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Perceptual Quality Improvement in
Videoconferencing Using Keyframes-Based GAN
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Abstract—In the latest years, videoconferencing has taken a
fundamental role in interpersonal relations, both for personal
and business purposes. Lossy video compression algorithms are
the enabling technology for videoconferencing, as they reduce
the bandwidth required for real-time video streaming. However,
lossy video compression decreases the perceived visual quality.
Thus, many techniques for reducing compression artifacts and
improving video visual quality have been proposed in recent
years. In this work, we propose a novel GAN-based method for
compression artifacts reduction in videoconferencing. Given that,
in this context, the speaker is typically in front of the camera
and remains the same for the entire duration of the transmission,
we can maintain a set of reference keyframes of the person from
the higher-quality I-frames that are transmitted within the video
stream and exploit them to guide the visual quality improvement;
a novel aspect of this approach is the update policy that maintains
and updates a compact and effective set of reference keyframes.
First, we extract multi-scale features from the compressed and
reference frames. Then, our architecture combines these features
in a progressive manner according to facial landmarks. This
allows the restoration of the high-frequency details lost after the
video compression. Experiments show that the proposed approach
improves visual quality and generates photo-realistic results even
with high compression rates.

Index Terms—Video restoration, generative adversarial net-
works, videoconferencing.

I. INTRODUCTION

IN THE latest years videoconferencing has become a pri-
mary means of personal and business communication all

over the world, also because of the emergence of the COVID-19
pandemic.

Lossy video compression algorithms such as H.264 and H.265
allow to decrease the bandwidth required for video transmission
but introduce compression artifacts that reduce the perceived
quality of the video stream. The degradation of the visual quality
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worsens the user experience, even making it unacceptable in
certain cases.

For these reasons, the development of methods for video qual-
ity enhancement constitutes a very active area of research. In
the latest years, Generative Adversarial Networks (GANs) have
emerged as one of the most promising and powerful tools for
several image and video processing tasks, thanks to their ability
to generate photorealistic and perceptually satisfying results [1],
[2], [3].

Applying deep learning-based enhancement methods to
videos has several advantages. Firstly, these methods can be
applied as post-processing steps to existing video compression
and transmission systems without requiring to change any com-
ponent and being independent of the specific video codec em-
ployed. Secondly, enhancing the visual quality of videos reduces
compression artifacts and other types of degradation, thus im-
proving the user experience. Finally, the improvement in the
perceived quality makes it possible to transmit videos with
higher compression rates, consequently reducing the needed
bandwidth. For example, [4] uses semantic video coding and
a GAN to obtain a quality comparable to the one obtained by
standard H.264 with three times the bandwidth. [5] proposes a
talking-head synthesis approach that reconstructs a video using
one-tenth of the original bandwidth.

Contributions: In this work we propose a novel GAN-based
approach for improving visual quality in videoconferencing. In
videoconferencing the background has so little relevance [6] that
some commercial solutions provide features to blur or replace
the background with a virtual one. For this reason, we focus on
the enhancement of the framed person, and in particular on the
head area, because it is the most expressive and important part
of interpersonal communications. Our approach is based on the
assumption that the subject speaking in front of the camera stays
the same for a relatively long consecutive time frame, so that we
can exploit for enhancement the previous high-quality reference
keyframes of the Group of Pictures (GOP) coding (i.e. the so-
called I-frames), used in video compression algorithms as the
base for motion-based compression. In particular, we propose a
novel policy to create and update a set of reference keyframes in
order to keep this set small, and thus memory efficient, and also
to make it effective for the improvement of the visual quality. Our
model extracts multi-scale features of the compressed frame and
a reference keyframe and then combines them according to the
facial landmarks (see Fig. 1). The feature fusion is performed
with Adaptive Spatial Feature Fusion (ASFF) [7] and Spatial
Feature Transform (SFT) [8] blocks in a progressive manner that
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Fig. 1. Overview of the proposed system at runtime. High quality reference keyframes (video I-frames) are used in our GAN-based approach to improve the
visual quality of the video conference stream. The algorithm used to update the keyframe reference set is a key element to improve the visual quality of the restored
frames.

helps in restoring coarse-to-fine details. We designed a pipeline
for video enhancement that involves preserving a limited number
of keyframes extracted from the video stream and using the
most useful ones as a reference for restoring the compressed
frame. The experiments and the comparison with competing
state-of-the-art approaches show that our proposed method is
very effective in generating photo-realistic results even with high
compression rates.

II. RELATED WORKS

a) Video Coding: Some interesting initial works have ad-
dressed the quality improvement of videos and images using
coding based on neural networks [9], [10]. These approaches
are currently not deployable with satisfying visual results due to
an unbearable computational cost. Moreover, fully learned com-
pression requires the standardization and diffusion of a novel
technology, which is a very high market barrier to practical use.

b) Video Quality Improvement: Recently, many learning-
based image enhancement techniques have been proposed [1],
[2], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]. Such
approaches learn deep convolutional architectures, often based
on GANs, to restore low-quality images corrupted by compres-
sion artifacts into high-quality ones, and deal with generic video
content. [21] presents a Multi-Frame Quality Enhancement ap-
proach for compressed videos. After observing that the quality of
compressed videos fluctuates across frames, the authors devel-
oped a BiLSTM-based detector to locate Peak Quality Frames
(PQFs), that is frames that have a higher quality than their neigh-
bors, whose information can be exploited to reduce the distortion
of low-quality frames. A non-PQF and its nearest two PQFs are
the input of a multi-frame CNN, composed of a motion compen-
sation and a quality enhancement subnet. [22] presents EDVR,
a video restoration framework with enhanced deformable con-
volutions. A pyramid, cascading and deformable module uses
deformable convolutions in a coarse-to-fine manner to align the
features of the reference frame to that of its neighboring frames
and then a temporal and spatial attention fusion module com-
bines them.

