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Abstract—Recent advances in Graph Neural Networks (GNNs)
have achieved superior results in many challenging tasks, such
as few-shot learning. Despite its capacity to learn and generalize
a model from only a few annotated samples, GNN is limited
in scalability, as deep GNN models usually suffer from severe
over-fitting and over-smoothing. In this work, we propose a novel
GNN framework with a triple-attention mechanism, i.e., node
self-attention, neighbor attention, and layer memory attention,
to tackle these challenges. We provide both theoretical analysis
and illustrations to explain why the proposed attentive modules
can improve GNN scalability for few-shot learning tasks. Our
experiments show that the proposed Attentive GNN model
outperforms the state-of-the-art few-shot learning methods
using both GNN and non-GNN approaches. The improvement
is consistent over the mini-ImageNet, tiered-ImageNet,
CUB-200-2011, and Flowers-102 benchmarks, using both
ConvNet-4 and ResNet-12 backbones, and under both the
inductive and transductive settings. Furthermore, we demonstrate
the superiority of our method for few-shot fine-grained and
semi-supervised classification tasks with extensive experiments.

Index Terms—Graph neural network, self-attention mecha-
nism, few-shot classification, meta learning.

I. INTRODUCTION

THE success of deep learning lies with the promises of train-
ing deep neural networks from a large-scale dataset in a

supervised manner. However, conventional deep learning meth-
ods may suffer from sample inefficiency, thus the trained mod-
els can hardly generalize to new tasks with limited supervision.
Such task is known as few-shot learning [1], which attempts
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to learn a classifier predicting the novel labels of query sam-
ples using only a few labeled support samples of each class. To
tackle the few-shot learning challenges, various methods have
been recently proposed [2], [3], [4], [5], including the popular
meta-learning framework [2] based on episodic training.

Classic few-shot methods [2], [3], [4], [6] applied Convolu-
tional Neural Networks (CNNs) for image classification. More
recent works proposed to apply the Graph Neural Networks
(GNNs) [5], [7], [8], [9] or Graph Convolutional Networks
(GCNs) [10], [11] to process data with rich relational struc-
tures in few-shot scenarios. Compared with CNNs, Graph Net-
works are more powerful in exploiting the intra- and inter-class
relationships amongst samples, which are thus more effective
for few-shot learning. The current GNN-based few-shot meth-
ods improve the accuracy and generalizability from the per-
spective of node/edge update [8], [9], [12], [13] and graph
structure design [5], [14], [15]. In general, graph-based meth-
ods model the feature embeddings of samples as vertices in
a graph and propagate label information between nodes by
performing node or edge feature aggregation from neighbor
nodes with graph convolution. Unlike general-purpose GNN
models for other tasks, adjacency matrices have no struc-
tural priors in few-shot scenarios. Therefore, existing few-
shot GNN methods usually construct fully connected graph
models and utilize neighbor similarity information for graph
updates.

GNNs have achieved superior performance on many tasks
such as node classification [16], skeleton action recognition [17],
point cloud classification [18], and video classification [19].
However, several works [20], [21], [22], [23] reported over-
fitting and over-smoothing issues when learning deeper GNN
models (i.e., poor scalability) as shown in Fig. 1, as apply-
ing GCN or GNN is a special form of Laplacian smoothing,
which averages the neighbors of the target nodes. Furthermore,
graph-based few-shot methods usually model each task as a fully
connected graph, i.e., each node is adjacent to all other nodes,
making it more prone to this issue. Some recent works [21],
[23], [24], [25], [26] have been proposed to alleviate the above
issues and designed deeper graph layers. DropEdge [21] at-
tempted to alleviate these obstacles via randomly dropping graph
edges in training, showing improvement for node classification
tasks. DeepGCNs [23] borrowed the ideas from popular CNNs
(e.g., ResNet [27] and DenseNet [24]) and adopted the resid-
ual/dense connections and dilated convolutions to deep GCN
layers for point cloud semantic segmentation tasks. To the best
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Fig. 1. T-SNE visualization of the image features extracted from the selected
classes in deeper GNN layers (here we select the output feature of the 8-th GNN
layer). Different colors mean different classes.

of our knowledge, no work to date has addressed these issues
for few-shot learning using the graph attention mechanism.

