhang is with the School of Computer Science and Engineer-
ing, South China University of Technology, Guangzhou 510006, China (e-mail:
cxzxm@scut.edu.cn).

Janne Kauttonen is with the Haaga-Helia University of Applied Sciences,
FI-00520 Helsinki, Finland (e-mail: Janne.Kauttonen@haaga-helia.fi).

Digital Object Identifier 10.1109/TMM.2023.3301209

Fig. 1. Uncertainty in RAF-DB, AffectNet, and AffWild2 benchmarks. Top
texts indicate their original labels. Uncertainty commonly exists in different
facial expression datasets.

visual signals of images and videos is a vital technology for
realizing human-computer systems such as remote health care,
virtual reality, and social robots. Due to sufficient labeled data
and high-speed computation resources, deep learning models
have achieved excellent performance and dominated the FER
research recently [1], [2], [3], [4], [5].

High-quality annotated images are significant when devel-
oping a FER method. Early facial expression databases (e.g.,
CK+ [6] and Oulu-CASIA [7]) usually recruit a small scale of
subjects and collect their facial expressions in a lab-constrained
environment. Due to the limited number and conditions, experts
can annotate the data carefully and precisely. To meet the re-
quirement of massive labeled samples for training a deep FER
model, recently released datasets (e.g., RAF-DB [8], Affect-
Net [9], and AffWild2 [10]) gather images from the Internet.
Keeping the labeling consistent in a large-scale manner is hard
for those in-the-wild databases. Therefore, a lot of annotations
could be uncertain or even wrong, which might cause two unde-
sired effects on model training. Firstly, the considerable number
of uncertain facial expressions in the training set will arouse and
strengthen the over-fitting. Secondly, the uncertain samples will
misguide the direction of model learning and decline the final
performance.
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Fig. 2. Distribution of discrete labels and continuous labels in AffectNet’s
training set. Categories with few samples are more likely to be confused with
other classes. Many samples are far from the original category center but close
to other clusters, indicating great uncertainty.

According to the source, there are two categories of uncer-
tainty in the FER task. The first one is subjective annotation.
Labels for existing facial expression datasets are voted by anno-
tators recruited on crowdsourcing platforms [8]. These annota-
tors usually need to gain expertise and will assign different labels
for the same image based on their backgrounds, especially for fa-
cial expressions under in-the-wild scenes. Fig. 1 presents a few
images in RAF-DB, AffectNet, and AffWild2 to illustrate the
prevalence of uncertain samples. Facial expressions in the left
column are typical for people to make consistent annotations.
However, in the other two columns, non-typical behaviors and
occlusions in the wild scenarios could cause different opinions
about the same face.

The second source is intrinsic confusion. Previous FER meth-
ods commonly make coarse category predictions (e.g., six basic
emotions). Nevertheless, expression displays in the real world
are diverse and spontaneous because of different inducements,
postures, and contexts [11], [12]. Some facial expressions are
composed of compound or non-typical emotions in uncon-
strained conditions, which are challenging to be allocated to
a discrete category. This phenomenon worsens when encoun-
tering imbalance categories in the database, as shown in the
distribution visualization of training labels in the AffectNet
dataset (see Fig. 2).

To this end, a few studies have proposed solutions to alleviate
the uncertainty problem. Most of them focused on migrating the
methods of handling data noise in general tasks [13], [14]. Gen-
erally, a specific block for uncertainty estimation will be intro-
duced to weight or relabel every sample during the model train-
ing [15]. Recently, considering characteristics of the FER task in
terms of the variety of annotations and the inter-connectivity of
sub- or similar tasks, introducing the interrelation within multi-
ple annotations such as action units (AUs) and valence-arousal
(VA) has been explored [16], [17]. However, the uncertainty of
facial expressions still plagues these methods due to the follow-
ing issues: 1) different types of uncertainty are lumped together

without targeted treatment; 2) additional multi-label knowledge
is just exploited at the label space instead of the feature space;
3) the relabeling solution without semantic preserving is simple,
declining the confidence of the proxy annotation.

This article develops a new framework to perform uncertain
FER via Multi-Task Assisted Correction, called MTAC. It con-
tains three parts: a target branch and two auxiliary branches.
First, a backbone network is applied to extract facial features
for every training batch. Then, a weighted regularization block
executes confidence measurement for each sample and motivates
the model to prioritize images that have dependable annotations
in the target branch. Based on a parameter-sharing backbone, the
VA estimation task is introduced to jointly supervise the feature
learning with a consideration of category imbalance, while the
AU detection task is conducted by adding a graph convolution
block and extracting the semantic representation of every sam-
ple. When samples are deemed highly uncertain, we assess their
semantic representation against memory templates and re-assign
their labels based on the criterion of feature-level similarity.

This work is an extension of our preliminary investigation
presented on ICPR 2022 [18], where we proposed a new uncer-
tain FER label correction method based on auxiliary AU graphs.
In contrast to the previous iteration, we have improved this ar-
ticle in four areas: 1) we involve a new auxiliary task of VA
estimation for collaborative model training, which can address
the uncertainty caused by the biases of discrete labels on de-
scribing in-the-wild facial expressions; 2) we revise original loss
functions and design a new weighted loss for handling data im-
balance, which can jointly optimize the feature extractor; 3) we
construct a new memory template of weighted semantic cen-
ters and improve the relabeling strategy, which can adaptively
generate pseudo labels for uncertain samples; 4) To conduct a
more extensive evaluation of our approach, we leverage supple-
mentary backbones and benchmarks. In summary, the principal
contributions of this article are:
� MTAC method quantifies the sample confidence and sup-

presses the effects of uncertain discrete labels during the
model training.