c) Face Quality Improvement: Face super-resolution has been
addressed in [23], where the authors proposed GWAInet, a

GAN-based approach that performs 8× face super-resolution
using a HR reference image of the same person depicted in
the LR image. A warper subnetwork aligns the contents of the
reference image to the input image. Then, after extracting the
features of the LR and HR images, a feature fusion chain com-
bines them to exploit the reference image. A peculiarity of this
method is that it does not require facial landmarks for the train-
ing. In [24] super-resolution of extremely degraded faces is dealt
with a GAN that produces a coarse SR image. Then, the result is
refined by exploiting facial components extracted from multiple
high-quality warped images of the same person or a similar one.
In [25] the problem of face quality improvement is formulated
as a dual-blind restoration problem, lifting the requirements of
both the degradation and structural prior for training. The authors
present HiFaceGAN, a collaborative suppression and replenish-
ment framework with a nested architecture for multi-stage face
renovation with hierarchical semantic guidance. [26] proposes a
GAN prior embedded network for blind face restoration, using
a U-shaped DNN for face restoration as a decoder. PSFR-GAN,
a GAN-based Progressive Semantic-aware Style Transforma-
tion framework presented in [27], uses a face parsing network
to obtain a segmentation map given an LQ face image. The in-
put image and the segmentation map are exploited to produce a
multi-scale pyramid of the inputs modulating different scale fea-
tures with a semantic-aware style transfer approach. A semantic
aware style loss accounts for each semantic region individu-
ally. In [28] blind face restoration task is tackled with a Guided
Face Restoration Network (GFRNet) that takes advantage of
a high-quality reference image of the same identity. A warper
subnetwork reduces the difference in pose and expression be-
tween the two images to better recover fine and identity-aware
facial details with a reconstruction subnetwork. The Deep Face
Dictionary Network (DFDNet) proposed in [29] attempts to
overcome the main limitation of reference-based methods by
observing that facial components are similar between different
people. Multi-scale dictionaries of facial parts are built offline
with K-means from high-quality images. The features in the dic-
tionaries most similar to the facial components of the degraded
input are leveraged for restoration by means of Dictionary Fea-
ture Transfer and Spatial Feature Transform blocks. In [7] blind
face restoration is tackled by exploiting a high-quality image
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selected from multiple available images of the same person as
a reference to restore a degraded one. The features of the guid-
ance image are warped to the low-quality ones according to the
facial landmarks to reduce the difference in pose and expres-
sion. Multiple Adaptive Spatial Feature Fusion blocks combine
the degraded and guidance features by generating an attention
mask with facial landmarks to guide the restoration of the fa-
cial components. In [4] a method that combines semantic video
coding and GAN-based video quality restoration is proposed
for video conference systems, using a perceptual loss that ac-
counts separately for the background and the foreground face.
[30] presents HeadGAN, a method for head reenactment that
conditions head synthesis on 3D face representations from a
driving video. Audio features are exploited to better synthesize
mouth movements. When driving and reference identities co-
incide, HeadGAN can be used for face reconstruction. In [31]
facial priors encapsulated in a pretrained GAN (GFP-GAN) are
incorporated for blind face restoration by means of channel-split
Spatial Feature Transform layers. Unlike GAN inversion meth-
ods, GFP-GAN can restore faces with a single forward pass. [32]
tackles blind face restoration with a GAN that uses multi-scale
facial features. A feature prior loss aims to reduce the differ-
ence in the feature space between the input and restored images,
thus preserving the overall image content and spatial structure
information. [33] proposes a restoration with memorized mod-
ulation framework for blind face restoration. Low-level spatial
feature embedding, wavelet memory embedding and disentan-
gled high-level noise embedding are combined with adaptive
attention maps. [34] presents DAVD-Net, a DCNN architecture
that exploits the audio-video correlations to remove compres-
sion artifacts in close-up talking head videos. The audio features
are extracted with a BiLSTM and organized in a 2D form. The
video and audio features are aggregated with a spatial attention
module. To further improve the restoration the structural infor-
mation of the encoder in the video compression standards is
embedded into the network by adding a constraining projection
module. In [35] face quality of compressed videos is enhanced
with MRS-Net+, a multi-level architecture comprised of one
base and two refined enhancement levels which restore small,
medium and large-scale faces, respectively. A landmark-assisted
pyramid alignment subnet is developed to align faces across
consecutive frames. [36] and [37] exploit a multi-modality neu-
ral network to restore strongly compressed face videos. They
both use video and audio signals, combined with codec infor-
mation in [36] and with an emotion state in [37]. [38] presents a
multi-task face restoration network that relies on network archi-
tecture search to restore images affected by various degradations.
Additionally, during training clean images of the same subject
as the degraded image are exploited by means of an identity loss.
[39] proposes a method based on fully-spatial attention to tackle
blind face restoration. A multi-head cross-attention layer takes
the features of a degraded face as queries while the key-value
pairs are from high-quality facial priors. The key-value pairs are
sampled from a reconstruction-oriented high-quality dictionary.