In this work, we propose an attentive graph neural network
(AGNN) with a novel triple-attention mechanism, i.e., node
self-attention, neighbor attention, and layer memory attention
for highly scalable and effective few-shot learning. Specifically,
node self-attention exploits inter-node and inter-class correlation
beyond CNN-based features and class information. Neighbor at-
tention imposes sparsity on the adjacency matrices to attend to
the most related neighbor nodes across layers. Layer memory
attention applies dense connection to earlier-layer “memory” of
node features and adjacency matrices. Furthermore, we explain
how the attentive modules help GNN generate discriminative
features and alleviate over-smoothing and over-fitting with fea-
ture visualization and theoretical analysis. We conduct extensive
experiments demonstrating that the proposed AGNN outper-
forms state-of-the-art methods over four datasets, including two
standard few-shot classification benchmarks, mini-ImageNet
and tiered-ImageNet, and two fine-grained datasets, CUB and
Flowers-102.

The contributions of this paper are summarized as follows,
� We propose an AGNN model which contains a triple-

attention mechanism to tackle the over-fitting and over-
smoothing problem and improve the few-shot performance
for GNN models.

� We provide both theoretical analysis and visualizations to
explain the effectiveness of the proposed AGNN for allevi-
ating over-smoothing and over-fitting problems in few-shot
scenarios for GNN-based models.

� Extensive experiments are conducted over four bench-
marks for standard, fine-grained, and semi-supervised few-
shot learning tasks under both inductive and transductive
settings. Results show that our AGNN method achieves
state-of-the-art performance over all benchmarks under all
settings.

This paper is an extension of our recent conference work [28]
that briefly investigated three attention mechanisms on GNNs
for few-shot classification. Compared with this earlier work,
here we provide more details and discussions about the relation
to existing graph-based models. We also improve the perfor-
mance of AGNN by modifying the proposed triple attentions.
Specifically, we adopt the self-attention transformer block to

replace the self-correlation computation to provide a more flexi-
ble task-specific embedding for graph initialization. We combine
the latter two attention mechanisms to propose a novel enhanced
layer-wise sparsity mechanism. Compared with the previously
proposed neighbor attention mechanism with a fixed sparse rate,
each AGNN layer adopts a variable sparsity rate, which provides
flexible relationships between nodes across different AGNN lay-
ers. For the layer memory attention mechanism, in addition to us-
ing the output feature as the layer memory, the output adjacency
matrix of the current layer is also considered as part of the layer
memory, which is passed to the next layer as edge knowledge.
Furthermore, we include more extensive experimental results to
illustrate the properties of the proposed method with extensive
evaluation and comparisons on additional datasets under more
challenging settings, e.g., fine-grained few-shot classification,
and semi-supervised few-shot classification.

The remainder of this article is organized as follows. Sec-
tion II summarizes the related work, including few-shot learning,
graph neural network, and attention mechanism on graph mod-
els. Section III gives a brief overview of the few-shot learning
task and the general GNN model. Section IV describes the pro-
posed AGNN with triple attention mechanisms, how to apply it to
the few-shot task, and the relation to existing graph-based mod-
els. Section V gives a theoretical analysis of the proposed atten-
tion mechanisms on why it helps to alleviate the over-smoothing
and over-fitting problems for few-shot learning with graph mod-
els. Section VI demonstrates the effectiveness of the proposed
AGNN model for few-shot classification over four benchmarks
under standard, fine-grained, and semi-supervised few-shot set-
tings. Section VII concludes this article.