� MTAC mitigates the category imbalance and facilitates fea-
ture learning on ambiguous facial expressions with contin-
uous labels in the auxiliary VA estimation task.

� MTAC examines the semantic representation derived from
the auxiliary AU graph and performs relabeling for uncer-
tain samples while adhering to a feature-level constraint.

� Our MTAC approach is demonstrated to be highly effective
in addressing the problem of uncertainty through extensive
experiments on five large-scale benchmarks, outperform-
ing state-of-the-art methods with superior performance.

The remainder of this article is structured as follows: Sec-
tion II provides an overview of various related studies, Sec-
tion III expounds on the MTAC approach, Section IV presents
the experimental results and discussions, and finally, Section V
summarizes and concludes this study.

II. RELATED WORK

This section briefly summarizes the current progress of the
FER research regarding multi-task facial expression analysis,
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graph-based affective representation, and deep learning with un-
certainty.

A. Multi-Task Facial Expression Analysis

Automatically predicting basic emotions is the main task in
traditional FER studies [19], [20]. From psychological findings,
advanced emotional description models have been utilized to
annotate a broader range of facial expressions, such as AUs [21]
and VA [22]. Therefore, recent studies have explored combin-
ing multiple tasks for a generalized feature extractor of facial
images and videos [23]. Zhang et al. [24] devised a cohesive ad-
versarial learning scheme that links the predicted emotions and
the corresponding distribution of continuous annotations. Simi-
larly, Antoniadis et al. [25] captured the dependencies between
categorical and dimensional emotions through a graph convolu-
tional network (GCN). Cui et al. [16] captured the association
between labels at the object and property level, serving as a basis
for updating and generating labels for novel datasets. Chen and
Joo [26] integrated the triplet loss to encode the interdependence
between AUs and facial expressions. Besides emotion-related
tasks, other close facial tasks like facial landmark detection have
provided additional information to facial expression analysis.
Chen et al. [17] addressed label inconsistency by incorporat-
ing landmark detection as a neighboring task and utilizing the
cluster distribution. Toisoul et al. [27] developed a network that
combined facial landmarks with discrete and continuous emo-
tions, utilizing an attention mechanism based on fiducial points.
In contrast, our approach utilizes auxiliary AU detection and
VA estimation tasks to improve uncertainty correction. Each
auxiliary task can be independently integrated during the model
training without causing extra burden in the testing stage.

B. Graph-Based Affective Representation

Effective facial representations are vital for FER meth-
ods [28], [29]. Graph-based methods have emerged as a recent
solution, owing to their ability to capture the anatomy and se-
mantic associations among different facial regions concurrently,
which are considered crucial clues of human facial percep-
tion [30]. Liu et al. [31] designed a graph representation of facial
expressions that consisted of reasonable facial landmarks and
semantic connections, which modeled critical appearance and
geometric facial changes. Zhao et al. [32] constructed a geomet-
ric graph description of facial components more robust to ap-
pearance variations like texture noise and light changes. Besides
facial landmarks, many studies generate graph representations
based on local facial regions. Jin et al. [33] cropped 20 local facial
areas as graph nodes and linked edges according to a trainable
weighted adjacency matrix to exploit intra- and inter-regional
relationships. Xie et al. [34] correlated a cross-domain graph
for global-local feature adaptation to learn invariant represen-
tations of facial expressions. Alternatively, graphs constructed
from the perspective of AUs are also explored. Luo et al. [35]
learned a unique graph describing the dependence within each
AU pair, comprising its activation level and its correlation with
other AUs. Song et al. [36] transferred hybrid messages among

AUs and inferred possible graph structures to provide comple-
mentary information for higher performance. This work focuses
on AU graphs where the extracted semantic representation is
used to constrain the re-labeling strategy. Compared to exist-
ing methods, our AU graph is constructed using a data-driven
approach based on golden or automatic annotations.

C. Deep Learning With Label Uncertainty

Label uncertainty is a common and significant problem in
FER and plagues deep models for many general tasks [37], [38],
[39]. Machine learning researchers usually regard uncertainty as
a noisy label issue and rely on modified loss functions to penal-
ize it. Zhong et al. [40] propagated the uncertain signals across a
confidence graph based on feature similarity and temporal con-
sistency that were used to train a label noise cleaner. Li et al. [14]
regularized the low-dimensional subspace of embedded images
by a consistency loss and a prototypical loss so that alleviated un-
certain samples with a neighboring constraint. Analogously, in
the FER field, Wang et al. [41] introduced a self-cure model that
assigned weights to facial images to reduce the effect of suspi-
cious samples by finding and recovering incorrect annotations.
She et al. [13] utilized a series of mini branches to tackle la-
bel and instance space ambiguity with the pairwise distribution.
Additionally, Zhang et al. [42] developed a weakly-supervised
noise estimation method to learn the correlation between feature
space and the difference from clean annotations. Gu et al. [15]
suppressed the label and feature noise by leveraging a multi-
variate normal distribution and preserving the inter-class corre-
lations. As mentioned before, the FER task suffers from various
uncertainties, which need to be fully considered. To this end, we
combine multi-task and distribution learning to address subjec-
tive annotation and intrinsic confusion problems in this article.
The proposed MTAC can adaptively suppress or correct uncer-
tain samples during the modeling training.