Even if our aim is to improve the perceptual quality of videos
we did not follow the standard multi-frame restoration approach
that is commonly used in video restoration tasks, such as in

MFQE 2.0 [21], MRS-NET+ [35] or DAVD-Net [34], because it
usually involves looking also at future frames and this is not pos-
sible in a real-time stream. Surely taking into account only past
neighboring frames is a possibility, but we preferred to consider
possibly very distant I-frames and not necessarily the closest
one. This preference is possible in videoconferencing because
the subject usually is the same for the entire transmission so old
I-frames can still be very useful in restoring the current com-
pressed frame. This is similar to exemplar-guided face image
restoration techniques but given that our method is applied to
videos we can exploit multiple I-frames from the same video
stream as possible references, dynamically updating the set of
keyframes with the policy we designed to obtain the best perfor-
mance. Precisely the LFU-inspired update strategy for the dy-
namic set of keyframes is what mainly differentiates our work
from exemplar-based face restoration methods that constitute the
state-of-the-art. For instance, ASFFNet [7] relies on a given set
of reference images representing the same person and it can not
handle a dynamic set of references, nor a policy for updating
it. Similarly, DFDNet [29] needs an offline-generated dictio-
nary of features of different subjects, therefore it can not exploit
high-quality I-frames of the same subject that arrive in real-time.

III. PROPOSED APPROACH

Since its introduction in [40], the Generative Adversarial Net-
work (GAN) framework has emerged as a powerful tool for var-
ious image and video synthesis tasks, such as image-to-image
translation [41], face reenactment [42] and pose transfer [43].
Compared to other deep generative models, like Deep Boltz-
mann Machines [44] or Variational AutoEncoders [45], GANs
proved to be able to generate more photorealistic results [3], [46],
and have been successfully used to improve the visual quality
of images [2] and videos [20]. Our method is based on such a
framework.

A. Proposed Architecture

We propose a novel GAN architecture shown in Fig. 2 and in-
spired by [7] and [29]. Similarly to [7], we adopt the ASFF block
and Moving Least Squares for warping. Differently from [7],
we warp directly the reference image and not its features and
we extract and fuse features at multiple scales in a progressive
manner to help the network in restoring coarse-to-fine details.
We took inspiration from [29] in the use of multi-scale features
and of the SFT block, but we leverage a high-quality image of
the same person to better restore subject-specific details. Differ-
ently from both [7] and [29], we select our reference image from
the best-performing set of high-quality keyframes coming from
the same video, which is built and updated with our proposed
policy.

Our architecture is based on U-Net [47] and it is composed of
an encoder, that processes the input so that it is smaller in terms of
spatial dimensions but deeper in terms of the number of channels,
and by a decoder, that inverts the process. Multi-scale reference
features are combined with the features of the degraded image
in a progressive manner. This approach can make the network
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Fig. 2. Overview of the proposed architecture. Best viewed in color on PDF.

Fig. 3. Diagram of the multi-scale feature extraction with VGG-19.

learn coarse-to-fine details and is beneficial to the restoration
process.

Our model takes 3 inputs:
� a degraded (i.e. highly compressed) image;
� a high-quality reference image (i.e. a video I-frame);
� a binary image that is white only in correspondence with

the facial landmarks of the compressed image.
The model produces a restored image from the compressed

one.
We use a pre-trained VGG-19 [48] to extract multi-scale fea-

tures from the degraded, reference and landmarks binary im-
ages. The reference (guidance) image is previously warped to
the degraded one based on the facial landmarks using Moving
Least Squares (Section III-C). We extract features at 4 different
scales from the layersrelu_2_2,relu_3_4,relu_4_4 and
conv_5_4 of the VGG-19. The feature extraction is depicted
in Fig. 3.

To align the warped reference and degraded features we adopt
AdaIN [49]. This helps reduce the difference in style and illumi-
nation between the two images and thus improves the restoration.
We denote by F d and F g the degraded and guidance features.
The AdaIN can be written as

F g,a = σ(F d)

(
F g − μ(F g)

σ(F g)

)
+ μ

(
F d
)

(1)

Fig. 4. Structure of the SFT block.

where σ(·) and μ(·) represent the mean and the standard devia-
tion.

After going through multiple dilated residual blocks, the de-
graded features are progressively upsampled by enlarging the
spatial resolution and reducing the number of channels. At the
same time, they are combined with the reference features by
means of Adaptive Spatial Feature Fusion (Section III-B) and
Spatial Feature Transform (SFT) [8] blocks.

The SFT block generates affine transformation parameters for
spatial-wise feature modulation incorporating some prior con-
dition. The scale α and the shift β parameters are learned from
the features outputted by the corresponding ASFF block. The
output of the SFT block is formulated as

SFT = α� F r + β (2)

where � is the element-wise product and F r are the restored
features, that is the features originated from the degraded ones
and restored in the decoding part of the architecture. Fig. 4 shows
the structure of the SFT block.

Following [4], we train the network to learn the residual im-
age, so there is a skip connection between the degraded image
and the restored output. This choice reduces the overall training
time and improves its stability.
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Fig. 5. Structure of the ASFF block.

B. ASFF Block

The fusion of the features of the reference and degraded im-
ages is a fundamental part of exemplar-based approaches, as it
allows to fully exploit the information supplied by the guidance
image. Adopting a concatenation-based approach, as in [23],
[28], does not take full advantage of the reference features.

Thus, in our multi-scale architecture, we rely on multiple
Adaptive Spatial Feature Fusion (ASFF) blocks [7]. While the
reference image generally contains more high-quality details,
the degraded image should have more weight in the reconstruc-
tion of the overall face components. For example, if the mouth
of the reference image is closed while that of the compressed
image is open, the reconstruction of the teeth should be mainly
based on the restored features from the degraded image. For
this reason, ASFF blocks generate an attention mask based on
the degraded image facial landmarks to guide the fusion of the
guidance and restored features. Fig. 5 shows the structure of the
ASFF block.