II. RELATED WORK

A. Few-Shot Learning

Few-shot learning is a challenging task that aims to recognize
novel categories with limited labeled examples of each class.
Following the meta-learning framework [2], existing methods
can be generally divided into three groups: gradient-based meth-
ods [29], [30], [31], [32], data augmentation-based methods [33],
[34], [35], and metric-based methods [2], [3], [4], [6], [11],
[36], [37], [38], [39], [40], [41], [42], [43]. Recently, a ris-
ing trend is to apply attention mechanisms to solve few-shot
tasks. For example, CAN [44] generated cross attention maps
for each pair of nodes to highlight the object regions for clas-
sification. Inspired by non-local block, Binary Attention Net-
work [45] considered a non-local attention module to learn
the similarity between node embeddings globally. Considering
the attention between query samples with each support class,
CTM [37] found task-relevant features based on both intra-class
commonality and inter-class uniqueness. FEAT [11] utilized
a self-attention Transformer to learn task-specific adaptive in-
stance embeddings. RENet [46] employed self-correlation and
cross-correlation modules to extract relational feature embed-
dings within and between images. SET-RCL [42] proposed a
style-aware episodic training strategy with robust contrastive
learning to learn a style-invariant feature representation for
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cross-domain few-shot learning tasks. CubMeta [43] intro-
duced the concept of curriculum learning into meta-learning and
proposed an effective self-paced meta-learning method to ob-
tain stronger meta-learners for few-shot classifications. DUAL
ATT-NET [47] adopted a dual-attention to explicitly model the
crucial relation of fine-grained parts and implicitly captures
discriminative while subtle fine-grained details. While these
methods are all based on CNNs for feature embedding, most
recent works exploited GNN for more effective modeling of
inter- and intra-class relations in few-shot classification. It is
unclear how these attention schemes can be extended to GNN
frameworks.

B. Graph Neural Network

GNN [48], [49] was first proposed for learning with graph-
structured data and has proved to be a powerful technique
for aggregating information from neighboring vertices in the
graph. Recently, there is growing interest in GNNs [5], [7], [8],
[9], [12], [13], [14], [15] to handle the few-shot learning task.
GNN was first used for few-shot learning in [5], which aims to
learn a complete graph network of nodes with both feature and
class information. Based on the episodic training mechanism,
meta-graph parameters were trained to predict the label of a
query node on the graph. Later, TPN [12] introduced the trans-
ductive setting into few-shot learning and constructed a top-k
graph to propagate labels from support set to query set in the
graph. Besides node label information, EGNN [13] exploited
edge information for the directed graph by defining both class
and edge labels for fully exploring the internal information of
the graph. DPGN [14] constructed a dual complete graph net-
work to combine instance-level and distribution-level relations.
MCGN [15] combined the GNN and conditional random field
(CRF) as a unified model and models the graph affinity as the
pair-wise marginal probabilities in the CRF for feature update.
TLRM [7] proposed a sample-to-task relation module to cap-
ture the task-level relation representations in each GNN layer.
TRPN-D [8] adopted the decoupling training strategy to preserve
the diversity across different few-shot tasks to enhance the gen-
eralizability of GNN models. GCLR [9] applied a VAE-based
encoder-decoder module to enrich the node representations in
the latent feature space. DR-CapsGNN [19] extended the capsule
network to the few-shot video classification task and explored
local-global relations while preserving the detailed properties of
videos.

C. Attention Mechanism on Graph Models

Attention Mechanism [50] aims to focus on image regions that
are more task-related by learning a binary matrix or a weighted
matrix. In particular, self-attention [47], [51], [52], [53] con-
siders the inherent correlation (attention) of the input features
itself, which is mostly applied in deep models. In GCN scenarios,
GAT [54] used a graph attention layer to learn a weighted param-
eter vector based on entire neighborhoods to update node rep-
resentation. ReGAT [55] modeled multi-type visual object rela-
tions via a graph attention mechanism to learn question-adaptive
relation representations for VQA tasks. SAGPool [56] selected

the top-k percentage of nodes based on the self-attention score
to generate a mask matrix for graph pooling. Despite the promis-
ing results achieved by these methods, no attention-based GNN
is proposed specifically for few-shot learning. In this work, a
novel triple-attention mechanism in GNN is introduced to alle-
viate the over-fitting and over-smoothing challenges in few-shot
classification.