III. PROPOSED METHOD

As mentioned above, the uncertainty in large-scale FER
datasets comes from two aspects, i.e., subjective annotation and
intrinsic confusion. To this end, we need to know which sam-
ples are uncertain to reduce their impact on model training and
correct them to use existing data fully. Inspired by the previous
work [17], [24], we propose leveraging multi-task learning and
distribution learning methodologies to address uncertain FER.
This work has two bases: 1) features of one sample extracted on
similar tasks are correlated, and 2) comparable samples ought
to exhibit a shared interdependence between their label space
and feature representation. This section provides a pipeline of
the MTAC and expounds on its critical components.

A. Overview of MTAC

Fig. 3 provides an outline of the MTAC, which comprises
the following components: 1) a target branch that utilizes fa-
cial features obtained from a pre-trained backbone network
and evaluates the certainty of annotations through a self-
attention block. These confidence scores determine the samples’
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Fig. 3. Outline of MTAC. It has a target branch for FER, one auxiliary branch for VA estimation, and one auxiliary branch for AU detection. The VA branch
supports the feature learning of the target branch by using continuous emotion labels and considering category imbalance, while the AU branch relabels extremely
uncertain samples based on the semantic similarity constraint. Samples are re-annotated if they appear semantically closer to another category center than the
original one in the feature space. Both auxiliary branches are free to work or disabled and will not be involved in the testing phase.

significance during the classification loss computation. 2) one
auxiliary branch of the VA estimation task jointly supervises
the feature learning accompanying the class-oriented loss to si-
multaneously deal with the uncertainty of intrinsic confusion
and class imbalance in the present batch. 3) the other auxil-
iary branch of the AU detection task constructs data-driven AU
graphs, generates a memory template of semantic centers for
every emotion category, and then relabels suspicious samples
based on the rank regularization and the similarity preserving
constraint. The entire MTAC framework is end-to-end, and the
two auxiliary branches can operate separately or jointly and will
not be involved in the testing phase.

B. Target Branch With Uncertainty Measurement

Before handling the uncertainty, we want the model to pro-
vide confidence for each input while making the prediction. As
illustrated in Fig. 4, our target branch follows a broad pipeline
with a feature extractor and a classifier for the FER task. Let
F = [f1,f2, . . .,fN ] ∈ RD×N denote the facial features ob-
tained from a pre-trained backbone network for a batch of N
images, where D represents the dimension of each feature. To
detect the uncertain samples and estimate their levels of uncer-
tainty, we utilize a self-attention block inspired by [41], [43],
which comprises a fully connected (FC) layer and the sigmoid
function. Formally, we can compute the confidence score of the
i-th sample as follows:

αi = Sigmoid
(
W�

af i

)
, (1)

where the parameters of the self-attention layer is denoted by
W�

a . Benefiting from the pre-trained backbone network, it is
effective to learn an effectual confidence score for each sample
in one training batch through this simple block.

During feature learning, it is desirable for images with lower
confidence to have a lesser impact, while samples with higher
confidence should have greater attention within the current
batch. We adopted a weighted Cross-Entropy (CE) loss like [13],
[41] to achieve this. The loss of the FER classifier is computed
explicitly as follows:

Lwce = − 1

N

N∑
i=1

log
eαiW

�
yi

f i∑C
j=1 e

αiW �
j f i

, (2)

where W�
j represents the parameters of the j-th classifier, fi

refers to the facial feature, C and yi are the number of classes
and the original discrete label, respectively. According to [44],
Lwce and α are positively correlated.

C. Auxiliary VA Estimation Branch With Category Balancing

We exploit the VA estimation task as an auxiliary branch to
mitigate the uncertainty of intrinsic confusion and complement
the biases of discrete emotion labels. As shown in Fig. 5, the
VA estimation branch shares the same backbone network as the
target branch. However, it replaces the final classifier with a VA
regressor for continuous predictions. Specifically, we choose the
Concordance Correlation Coefficient (CCC) [45] as our metric
here because it reflects both the trend and the error between
the dimensional label and the regressed value, which can be
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Fig. 4. Pipeline of the target branch. Given a training batch, the confidence score of every sample is calculated by applying a self-attention block and is then used
to suppress the uncertainty in the loss function. These confidence scores are further passed to the auxiliary AU branch for semantic representation learning and
memory template establishment.

Fig. 5. Pipeline of the auxiliary VA branch. Continuous emotion labels jointly
train the parameter-sharing backbone network for better facial feature learn-
ing. Furthermore, the class-oriented weight is calculated to address the issue of
imbalanced categories in discrete labels.

computed as:

ρ =
2σyŷ

σ2
y + σ2

ŷ + (μy − μŷ)
2 , (3)

where y and ŷ represent the continuous label and prediction,
respectively,μ andσ denote the mean and variance, respectively,
and σyŷ indicates the covariance of y and ŷ.