C. Warping Reference With Moving Least Squares

For most guided face restoration methods, the performance
is diminished by the pose and expression difference between
reference and degraded images because it introduces artifacts in
the reconstruction result. Thus, we spatially aligned the refer-
ence and compressed images with an image deformation method
based on Moving Least Squares (MLS) [50].

Let p and q be respectively the sets of facial landmarks of the
reference and degraded image, with |p| = |q| = N . In our case,
N = 68. We aim to find a deformation function f to apply to all
the points of the reference image. Given a point v in the image,
we solve for the best affine transformation lv(x) that minimizes

N∑
i=1

wi |lv(pi)− qi|2 where wi =
1

|pi − v|2 (3)

Because the weights wi are dependent on the point of evaluation
vwe obtain a different transformation lv(x) for each v. We define
the deformation function f to be f(v) = lv(v).

Since lv(x) is an affine transformation we can rewrite it in
terms of a linear transformation matrix M

lv(x) = (x− p∗)M + q∗ (4)

where p∗ and q∗ are weighted centroids

p∗ =
∑N

i=1 wipi∑N
i=1 wi

q∗ =
∑N

i=1 wiqi∑N
i=1 wi

Based on this insight, the least squares problem of (3) can be
rewritten as

N∑
i=1

wi |p̂iM − q̂i|2 (5)

where p̂i = pi − p∗ and q̂i = qi − q∗. The affine deformation
that minimizes (5) is

M =

(
N∑
i=1

p̂Ti wip̂i

)−1 N∑
j=1

wj p̂
T
j q̂j

With this closed-form solution for M, we can write a simple
expression for the deformation function f

f(v) = (v − p∗)

(
N∑
i=1

p̂Ti wip̂i

)−1 N∑
j=1

wj p̂
T
j q̂j + q∗ (6)

Applying this deformation function to each point of the reference
image lets to warp it according to the facial landmarks of the
degraded image.

D. Keyframes Selection and Set Maintenance

Although warping with MLS helps to reduce the distance
between the compressed and reference images, if they are too
different the results will still be sub-optimal. Thus it is natural to
select the optimal reference keyframe as the one that has a simi-
lar pose and expression to the degraded image, instead of simply
using the previous keyframe. We measure the similarity between
a keyframe and the degraded frame with the Euclidean distance
between the sets of facial landmarks. Considering videoconfer-
encing, assuming that the talking subject stays the same, even
very old keyframes can be useful. So, as the video progresses,
one can save a limited set of keyframes, to reduce memory re-
quirements, and then use the most similar one as a reference to
restore the current compressed frame. This novel method is the
key to improving the overall restoration quality of the video and
limits the cases in which the compressed and reference frames
are very different.

We took inspiration from the Least-Frequently Used (LFU)
cache replacement strategy: for each keyframe of the set, we
keep count of how many times it was selected for reconstruction
and when a new keyframe is received from the video stream the
least used is evicted. However, in this way, the first keyframes
of the video would be excessively rewarded. Indeed, since for
the first seconds of the video they are the only ones available as
a reference they can be used not because of similarity with the
compressed frame but for lack of alternatives. To overcome this
problem we apply an exponential decay to the number of uses,
i.e. when a new keyframe arrives the counter of the number of
uses of all the keyframes of the set is halved.
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E. Training Losses

As in [7], to train our model we employed a weighted sum of
reconstruction and photo-realistic losses. We denote by ID, IR
and IGT the degraded, reconstructed and ground-truth (i.e. high-
quality uncompressed) images, respectively.

The reconstruction loss constrains the reconstructed image to
faithfully approximate the ground-truth one and is composed of
two terms. First, we relied on the Mean Square Error (MSE),
defined as

�MSE =
1

CHW
‖IR − IGT ‖2 (7)

where C, H and W denote the channel, height and width of
the image. Second, we adopted the perceptual loss [51], [52],
[53], defined on the VGG-19 feature space. The perceptual loss
is formulated as

�perc =
∑
l∈L

1

ClHlWl
‖Ψl(IR)−Ψl(IGT )‖2 (8)

where Ψl represents the features from the l-th layer of a pre-
trained VGG-19 model and L = {relu_2_2,relu_3_4,
relu_4_4,conv_5_4}. We also experimented using VGG-
Face [54] for the perceptual loss, in particular by extracting the
output taken from the third convolutional layer of the fifth block
before the ReLU activation, but the results were worse than with
VGG-19.

The photo-realistic loss also contains two terms. First, we
used the style loss [55] that is defined on the Gram matrix of the
feature map for each layer in L

�style=
∑
l∈L

1

ClHlWl

∥∥Ψl(IR)
TΨl(IR)−Ψl(IGT )

TΨl(IGT )
∥∥2
(9)

Second, we employed the hinge version of the adversarial
loss [56], [57]. We adopted multi-scale discriminators [58], that
is 4 discriminators that have the same network structure but
operate at different image scales. The adversarial loss can be
formulated as

�adv,D = −
∑
r∈R

[
EI↓r

GT∼P(I↓r
GT )

[
min

(
0,−1 +D(I↓rGT )

)]

+ EI↓r
R ∼P(I↓r

R )

[
min

(
0,−1−D

(
I↓rR
))] ]

�adv,G = −
∑
r∈R

λadv,r EI↓r
D ∼P(I↓r

D )

[
D
(
G
(
I↓rD
))]

(10)

where ↓r denotes the downsampling operation with scale factor
r ∈ R = {1, 2, 4, 8} and λadv,r are the trade-off parameters for
each scale discriminator. �adv,D and �adv,G are used to update
respectively the discriminators and the generator. To stabilize
the learning of the discriminators we adopted SNGAN [59], in-
corporating the spectral normalization after each convolutional
layer of the discriminator. Spectral normalization is based on
regularizing the spectral norm of each layer of the discriminator
by simply dividing the weight matrix by its largest eigenvalue.