III. PRELIMINARIES

We first provide the formal problem definition of few-shot
classification tasks, followed by an overview of the general GNN
models.

A. Problem Definition

A general few-shot classification task consists of a large-
scale and labeled training set with classes Ctrain and a few-
shot testing set with classes Ctest, which are mutually ex-
clusive, i.e., Ctrain ∩ Ctest = ∅, few-shot image classification
algorithms aim to train a classification model over the train-
ing set, which could be applied to the testing set with only
a few labeled information of each given class. For the test-
ing set, each few-shot test task T follows the N -way K-shot
task setting, where N is the number of selected classes and
K is the number of labeled samples which is often set from
1 to 5, i.e., the testing set contains a labeled N -class sup-
port set S = {xi, yi}NK

i=1 with K samples of each class, and a
query setQ = {xj , yj}Qj=1 with unlabeledQ query samples also
from these N classes to be predicted, denoted as T = S ∪ Q.
The values of N and K are both very small for few-shot
learning.

A popular and effective way is to apply the meta-learning
framework to exploit information in the training set and im-
prove generalizability. Specifically, meta-learning methods sep-
arate the training set Ctrain into various few-shot training
tasks Ctrain = {T l

train}Ll=1 to mimic the test setting, and ap-
ply episodic training [2] to learn model parameters from a large
number of simulated meta-tasks by minimizing the classifica-
tion error over the query set Q of L meta-tasks on the training
set Ctrain as

θ∗ = argmin
θ

L∑
l=1

Q∑
j=1

�
(
fθ

(
xj ; T l

train

)
, yj

)
, (1)

where �denotes the cross-entropy loss function andfθ represents
the model f(·) with the parameters θ.

B. General GNN Models

GNNs [48], [49], [57] are neural networks for learning with
graph-structured data. Similar to the classic CNNs that exploit
the local features (e.g., image patch textures, sparsity) for rep-
resentation, researchers designed GNNs to mimic the behavior
of CNNs to handle graph-structured data. In a GNN model, we
consider a graph G = (V,E) with nodes V and edges E. Each
sample data (e.g., image) is represented as a node in the graph,
and GNN mines the neighborhood information of each node
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Fig. 2. The overall framework of the proposed Attentive GNN (AGNN) framework for the few-shot learning task. This figure shows an example of a 3-way
1-shot setting with a query sample. For each support and query sample, the color and shape of the sample represent its corresponding class. X and Y denote the
feature embedding extracted from the backbone and one-hot label embedding, respectively. The grey box denotes the node self-attention module. Specifically, the
node self-attention module first applies self-attention and self-correlation blocks on features and labels to generate attention maps, which are then fed into a fusion
block to generate the attention map Cf for graph initialization. AGNN then predicts the query sample after N AGNN layers. Detailed information on each AGNN
layer is shown in Fig. 3.

based on the graph structure, which is crucial for building dis-
criminative and generalization features for many tasks, e.g., node
classification, graph classification, etc. To be specific, consider-
ing a multi-layer GNN model, following the previous work [58],
[59], the output of the k-th GNN layer can be represented
as:

X(k+1) = Fk(X
(k), W(k)) = ρ (Â(k) X(k) W(k)), (2)

where X(k) = {x(k)
1 , x

(k)
2 , . . . , x

(k)
V } ∈ RV ×dk denotes the in-

put feature and x
(k)
i denotes the feature of node i in the k-th

layer, with V and dk being the number of nodes and feature di-
mension at the k-th layer. Besides, Â(k) ∈ RV ×V is called the
weighted adjacency matrix, W(k) ∈ Rdk×dk+1 is the trainable
linear transformation, and ρ denotes a non-linear function, e.g.,
ReLU or Leaky-ReLU.