In addition, considering the heavy category imbalance in ex-
isting FER datasets, the class-oriented weight is presented as
follows:

γj = 1− Nj

N
, j ∈ {1, 2, . . ., C}, (4)

where C denotes the total number of categories, Nj and N
represent the count of images in class j and the number of all
samples in the current batch, respectively. The network ought to
focus more on categories with fewer samples. The class-oriented
weight helps to avoid the situation where the training network
converges to major classes faster than minor classes [37]. There-
fore, we propose a weighted CCC loss function for the VA esti-
mation task:

Lw3c =

C∑
j=1

γj

(
1− ρvj + ρaj

2

)
, (5)

Fig. 6. Pipeline of the auxiliary AU branch. The underlying relationship
among AUs is encoded by a data-driven graph from datasets and exploited to
generate the semantic representation of each sample.

where ρvj and ρaj denote the valence CCC and the arousal CCC
of the j-th category, respectively. We put this category balancing
on the VA branch rather than the target branch for two reasons:
1) feature learning in dimensional emotion estimation is not
influenced by imbalanced discrete labels; 2) small categories
have higher uncertainties of the subjective annotation and larger
intra-class distances as shown in Fig. 2. Alternatively, γ can also
be added to (2) similarly to prevent uncertainty from category
imbalance when the VA branch is disabled.

D. Auxiliary AU Detection Branch With Graph Reasoning

Although the uncertainty is significantly alleviated with the
help of the above two branches, low-confidence samples such
as those incorrectly labeled will still decrease the recognition
performance. Meanwhile, the learned confidence score is a
pre-screen step of uncertainty measurement without relevant su-
pervision information, which is not solid enough. Therefore, the
AU detection task is further employed as the other auxiliary
branch as the Facial Action Coding System is proven to have
latent mappings with emotion categories [21], [30], [46]. As
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illustrated in Fig. 6, we could extract a series of AU features
from every sample by utilizing the backbone network, denoted
as Xi = [xi

1,x
i
2, . . .,x

i
M ] ∈ RB×M , where B and M indicate

the feature vector dimension and the number of AUs, separately.
Due to the difficulty in ensuring consistent mappings between

emotion classes and AUs in large-scale databases [31], [47], we
construct a data-driven AU graph that considers independent AU
features as graph nodes and co-occurring AU dependencies as
graph edges. Specifically, our AU graph is established based on
the obtained conditional probability of co-occurring AUs in the
training data, which can be computed as follows:

Ap,q = P (AUp|AUq) =
OCCp∩q
OCCq

, (6)

where OCCp∩q represents the count of instances where both
AUp and AUq are present together, and OCCq refers to the
overall frequency of AUq . As the co-occurring AU dependency
is practically asymmetric, so P (AUp|AUq) �= P (AUq|AUp).

Subsequently, a two-layer GCN is employed to learn the se-
mantic representation from the AU graph. Formally, each graph
convolution layer can be expressed as follows:

X ′ = g(X,A) = LeakyRELU
(
ĀXW g

)
, (7)

where Ā represents the normalized A with rows summing to
one, and W g denotes the weight matrix to be learned in the
present layer.

Then, all GCN node features are supplied to a FC layer along
with sigmoid functions for every AU prediction. Similar toLwce,
we enhance the binary cross-entropy loss with the confidence
score to train each AU classifier, and we formulate the overall
weighted group loss of the AU branch as:

Lwau = −
M∑

m=1

α (zm log pm + (1− zm) log (1− pm)), (8)

where α denotes the confidence score, zm and pm represent the
golden/pseudo annotation and the prediction for the m-th AU,
separately. Logits si ∈ R1×M before the AU classifier serves as
the semantic representation of the image.

E. Semantic Similarity Constrained Relabeling

We devise a semantic similarity-constrained relabeling strat-
egy to identify the annotations that require correction and the
new categories that need to be assigned (see Fig. 7). For ev-
ery training batch, a center set for all emotion categories U =
[u1,u2, . . .,uC ] ∈ RM×C is generated based on the semantic
representations and the confidence scores, which can be com-
puted using the following formulas:

U j =
1

Nj

Nj∑
nj=1

αnj
snj

, (9)

where Nj represents the sample count with the j-th label in
the present batch. A memory template T ∈ RM×C is initialized
and continuously updated during the entire training procedure
as follows:

T j =
(
1− e−τh

)
T j + e−τhU j , τ ∈ (0, 1], (10)

Fig. 7. Pipeline of the relabeling strategy. A memory template is built and
updated based on the average category centers and then constrained the relabel-
ing strategy with similarity distance. The new label then participates in network
optimization in the target branch.

where h denotes the batch index, and τ is a control factor of up-
dating rate. Eventually, the memory template will gradually sta-
bilize as the model converges [48]. After that, the cosine distance
between each semantic representation si and each of semantic
center tj in T is computed as:

dist (si, tj) = 1− tj · si
‖tj‖‖si‖ . (11)

Next, for every sample in the current batch, we rank all its se-
mantic distances to the memory template T . Benefiting from the
other two branches, the uncertain samples should be suppressed
and far from their original category center. Thus, for those sam-
ples with extreme uncertainty, we relabel them following the
semantic similarity constraint, which could be formulated as
follows:

y′i =

{
j, if dist(sl, torg) > min (dist (sl, tj))

yi, otherwise
, (12)

where y′i denotes the pseudo annotation, org indicates the orig-
inal discrete category, and j �= org. Note that this relabeling
strategy will only take effect if the semantic distance to the orig-
inal category center is not the shortest in the ranking. We assign
the sample a new label in such cases by selecting the template
class that exhibits the greatest semantic similarity.