The overall training loss is defined as

�total=λMSE�MSE+λperc�perc+λstyle�style+λadv�adv,G
(11)

where λMSE , λperc, λstyle, and λadv are the tradeoff parameters.

IV. RESULTS

A. Datasets

Similarly to [4], we used the Deep Fake Detection (DFD)
dataset [60], which is composed of 363 high-resolution and
high-quality videos depicting different activities performed by
28 actors. Then, we selected 55 videos of actions in which the ac-
tor is talking while facing the camera as in a setup of a video con-
ference (i.e. “podium speech” and “talking against wall” scenes)
for an overall size of ∼ 40 GB and a duration of ∼ 40 minutes.
The first 22 identities were utilized for training and the last 6 for
testing.

We also employed the High-Definition Talking Face (HDTF)
dataset [61], which contains 362 videos collected from YouTube
with a resolution of 720P or 1080P. We used the “WDA” sub-
set since it is composed of the videos that have the highest
quality among those in the whole dataset, for a total of 193
videos. Since the videos have a much larger duration than those
of the DFD dataset, we used only the initial 30 seconds to
reduce the computational cost; this does not hamper the eval-
uation since the visual content remains extremely similar. We
relied on this dataset only for testing purposes, to compare the
proposed approach with competing state-of-the-art methods and
to evaluate the generalization capabilities of the models trained
on the DFD dataset.

Starting from the raw (Constant Rate Factor 0) version of the
original sequences, each video was compressed with the H.264
codec and CRF 32 and 42 usingFFmpeg [62]. Then, only during
training, the frames of each sequence were extracted by sampling
one frame every five, both for the raw and compressed versions.
In addition, for the compressed versions, the frames were ex-
tracted starting from a given offset measured in the number of
frames to skip. This was because for the training the reference
frames (i.e. the raw ones) need to precede the compressed ones.
The offset used in the experiments was equal to 5.

Both for training and testing we relied on dlib [63] to detect
the face rectangle and the 68 facial landmarks of each frame.
Then, we leveraged an affine transformation to perform the crop
and alignment of the detected faces based on the set of facial
landmarks. Each reference image was warped to the correspond-
ing degraded one with Moving Least Squares to reduce the dif-
ference in pose and expression. To this end, we extracted the
facial landmarks of both images and then applied the MLS al-
gorithm presented in Section III-C. Finally, we used the facial
landmarks of the compressed frame to generate the landmarks
binary images. After the preprocessing, we ended up with 9,007
images for the training set and 12,568 images for the test set,
considering the DFD dataset. Instead, all the 175,832 frames of
the HDTF dataset were used for testing.
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B. Training Setup

To train both the generator and the discriminator we em-
ployed the ADAM optimizer [64] with batch size 4, learning
rate 10−4 and momentum parameters β1 = 0.9 and β2 = 0.99.
We trained all the models for 15 epochs because after that the
outputs did not change significantly. We adopted several data
augmentation techniques, such as shifting, 90◦ rotations and
cutout [65]. We performed a grid search to find the optimal
trade-off parameters for the training losses. After that, they were
set as follows: λMSE = 300, λperc = 10, λstyle = 1, λadv = 2,
λadv,1 = 4, λadv,2 = 2, λadv,4 = 1 and λadv,8 = 1. The 4 layers
used to compute the perceptual loss were given the same weight,
equal to 1. During testing, we set the maximum cardinality of
the set of keyframes to 10.

C. Evaluation Metrics

The performance is evaluated using six full-reference and two
no-reference visual quality metrics. Regarding the full-reference
metrics, we employed: 1) Peak Signal-to-Noise Ratio (PSNR),
which is often used to evaluate reconstruction and compres-
sion artifacts reduction, despite its issues in estimating the per-
ceived quality [66], [67]; 2) Structural Similarity Index Mea-
sure (SSIM) [68], another commonly used metric, although it
is known that it doesn’t perform well on the output of genera-
tive models [69]; 3) Learned Perceptual Image Patch Similarity
(LPIPS) [70], using, in particular, the version with AlexNet [71]
backbone. Typically LPIPS measures are in contrast with SSIM,
i.e. distortions that are low for LPIPS are high in SSIM and
vice-versa. LPIPS has been shown to have a very strong cor-
relation with perceived visual quality; 4) CONTRastive Image
QUality Evaluator-Full Reference (CONTRIQUE-FR) [72], us-
ing, in particular, the LIVE _ FR model downloaded from the
official repository; 5) Video Multimethod Assessment Fusion
(VMAF) [73], a full reference perceptual video quality assess-
ment model that combines multiple elementary quality metrics;
5) Video Multimethod Assessment Fusion - No Enhancement
Gain (VMAF-NEG) [74], which subtracts the effect of image
enhancement from the VMAF score. Indeed, VMAF tends to
overpredict the perceptual quality when image enhancement
techniques, such as sharpening or histogram equalization, are
performed [74]. Both VMAF and VMAF-NEG include an el-
ementary metric that accounts for the temporal difference be-
tween adjacent frames of the videos, thus evaluating the pres-
ence of motion jitter and flicker. Regarding the no-reference met-
rics, we relied on: 1) Blind/Referenceless Image Spatial QUal-
ity Evaluator (BRISQUE) [75], which evaluates the naturalness
of an image; 2) CONTRastive Image QUality Evaluator (CON-
TRIQUE) [72], using, in particular, the LIVE model downloaded
from the official repository.