There are different ways to construct the adjacency matrix
A(k). For example, in the classic GCN [48], A

(k)
i,j indicates

whether node i and j are directly connected in the graph.
Besides, A(k)

i,j can be the similarity or distance matrix between

nodes i and j in [2], [5], i.e., A(k)
i,j = fθ

(
φ(x

(k)
i ), φ(x

(k)
j )

)
,

where φ denotes the node feature embedding, and the pa-
rameters θ of the distance metric function f can be fixed or
learned. One classic example is to apply cosine correlation
as the similarity metric, while a more flexible method is
to learn a multi-layer perceptron (MLP) as the metric, i.e.,

fθ(φ
(
x
(k)
i

)
, φ

(
x
(k)
j

)
) = MLP

(∣∣∣φ(
x
(k)
i

)
− φ

(
x
(k)
j

)∣∣∣),

where | · | denotes the element-wise absolute function. More re-
cent works applied the Gaussian similarity function to construct
the adjacency matrix, e.g., TPN [12] proposed the similarity
function as Ai,j = exp (−0.5d (φ (xi) /σi, φ (xj) /σj)),
with σ being an example-wise length-scale parame-
ter learned by a relation network of nodes used for
normalization.

IV. ATTENTIVE GRAPH NEURAL NETWORKS

Based on the GNN model, we propose an AGNN model con-
taining triple attentive mechanisms: node self-attention, neigh-
bor attention, and layer memory attention. Fig. 2 shows the
pipeline of AGNN for few-shot learning, and Fig. 3 illustrates
the details of one AGNN layer. We discuss each attention mech-
anism, followed by how AGNN is applied for few-shot learning.

A. Node Self-Attention

Denote the feature of each sample (i.e., node) i as xi ∈ Rd,
and the one-hot vector of its corresponding label as yi ∈ RN ,
where d is the feature dimension,N is the total number of classes
and 1 ≤ i ≤ V . The one-hot vector sets only the element corre-
sponding to the ground-truth category to be 1, while the others
are all set to 0. Note that the one-hot encoding of the query sam-
ple is initialized with the uniform distribution (i.e., all values in
the vector are set to 1/N ). To obtain a task-specific feature as a
suitable graph initialization, we propose node self-attention to
exploit the sample correlation in the initial stage at the feature
and category levels, respectively. Denote the sample matrices
and label matrices as:

X = [x1,x2, . . . ,xV ]
T ∈ RV ×d,

Y = [y1,y2,, . . . ,yV ]
T ∈ RV ×N . (3)

We first consider the self-attention between feature embeddings
of nodes in a graph. Inspired by the popular and powerful Trans-
former architecture [50], we employ two linear projection lay-
ers with mapping function WQ,WK ∈ Rd×dl and compute the
self-attention matrix as:

Cx = softmax((XWQ)(XWK)
T), (4)

where dl is the feature dimension of the latent space. For
simplicity, we set dl = d in this paper. softmax(·) denotes a
row-wise softmax operator for label correlation matrices. For
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Fig. 3. Illustration of k-th AGNN layer. The grey and green boxes denote neighbor attention and layer memory attention, respectively. Specifically, in the k-th
layer, the proposed AGNN method first adapts an MLP block to encode the node similarity and generate the adjacency (Adj.) matrix A(k). Then before applying
sparsity constraint to construct the optimal Adj. matrix Â(k), AGNN reweights A(k) as U(k) by considering the “earlier edge memory” of the last GNN layer,
i.e., the optimal Adj. matrix Â(k−1). Then neighbor attention applies sparsity constraints with a variable sparsity ratio β(k) to attend to the most related nodes and
generate the output Adj. matrix Â(k). AGNN then applies the layer memory attention module to update the node features of the graph.