F. Network Training

Eventually, the complete loss of the MTAC framework could
be expressed as:

Ltotal = λ1 (Lwce + Lw3c) + λ2Lwau, (13)

where λ1 and λ2 are determined using weighted ramp functions
that evolve with epoch rounds [49], which can be calculated in
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the following way:

λ1 =

⎧⎨
⎩exp

(
−
(
1− β

H

)2
)
, β ≤ H

1, β > H
, (14)

λ2 =

⎧⎨
⎩
1, β ≤ H

exp

(
−
(
1− H

β

)2
)
, β > H

, (15)

whereβ denotes the current epoch index, andH is a constant that
controls the participation of different branches. Using weighted
ramp functions, MTAC can prioritize the AU branch during the
initial training phase, where the number of accumulated sam-
ples is limited and effective semantic representations and solid
memory templates cannot be generated.

As the model undergoes a certain number of training rounds,
it progressively focuses on the target and VA branches to ex-
tract distinctive features crucial for making accurate predictions.
The two auxiliary branches can boost the whole network train-
ing with the joint supervision of lwce, lw3c, and lwau functions.
Moreover, our MTAC can work independently with the target
branch, while the two auxiliary branches can be flexibly com-
bined into the framework without additional inference burden.

G. Discussion

In this part, we analyze the distinctions between the MTAC
approach we propose and other methods for uncertainty-aware
FER approaches, such as LDL-ALSG [17], LDLVA [50],
SCN [41], DMUE [13], and FENN [15].

1) Difference From LDL-ALSG [17] and LDLVA [50]: LDL-
ALSG and LDLVA were two relevant methods that exploit
neighborhood knowledge based on k-nearest-neighbor graphs.
Nevertheless, the landmark label space used in LDL-ALSG
could not keep good accuracy and reflect the actual label distri-
bution, especially on large-scale in-the-wild datasets. Although
LDLVA applied pseudo VA annotations and constrained sim-
ilarities, it led to extra training costs along with the neighbor
number of every sample, so that could not perform the efficient
uncertain correction. Differently, our MTAC enabled effectively
learn semantic feature-level distribution through data-driven AU
graphs and adaptively handle uncertain labels with the con-
structed memory templates without adding too much compu-
tation.

2) Difference From SCN [41] and DMUE [13]: Both SCN
and DMUE estimated the sample uncertainty. However, the un-
certain label cure in SCN was very rough because it relied on
the predicted probability without any constraint of extra knowl-
edge, causing inevitable performance degradation. Conversely,
DMUE utilized multiple auxiliary branches to alleviate the un-
certainty in the label and instance spaces by the latent distri-
bution learning. Nevertheless, it lacked explicit relabeling for
extremely uncertain labels, which could lead to weak toler-
ance when training on large-ratio uncertain data. In contrast, our
MTAC initially exploited AU detection and VA estimation tasks
separately or collaboratively to assist in uncertainty mitigation.
The proposed weighted loss functions, the data-driven semantic

dependencies, and the feature-level similarity constraint boosted
effective uncertain FER.

3) Difference From FENN [15]: FENN suppressed the un-
certainty by exploring the inter-class correlations and extract-
ing compact intra-class descriptions. Nevertheless, it needed to
introduce the additional knowledge of neighbor label spaces,
which could not achieve label correction during model training.
Differently, our MTAC took advantage of multi-task learning,
using large-scale training data under both subjective annotation
noise and intrinsic confusion noise.

Overall, the proposed MTAC is not a simple combination
of existing papers. This work is the first time exploiting the
AU graph to realize uncertain label correction based on feature-
level similarity preserving. Meanwhile, it is also a pilot study of
leveraging continuous emotion labels for uncertain mitigation.
The whole framework can be flexibly modified according to the
metadata of different datasets. Contributions of all the proposed
modules and the improvements against existing methods will be
reported in Section IV.

IV. EXPERIMENTS

In this section, we perform extensive experiments to evalu-
ate the effectiveness of MTAC in ablation study, tackling syn-
thetic and real uncertainty and multi-task performance against
the state-of-the-art.

A. Datasets

Five challenging FER benchmarks are used for evaluation,
i.e., RAF-DB [8], AffectNet [9], AffWild2 [10], FERPlus [51],
and SFEW [52]. All five datasets have in-the-wild scenarios and
large-scale images containing subjective or intrinsic uncertainty.

RAF-DB comprises 15,339 in-the-wild images labeled with
six basic emotions and neutral. For our studies, we utilized
12,271 and 3,368 images for training and testing separately.
Since no continuous emotion labels are provided, the VA branch
will be disabled in the experiment on RAF-DB.

AffectNet consists of nearly one million facial expression
images. We select samples with manual annotations of six basic
emotions and neutral for equitable evaluation. Training and test
sets comprise 283,901 and 3,500 images, separately. Further-
more, we leverage the automatically annotated images in Affect-
Net as a subset of real noisy data, referred to AffectNet_Auto, to
evaluate the capacity of MTAC to handle uncertain expressions.