D. Baselines

We compare the proposed approach with several state-of-the-
art methods: six methods for blind face restoration, HiFace-
GAN [25], PSFR-GAN [27], GFP-GAN [31], GPEN [26], DFD-
Net [29] and ASFFNet [7], and one for face super-resolution,

GWAINet [23]. DFDNet, PSFR-GAN, GPEN and GFP-GAN
do not use a reference image but utilize extra face prior, re-
spectively some offline-generated dictionaries of facial com-
ponents, a segmentation mask and pretrained GANs. Instead,
GWAINet exploits a reference image that is warped to the com-
pressed one by means of a warper network. HiFaceGAN does
not require any additional information w.r.t. the compressed in-
put image. The most similar to our work is ASFFNet, which
leverages a reference image and a binary landmark image. As
ASFFNet needs a given static set of reference images, we make
all the keyframes in the video available to it as possible guid-
ance. Therefore, ASFFNet actually has an advantage over our
approach, as, in our case, we limit the maximum cardinality of
the set of keyframes to 10.

E. Quantitative Results

The quantitative results for the DFD dataset are reported in Ta-
ble I. The proposed method achieves the best performance for the
LPIPS metric, which is the most indicative full-reference percep-
tual metric, as well as in terms of CONTRIQUE, CONTRIQUE-
FR and VMAF-NEG. PSFR-GAN performs better with re-
gard to the signal metrics PSNR and SSIM, while GWAINet
achieves the best result for BRISQUE. However, manual in-
spection shows that the images produced by GWAINet include
excessive high-frequency artifacts and thus we did not consider
this approach in the other experiments. GFP-GAN obtains the
best VMAF value, probably because of its tendency to saturate
colors and increase contrast at the cost of loss of photorealism,
as is visible from the qualitative results. This tendency is similar
to the application of image enhancement methods, which are
known to boost the VMAF score [74]. In support of this the-
ory, we can notice the large difference from the VMAF-NEG
score, which in contrast is not affected by image enhancement
techniques. Our method achieves both the second-best VMAF
value and the best VMAG-NEG value, proving its ability to
obtain great overall video quality while preserving photoreal-
ism. Moreover, the VMAF and VMAF-NEG scores show that
our video results are temporal consistent and do not present too
much motion jitter and flicker or mosquito noise.

In the second experiment, reported in Table II, we compare
the proposed method with the baselines on the HDTF dataset. It
is important to note that our model has not been trained on this
dataset so that we can evaluate its generalization capabilities.
Again, the proposed approach outperforms the other methods in
terms of LPIPS, CONTRIQUE, CONTRIQUE-FR and VMAF-
NEG. Manual examination of the results shows that this may
be motivated by the fact that several competing approaches tend
to add (or, on the opposite, hide) skin imperfections or boost
excessively the color of lips and eyebrows.

Overall, our method is the one that performs best with the
highest consistency, as none of the baselines achieves better
performance on multiple metrics simultaneously. The results
obtained for the HDTF dataset also prove that the proposed
model is capable of generalization. In addition, we argue that
the metrics for which our method performs best, namely LPIPS,
CONTRIQUE, CONTRIQUE-FR, and VMAF-NEG are those
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TABLE I
QUANTITATIVE COMPARISON BETWEEN THE PROPOSED APPROACH AND OTHER STATE-OF-THE-ART METHODS FOR CRF 42 ON DFD DATASET [60]

TABLE II
QUANTITATIVE COMPARISON BETWEEN THE PROPOSED APPROACH AND OTHER STATE-OF-THE-ART METHODS FOR CRF 42 ON HDTF DATASET [61]

that correlate best with the actual quality of the restored frames.
In Appendix A we provide some examples that support this ar-
gument.

F. Qualitative Results

Qualitative results for the DFD dataset are shown in Fig. 6. Our
approach outperforms all the baselines in generating photorealis-
tic and detailed results. GWAINet, HiFaceGAN and PSFR-GAN
produce unsatisfactory images that still present visible artifacts,
see for example the mouth in the second row. GFP-GAN and
GPEN generate detailed but artsy and not photorealistic results,
as the eyes in the first and fifth rows. DFDNet and ASFFNet
achieve a better tradeoff between details and photorealism but,
as can be seen in the last row, still produce visible artifacts.
Our model exploits the reference keyframe and reproduces the
high-frequency details lost after such strong compression with-
out loss of photorealism. It is interesting to note that often the
reference image (i.e. the bottom-left image in the input column)
is not too similar to the degraded image, but the proposed method
is still able to exploit it. For example, in the last row, the refer-
ence image has open eyes while the compressed one has them
closed, and despite this, our model correctly depicts the restored
frame with closed eyes.

Fig. 7 shows the qualitative results for the HDTF dataset.
Again, our method produces the most detailed and photorealis-
tic images. All the baselines generate blurry hair in both the first
and second rows, as well as a not detailed beard in the third row.
In the first row, PSFR-GAN, GFP-GAN, GPEN and ASFFNet
mistake the shadow of the glasses for their border and thus pro-
duce unrealistic results. In the fourth row, GPEN and DFDNet
hallucinate moles that are not present in the ground truth. In the
fifth row, our method is the only one capable of depicting the eyes
as closed without adding artifacts. In the last row, GFP-GAN and

GPEN add traces of glasses, while ASFFNet exploits the refer-
ence incorrectly and portrays the eyes as open. In general, our
method is the one that most consistently generates satisfactory
results that are similar to the ground truth.