P = (XWQ)(XWK)
T, the row-wise softmax operator is de-

fined as:

Cx(i, j) = exp {P(i, j)} /
∑
k∈Ni

exp {P(i, k)} , (5)

where Ni denotes the set of nodes that are connected to the node
xi. We then calculate the label correlation matrices as:

Cy = softmax(YYT). (6)

Note that the element (i, j) of the self-correlation function YYT

for one-hot label matrix Y indicates if sample i and j are in
the same class, which means that the matrix YYT is a binary
matrix. However, refer to the study in [60], a binary correlation
vector for each sample (i.e., each row of the matrix YYT) only
contains information about the correct class but no information
about other classes. To solve this problem and achieve a good
initialization of the graph, we enlarge the correlation weight
of the inter-class samples and reduce the correlation weight of
the intra-class samples by introducing the softmax function. In
detail, for the matrix YYT, if a row has a common class with
many other samples (corresponding to the K-shot with K > 1),
the softmax will result in small equal weights. In this way, each
sample combines the information from all neighbors.

The proposed node self-attention module exploits the corre-
lation amongst both image features and label vectors, which
should share the information from different perspectives for the
same node. The next step is to fuse Cx and Cy using trainable
1× 1 kernels as:

Cf = fτ ([C
x,Cy]) ∈ RV ×V , (7)

where [Cx,Cy] denotes the concatenated attention map, and fτ
is a 1× 1 convolution layer. With the fused self-attention map,
both the feature and the label vectors are updated on the nodes:

X̃(1) = CfX, Y(1) = αY+ (1− α) CfY, (8)

where α ∈ [0, 1] is a weighting parameter. Unlike the feature
update, the label update preserves the initial labels, which are the
ground truth, in the support set, using the weighting parameter
α to regularize the label update. The updated sample features

X̃(1) and labels Y(1) are concatenated to form the node features
X(1) ∈ RV ×(d+N) in the first AGNN layer.

B. Neighbor Attention Via Sparsity

Similar to various successful GNN frameworks, the proposed
AGNN applies an MLP to learn the adjacency matrix Aij for
feature updates. When the GNN model becomes deeper, the risk
of over-smoothing increases as GNN tends to mix information
from all neighbor nodes and eventually converge to a stationary
point in training. To tackle this challenge, we propose a novel
neighbor attention via two strategies, i.e., sparsity constraint
and memory attention, to attend to the most related nodes as
illustrated in Fig. 3.

To exploit the neighbor information of the graph across all
AGNN layers, we consider the relationship between the two
nodes in both current and previous layers when computing the
adjacency matrix in each layer. Specifically, when calculating
the weight U(k)(i, j) between two nodes (x(k)

i ,x
(k)
j ) in the k-th

layer using an MLP(k), we also consider the relationship be-
tween them in the previous (k − 1)-th layer as:

U(k)(i, j) = MLP(k)
(∣∣∣x(k)

i −x
(k)
j

∣∣∣)� Â(k−1)(i, j), ∀ i, j,

(9)
where Â(k−1) is the output adjacency matrix in the last layer and
MLP(k)(·) contains two convolutional blocks with a sigmoid
layer at last.

Note that each element Â(k−1)(i, j) in Â(k−1) is between
[0,1], indicating the similarity between node i and node j in
the previous layer. Hence the (9) can be regarded as a regular-
ized MLP function that reweights the similarity between two
nodes according to the “edge memory” obtained from the pre-
vious layer.

With U(k)(i, j), we then apply sparsity constraint to attend to
the most related nodes by solving the following sparse problem:

Â(k) = arg min
A(k)

∥∥∥A(k) −U(k)
∥∥∥
F
, s .t .

∥∥∥A(k)
i

∥∥∥
0
≤ β(k)V, ∀i,

(10)
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where A
(k)
i ∈ R1×V denotes the i-th row of A(k), β(k) ∈ (0, 1]

denotes the ratio of nodes maintained for feature update in the
k-th AGNN layer. With the �0 constraint, the adjacency matrix
Â(k) has up to β(k)V non-zeros in each row, corresponding to
the attended neighbor nodes.

Different from setting a fixed sparsity ratio for all AGNN
layers, we change the sparsity ratio in each layer following
β(k) = 1− 0.1k. Such a dynamic layer-wise version brings
more flexibility to each AGNN layer. Specifically, we do not
impose strong sparsity constraints in the first few layers to ag-
gregate more neighbor information. As AGNN layers go deeper,
the stronger sparse constraint with a lower maintenance ratio
forces the model to capture information only from the most rel-
evant nodes, i.e., nodes with a higher probability of belonging
to the same class.