AffWild2 is the first audiovisual dataset with labels for var-
ious tasks, including FER, VA estimation, and AU detection. It
comprises 558 videos with around 2.8 million images of facial
expressions. In this work, we use the subset of ’MTL_Challenge’
with seven discrete labels, VA labels, and AU labels simultane-
ously, which consists of 39,614 and 10,839 training and testing
samples, respectively.

FERPlus is an enhanced version of the FER2013 [53] dataset.
It consists of 28,709 training images and 3,589 testing images,
and all resized to 48× 48 grayscale pixels. Each image is labeled
from one of eight categories based on the collaboration of ten
crowd-sourced annotators. For a fair evaluation, the category
with the highest number of votes is selected as the label for each
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sample, similar to [13], [41], [54]. Like RAF-DB, the VA branch
will be turned off in the experiment on FERPlus.

SFEW consists of 958 training images and 436 testing im-
ages extracted from video clips of real-world movies, repre-
senting seven basic emotions. The dataset is divided into train-
ing, validation, and test groups. We provide the overall accuracy
achieved on the testing set to ensure a reliable evaluation. Simi-
lar to RAF-DB and FERPlus, the VA branch will be disabled in
the experiment on SFEW.

Due to the need for trained experts and the time-consuming
nature of AU annotation, no dataset except AffWild2 provides
AU labels. To address this limitation, we utilized Openface
2.0 [55] to automatically produce pseudo AU annotations, like
in [17], [26]. For AffWild2, the original AU labels are used to
generate the AU graph. In other words, the AU branch and the
relabeling can work either fully or weakly supervised and are
compatible with various datasets. Moreover, the AU branch does
not participate in the parameter update of the backbone network.
Our MTAC utilizes a feature-level semantic similarity constraint
to adaptively correct the extremely uncertain sample instead of
directly replacing it with the prediction, which can mitigate the
adverse effects of inaccurate pseudo AU annotations.

B. Implementation Configuration

The MTAC is developed using the Pytorch platform and
is trained on two Nvidia Volta V100 GPUs. We use cropped
facial regions as inputs, resized to 224 × 224 pixels. The
ResNet-18 [56] and the DenseNet-121 [57] pre-trained on the
MS-Celeb-1 M and SwinTransformer-Small [58] pre-trained on
the ImageNet-1 K are used as backbone networks, as in previous
methods [13], [41], [54]. The initial learning rate for the Adam
optimizer is set to 0.01 for the target and auxiliary VA branches,
which is then reduced to 10−3 and 10−4 at the 10-th and 20-th
epoch, separately. Every GCN layer has 64 channels in the aux-
iliary AU branch, with control factor τ and decayed learning
rate set as 0.9 and 0.005, respectively. To ensure that all tem-
plates are effectively updated during training, a batch size 512
is chosen, while the H defaults to 5. The relabeling starts after
10 epochs to ensure a stable memory template of the semantic
representation.

C. Ablation Study

A few ablation studies are performed to verify the contribution
of every branch in MTAC and the key hyper-parameter proposed
in this article.

1) Components Evaluation: MTAC deals with the effects of
uncertain samples based on three branches, i.e., target branch,
auxiliary VA branch, and auxiliary AU branch. The target
branch suppresses suspicious samples and highlights valid in-
puts through confidence measurement and weighted loss func-
tion. The VA branch optimizes the parameter-sharing network
with continuous annotations and considers the category imbal-
ance. The AU branch corrects extremely uncertain labels with
the data-driven AU graph and semantic memory templates. Var-
ious network architectures can incorporate any of the three

TABLE I
EVALUATION OF DIFFERENT BRANCHES. ‘TARGET B.(RANCH)’ APPLIES THE

UNCERTAINTY MEASUREMENT, AUXILIARY VA B.(RANCH) EXECUTES THE

JOINT FEATURE LEARNING AND THE CATEGORY BALANCING, AND AUXILIARY

AU B.(RANCH) EXPLOITS THE DATA-DRIVEN AU GRAPH AND THE SEMANTIC

SIMILARITY CONSTRAINED RELABELING

TABLE II
EVALUATION OF THE CLASS-ORIENTED WEIGHT

branches in a versatile manner. In this study, we propose five dif-
ferent configurations to verify the effectiveness. Please note that
on RAF-DB, the target branch employs class-oriented weights
owing to the absence of continuous labels. When none of the
branches is activated, the network performs like a conventional
ResNet-18 model.

Table I demonstrates that the individual target branch consid-
erably improves the FER accuracy across three datasets. A more
remarkable improvement can be achieved using two auxiliary
branches, respectively. In particular, the VA branch performs
slightly better than the AU branch on AffectNet and AffWild2
because of the additional knowledge from the continuous label
space and the manipulation for the huge category imbalance.
The best performance comes from the complete MTAC frame-
work, with all three branches considering the uncertainty from
subjective annotation and intrinsic confusion.

Additionally, we perform statistical analysis between the
backbone and the MTAC. First, a two-sample F-test is em-
ployed to assess the quality of variances, demonstrating that
the two data have equal variances. Afterward, a paired two-
tailed T-test is utilized to examine the performance difference
(H0 : There is no performance difference between backbone and
MTAC). As reported in Table I, the p-value demonstrates that our
MTAC achieves statistically significant improvements among
three benchmarks.