G. Subjective Experiments

In this experiment we conducted a subjective test based on the
three-alternative forced choice (3-AFC) methodology, using the
AVrate Voyager tool [76], [77]. The test included the inspection
of 15 sets of videos, 8 from the DFD dataset and 7 from the HDTF
one, so as to maintain the completion time of around 15-20 min-
utes and avoid excessive fatigue as recommended by ITU-R
BT.500-13 [78]. Each original video was compressed with CRF
42 and restored using our proposed method, GPEN [26] and
GFP-GAN [31]; using 3-AFC allowed to reduce the number of
required comparisons [79]. Participants (18, i.e. almost double
the minimum required [80]) were requested to choose the re-
construction that matched more closely the original high-quality
video, without considering aesthetic preferences. The position
of the results of all the methods was changed randomly for each
evaluation. Fig. 8 reports the percentages of the forced choices
for the 15 sets. The much larger preference given to our pro-
posed method can be attributed to the fact the proposed GAN
introduces fewer high-frequency details and color shifts than the
GPEN [26] and GFP-GAN [31]; these additions tend to be more
visible in a video sequence than when evaluating separately the
frames using the quality metrics.

H. Inference Time

We compared the Frames Per Second (FPS) processed by our
model with the baselines. The experiments were performed on
an NVIDIA RTX 2080 Ti GPU. As shown in Table III, our
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Fig. 6. Qualitative comparison between the proposed approach and the baselines for the DFD dataset and CRF 42. The bottom-left image in the input column
represents the reference frame exploited by our approach. Best viewed in full screen.

TABLE III
FPS COMPARISON BETWEEN THE PROPOSED APPROACH AND OTHER

STATE-OF-THE-ART METHODS

method achieves a number of FPS similar to or better than the
baselines but outperforms them in terms of quality. Given that
our model runs at almost 45 FPS, it proves to be capable of
real-time inference and therefore suitable for videoconferencing.

I. Ablation Studies

a) Architecture: We performed ablation studies to evaluate the
importance of each component of our architecture. In particular,
we measure the effect of using: i) Multi-scale features; ii) ASFF
blocks; iii) SFT blocks. We start from a single-scale features
model that considers only the features with the smallest size but
with the most channels and that relies on concatenation instead of
the ASFF and SFT blocks. Then, we gradually add each compo-
nent: first individually and then in combination with each other.
The results are reported in Table IV. Our experiments show how
the use of multi-scale features is the most important component
of the architecture, followed by the ASFF and SFT blocks. Ad-
ditionally, we substitute the ASFF and SFT blocks one at a time
with SPADE [81], a spatially-adaptive denormalization block.
The proposed architecture outperforms both versions that make
use of SPADE, proving that ASFF and SFT blocks are more
effective in our architecture.

b) Keyframes Selection Policy: Tables V and VI compare the
proposed LFU policy update method with a different approach
that maximizes the diversity of the keyframes, called “Max
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Fig. 7. Qualitative comparison between the proposed approach and the baselines for the HDTF dataset and CRF 42. The bottom-left image in the input column
represents the reference frame exploited by our approach. Best viewed in full screen.

TABLE IV
ABLATION STUDIES WITH CRF 42 ON THE DFD DATASET

distance”. The “Max distance” policy consists in maximizing the
Euclidean distance between the facial landmarks of the frames
of the set, in order to have a wide range of poses and expres-
sions. The idea is that in this way, every future frame of the video
should always have a reference in the set that is not too different.

For each new keyframe, its distance to all the keyframes in the
set is computed. Then, between all the possible combinations of
frames, we choose the group of keyframes that maximizes the
total distance, so the new keyframe is not necessarily added to
the set.
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Fig. 8. Subjective results using 3-AFC. Videos from 1 to 8 belong to the DFD
dataset, the others to the HDTF dataset.

TABLE V
ABLATION STUDIES ON THE KEYFRAMES SELECTION POLICY FOR THE DFD

DATASET AND CRF 32

Best results are in bold. ↑= higher values are better, ↓= lower values are better.

TABLE VI
ABLATION STUDIES ON THE KEYFRAMES SELECTION POLICY FOR THE DFD

DATASET AND CRF 42

Best results are in bold. ↑= higher values are better, ↓= lower values are better.

TABLE VII
ABLATION STUDIES ON THE MAXIMUM CARDINALITY OF THE SET OF

REFERENCES FOR THE DFD DATASET AND CRF 42

Best results are in bold. ↑= higher values are better, ↓= lower values are better

Table V reports the results obtained with CRF 32 and Table VI
those for CRF 42. The maximum number of keyframes in the
group was set to 10 in both cases. The results show that the
proposed LFU strategy outperforms the “Max distance” one for
almost all the metrics.

c) Keyframes Set Cardinality: Regarding the dimension of the
set of keyframes, we expect that as the maximum cardinality in-
creases, the results will improve. In fact, having more possible
references available, it is less likely that a compressed frame has
no similar reference. The results reported in Table VII confirm
our assumption, but the increase in performance is not too signif-
icant. However, we set the maximum cardinality to 10 because
the time needed to choose the best keyframe is still about 0.1 mil-
liseconds so a higher number of keyframes to choose from does
not impact the computational complexity significantly.

d) Feature Extractor: In this experiment We replace the VGG-
19 backbone with different feature extractors. In particular, we
exploit the small and large versions of MobileNetV3 [82], a
popular and light CNN designed for mobile platforms which,
from our experiments, reduces the inference time of our model
by about two times. Table VIII reports the quantitative results.