2) Impact of the Class-Oriented Weight: Most large-scale
facial expression datasets have severe category imbalances. In
MTAC, the proposed class-oriented weight γ is compatible with
various loss functions. In this experiment, we design three dif-
ferent settings, i.e., MTAC without γ, γ in the target branch (as
our preliminary work in ICPR 2022 [18]), and γ in the auxil-
iary VA branch. As presented in Table II, the category balancing
contributes significantly to the model training. It performs better
in the VA branch, demonstrating our statement in Section III-C.

3) Impact of the Data-Driven Graph: Relabeling under se-
mantic similarity constraints is another essential module of
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TABLE III
EVALUATION OF THE DATA-DRIVEN GRAPH

TABLE IV
EVALUATION OF PSEUDO AU LABELS

MTAC for uncertainty mitigation. Its semantic information of
AU co-occurring dependencies is encoded with a data-driven
AU graph. To study the established edges, we randomly ini-
tialize A with element values from 0 to 1 to shield edge at-
tributes in this experiment. We also design a fully-connected
A that every element is fixed as 1. As shown in Table III, the
random edges introduce additional uncertainty and lead to per-
formance decreases, while the fixed edges can not reflect the AU
co-occurrence and approximate the actual distribution. On the
contrary, our data-driven AU graph helps the GCN to generate
better semantic representations and further boosts the memory
templates and the relabeling.

4) Impact of the Pseudo AU Labels: Since few existing FER
datasets provide manual AU annotations, we exploit pseudo AUs
extracted by OpenFace. In other words, the auxiliary AU branch
of MTAC can work in a fully supervised way with real AU anno-
tations or in a weakly supervised way with pseudo AU labels. We
experimented with the AffWild2 dataset using pseudo AU labels
to study its effect. In addition, due to the AU label also influenc-
ing the AU graph construction, we further replace the original
data-driven edges with those computed based on RAF-DB and
AffectNet, respectively. As presented in Table IV, the real AU
annotation significantly contributes to the final FER result. Al-
though pseudo AUs lead to a performance decrease, it still out-
performs the model without the auxiliary AU branch, as reported
in Table I. Despite the change of data-driven edges, the Affect-
Net AU graph shows a competitive performance compared with
pseudo AffWild2 AUs because of its large-scale samples, while
the RAF-DB AU graph suffers a degradation.

D. Performance Evaluation of Handling Uncertainty

Here, we evaluate the proposed MTAC’s ability to deal with
uncertain samples. Specifically, we performed comparative tests
under synthetic and real-world uncertainty scenarios. Two base-
line methods, i.e., ResNet-18 and DenseNet-121, along with
two state-of-the-art methods considering uncertainty, namely
SCN [41] and DMUE [13], are chosen for the competition.

1) Synthetic Uncertain Samples: Similar to [41] and [13],
we synthesize 10%, 20%, and 30% samples in the training sets
of RAF-DB and AffectNet respectively, with a random category
other than their original labels. From Table V, the proposed

TABLE V
EVALUATION OF ENCOUNTERING SYNTHETIC UNCERTAIN SAMPLES

TABLE VI
EVALUATION ON THE BENCHMARK WITH REAL UNCERTAIN SAMPLES

MTAC outperforms baselines on two datasets, illustrating that
uncertain samples hamper network training. Furthermore, with
a growing proportion of uncertainty, the performance decline
of MTAC compared to the corresponding baselines is compar-
atively lower, which serves as additional evidence for the ef-
fectiveness of our semantic similarity constraint at the feature
level. The DMUE achieves the best results on AffectNet by
multi-branch distribution learning when facing 10% and 20%
uncertainty. Benefiting from multi-task correction, our MTAC
obtains competitive performance in the above two settings and
performs the best in the experiment with 30% uncertainty.

2) Real Uncertain Samples: Besides synthetic uncertainty,
we introduce the AffectNet_Auto subset that contains naturally
uncertain samples with incorrect labels and confusing emotions
to enhance real uncertainty validation, which is barely conducted
by existing work. The automatic labeling accuracy reported in
the official document is 65% [9]. In Table VI, we demonstrate
that MTAC outperforms other methods when dealing with ac-
tual ambiguous samples, and the increase in performance is more
significant than that observed in the synthetic uncertainty exper-
iment. This could be attributed to our approach accounting for
the intrinsic confusion in real data. Specifically, MTAC utilizes
the class-oriented weight in the auxiliary VA branch to allevi-
ate the uncertainty of imbalanced classes, while the auxiliary
AU branch employs a semantic memory template with updated
category centers to facilitate promising annotation correction.
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Fig. 8. Visualization of joint feature learning. Two examples of each dataset in RAF-DB, AffectNet, and AffWild2 are shown. The top left block denotes the
confidence score α, and the bottom block presents the label of the current sample. From left to right of every three columns are the original, synthetic, and corrected
samples, respectively.

E. Visualization

To present the specific manipulation effect of MTAC on un-
certain samples, we visualize the intermediate results in terms of
passive uncertainty suppression with uncertainty measurement
and active uncertainty correction with relabeling.

1) Uncertainty Measurement: Fig. 8 depicts the visualiza-
tion of the uncertainty measurement in the target branch on
samples in RAF-DB, AffectNet, and AffWild2. Generally, our
MTAC effectively figures out the uncertain samples based on the
confidence score and adaptively updates the value after the re-
labeling execution. In the second case of AffectNet, our MTAC
accurately identifies the synthetic uncertainty and performs a
correction for the original annotation.

2) Relabeling: To exhibit the semantic similarity-
constrained relabeling workflow, we demonstrate the prediction
distribution in the target branch and the semantic distance in the
auxiliary AU branch using samples in RAF-DB, AffectNet, and
AffWild2. Additionally, we compare our relabeling technique
with subjective annotations obtained from twelve volunteers.
As shown in Fig. 9, the memory template generated from
the centers of semantic representation can widen the distance
between classes. The distribution of predicted emotion cat-
egories closely resembles that of manual annotations. These
results indicate that our MTAC can handle uncertain samples,
facilitating model training and contributing to FER accuracy.

F. Performance Evaluation With the State-of-The-Art

Since the proposed MTAC is designed for FER on large-scale
datasets and utilizes multiple labels, we verify it with state-of-
the-art approaches for single-task and multi-task performance
evaluation.

TABLE VII
EVALUATION WITH THE STATE-OF-THE-ART

1) Evaluation of Single FER Task: Table VII shows the
performance comparison. To summarize, our method performs
the best and the top-2 accuracy on RAF-DB and AffectNet,
respectively. Despite LDL-ALSG [59] and Face2Exp [60]
incorporates supplementary knowledge to facilitate model
training, it solely takes into account the distribution at the
label level and is unable to rectify uncertain samples, leading
to performance degrade. In addition, IPA2LT [59], SCN [41],
WSND [42], and FENN explicitly deal with uncertain labels
and thus achieve good results. However, intrinsic uncertainty
can still limit their feature learning without information in the
side space. By leveraging uncertainty estimation, data-driven
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Fig. 9. Visualization of relabeling. Two examples of each dataset in RAF-DB, AffectNet, and AffWild2 are shown. The light color block at the top denotes
the synthetic uncertain label, the dark color block at the bottom left indicates the new label after relabeling, and the dark block at the bottom right presents the
confidence score α after correction. From left to right of every four columns are the original sample, prediction distribution, semantic similarity distance, and
voluntary annotation statistic, respectively. DI, HA, SA, and SU are disgust, happiness, sadness, and surprise, respectively.

Fig. 10. Computation comparison of MACs and accuracy between baseline
methods and MTAC. The gray bar and the blue spot indicates the accuracy and
the MACs of each model, respectively.

AU graph, and feature-level constrained relabeling, the pro-
posed MTAC surpasses NMA [24] and delivers comparable
performance to DMUE [13], which employ both uncertainty
alleviation and auxiliary task concurrently. This demonstrates
the contribution of the proposed modules in our study.

Similarly, we execute statistical analysis comparing baselines
and MTAC. To assess the performance difference, we employ a
series of paired two-tailed T-tests to examine the performance
difference (H0 : There is no performance difference between
baseline # and MTAC). The p-value presented in Table VII indi-
cates that our MTAC exhibits statistically significant improve-
ments against SCN and FENN on three benchmarks and RAN
across all four datasets, respectively.

TABLE VIII
MULTI-TASK PERFORMANCE COMPARISON

2) Multi-Task Evaluation: To showcase the ability of MTAC
to perform multi-task prediction, we present two advanced tech-
niques, namely Emotion-GCN [25] and EmoFAN [27], which
are re-implemented by ourselves for additional validation. As
shown in Table VIII, our MTAC performs the best in the discrete
emotion classification and obtains competitive CCC scores in the
continuous emotion regression on both benchmarks, which are
more robust than another two multi-task methods. One possible
reason is that the uncertainty correction of discrete labels op-
timizes model parameter updates for more discriminate facial
features and improves generalization performance on the VA
estimation task.

G. Computation Complexity

Since the proposed MTAC introduces two auxiliary branches
during the training process, we explore its computation increases
compared with baseline methods. Here, two common metrics,
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i.e., multiply-accumulate computations (MACs) and accuracy,
are used for evaluation. As shown in Fig. 10, compared with the
corresponding backbone networks, w.r.t, ResNet-18, DenseNet-
121, and SwinTransformer-Small, our MTAC achieves signif-
icant improvements with a slight computation burden, further
illustrating the flexibility of the proposed framework.

V. CONCLUSION

In this article, we proposed the MTAC framework to allevi-
ate the uncertainty in facial expression images. The target FER
branch measured uncertainty to calculate the confidence score
and strengthen valid samples during model training. The aux-
iliary VA branch executed category balancing and joint feature
learning with the support of continuous emotion labels. The aux-
iliary AU branch constructed the data-driven AU graph to gener-
ate semantic representations. The relabeling strategy corrected
extremely uncertain samples under the feature-level similarity
constraint based on the updated memory templates. Our MTAC’s
modular design allows for adding and removing branches based
on what is needed during training and inference. Extensive ex-
periments on five large-scale datasets showed that MTAC was
robust to uncertain samples and achieved superior results in the
FER task.

Although the MTAC performs competitive FER with full or
weak supervision, the requirement of neighboring VA and AU
annotations might limit the practical deployment. Alternative
auxiliary tasks like face recognition and landmark detection
could be introduced. Conversely, MTAC can be expanded to
produce labels for incremental learning, pre-train universal en-
coders of facial expressions, and address the uncertain problem
in other data modalities.
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