TABLE VIII
ABLATION STUDIES ON FEATURE EXTRACTOR FOR THE DFD DATASET AND

CRF 42

Best results are in bold. ↑= higher values are better, ↓= lower values are better.

TABLE IX
ABLATION STUDIES ON THE DISCRIMINATOR FOR THE DFD DATASET AND

CRF 42

Best results are in bold. ↑= higher values are better, ↓= lower values are better.

TABLE X
ABLATION STUDIES ON THE DISCRIMINATOR FOR THE HDTF DATASET AND

CRF 42

Best results are in bold. ↑= higher values are better, ↓= lower values are better.

Fig. 9. Qualitative results for different discriminators for max cardinality 10
and CRF 42 on the DFD dataset.

As expected, the version with the VGG-19 outperforms the Mo-
bileNetV3 ones, but the number of parameters is an order of
magnitude greater. However, looking at the qualitative results
obtained with the MobileNetV3 as the feature extractor we no-
ticed how they were still more than acceptable, proving how
effective our approach is, and suggesting that these backbones
could be used for deployment on mobile devices.

e) Discriminator: We substitute the multi-scale discrimina-
tors with a standard single-scale discriminator. Consequently,
we also replace the adversarial loss described in (10) with the
following one:

�adv,D = − EIGT∼P (IGT ) [min(0,−1 +D(IGT ))]

− EIR∼P (IR) [min(0,−1−D(IR))]

�adv,G = − EID∼P (ID) [D(G(ID))] (12)

�adv,D and �adv,G were used to update respectively the discrim-
inator and the generator.

Tables IX and X report the quantitative results for the DFD
and HDTF datasets, respectively. Even if the version with the
single-scale discriminator outperforms the multi-scale one for
some metrics, the qualitative results show clearly that the use
of the multi-scale discriminators allows to obtain less blurry
and more sharp and detailed outputs. This is proven also by the
lower values of the LPIPS metric for both datasets. For instance,
Fig. 9 shows how the multi-scale version has less blurred and
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more detailed hair and eyes than the single-scale one, as well
as an overall color more faithful to the ground truth. Addition-
ally, the multi-scale discriminators let to achieve higher VMAF
and VMAF-NEG values, which correspond to a better temporal
consistency.

V. CONCLUSION

In this paper we have proposed a novel GAN-based method
and a keyframes selection system that improves the visual qual-
ity of videoconference videos enhancing the appearance of faces.
A key element of the system is the policy that updates a set
of previous I-frames and exploits them to improve the visual
quality improvement process. The proposed approach improves
over competing state-of-the-art methods in terms of perceptual
metrics and is rated much better in terms of fidelity by human
evaluators.

APPENDIX

QUANTITATIVE RESULTS ANALYSIS

In Section IV-E we reported the quantitative results for the
DFD and HDTF datasets. Our method obtains the best perfor-
mance in terms of LPIPS, CONTRIQUE, CONTRIQUE-FR and
VMAF-NEG. We argue that these metrics best correlate with
the perceived visual quality. In Figs. 10 and 11 we show two
examples supporting our argument. In Fig. 10 we compare a
frame restored by our method and by GWAINet and present
the corresponding values of no-reference metrics BRISQUE and
CONTRIQUE. The proposed approach clearly generates a more
satisfying image than GWAINet, which adds high-frequency ar-
tifacts. We argue that these artifacts deceive BRISQUE, which
mistakes them for high-frequency details that are distinctive of
high-quality images [83]. In Fig. 11 we report the values of the
full-reference metrics PSNR, SSIM, LPIPS and CONTRIQUE-
FR obtained by our approach and HiFaceGAN for a restored
frame. Again, the proposed method produces a more detailed and
photorealistic image, while HiFaceGAN generates a frame with
visible artifacts. However, HiFaceGAN obtains better values for
PSNR and SSIM. PSNR and SSIM are signal-based metrics that
do not correlate well with the perceived visual quality for the
output of generative models [66], [67], [69]. On the contrary,
LPIPS and CONTRIQUE-FR are perceptual-based metrics and
are good indicators of the actual perceived quality of an image.

Regarding VMAF, it is known that image enhancement tech-
niques tend to boost its values [74]. As Fig. 12 shows, some base-
lines, such as GFP-GAN, saturate colors and increase the con-
trast of the restored frames, making them more visually pleasing
but less similar to the ground truth. This tendency is similar to
the application of image enhancement methods. We argue that
this is the reason why such baselines perform so well in terms of
VMAF. Our argument is supported by the large difference be-
tween the values of the baselines for VMAF and VMAF-NEG,
which is not affected by image enhancement techniques, in
Tables I and II. On the contrary, our method obtains high values
for both metrics without a substantial difference between them,
meaning that they are due to the actual quality and temporal
consistency of the results, and not due to color enhancement.

Fig. 10. Comparison between our method and GWAINet [23]. The reported
values represent BRISQUE ↓ /CONTRIQUE ↓ , respectively, where↓means that
lower values are better. Best results for each image are highlighted in bold.

Fig. 11. Comparison between our approach and HiFaceGAN [25]. The
reported values represent PSNR ↑ /SSIM ↑ /LPIPS ↓ /CONTRIQUE-FR ↓ , re-
spectively. ↑= higher values are better, ↓= lower values are better. Best results
for each image are highlighted in bold.

Fig. 12. Comparison between our approach and GFP-GAN.
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