The solution to (10) is achieved using the projection onto
an �0 unit ball, i.e., keeping the β(k)V elements of each U

(k)
i

with the largest magnitudes [61]. Since the solution to (10) is
non-differentiable, we apply alternating projection for training,
i.e., in each epoch, U(k) is first updated using back-propagation
by (9), followed by (10) to update Â(k) which is constrained to
be sparse. For simplicity, we keep the top-m value for each row
of A(k) and set the others to 0 to construct the sparse matrix with
m = β(k)V .

C. Layer Memory Attention

To avoid the over-smoothing and over-fitting issues due to
“over-mixing” neighboring nodes’ information, another ap-
proach is to attend to the “earlier memory” of intermediate fea-
tures, including both edge and node features at previous layers.
Inspired by DenseNet [24], JKNet [62], GFCN [63] and few-shot
GNN [5], we densely connect the output of each GNN layer, as
the intermediate GNN-node features maintain more consistent
and general representation across different GNN layers. During
the adjacency matrix (i.e., edge feature) update process, AGNN
treats the output adjacency matrix of the previous layer as “edge
memory” and adopts it according to (9) to balance the relation-
ship among neighbors in each AGNN layer before adopting the
sparsity constraint. Then, AGNN applies the transition function
based on (2) to update node features. In addition, we utilize graph
self-loop, i.e., identity matrix I to incorporate self information.
Thus the update rule of the AGNN in the k-th layer is formulated
as:

Fk(X
(k), W(k)) = ρ

([
Â(k) X(k)‖ IX(k)

]
W(k)

)
, (11)

where ‖ means row-wise feature concatenation and W(k) ∈
R2dk×m. Furthermore, instead of using Fk(X

(k),W(k)) ∈
RV ×m directly as the input node feature at the (k+1)-th layer,
we propose to attend to the “early memory” in a similar way
as [5] by concatenating the node feature at the k-th layer as:

X(k+1) =
[
X(k),Fk

(
X(k),W(k)

)]
∈ RV ×(d+N+km). (12)

Equation (12) shows that the output feature size of k-th layer
X(k+1), the size of MLP block for computation of the adjacency
matrix in (10) and the corresponded transform matrix W(k) are

all positively correlated with the number of layers. Thus, as the
number of AGNN layers k increases, it needs more memory to
store the features and parameters for each GNN layer. There
are only V ×m new features introduced in a new layer, while
the node features of earlier layer X(k) are attended to the early
memory.

D. AGNN for Few-Shot Learning

Following the same strategy of episodic training [2] with the
meta-learning framework, we simulate N -way K-shot tasks
Ctrain = {T l

train}Ll=1 which are randomly sampled from the
training set, in which the support set includes K labeled sam-
ples (e.g., images) from each of the N classes and the query
set includes unlabeled samples from the same N classes. Each
task is modeled as a graph [5], in which each node represents
an image sample with its label. The objective is to learn the pa-
rameters of the AGNN model using the simulated tasks, which
are generalizable for an unseen few-shot task.

Loss Function: We adopt the single-stage training scheme
without pre-training the feature extractor and jointly train
the AGNN model combined with the backbone network. For
each simulated few-shot task T l

train with its query set Q =

{(xi, yi)}Qi=1, the parameters of the backbone feature ex-
tractor, node self-attention block fτ , and M AGNN layers
{MLP(k)

i ,W
(k)
i }Mi=1 are trained by minimizing the summation

of the cross-entropy loss of classes over all query samples from
each layer as:

Lcls = −
M∑
l=1

Q∑
i=1

yi logP
(
ŷli = yi|T l

train

)
, (13)

where ŷli denotes the predicted labels of the query sample xi in
the l-th AGNN layer and yi is the corresponding ground-truth
labels. We evaluate the proposed AGNN for the few-shot task us-
ing both inductive and transductive settings, which correspond
to Q = 1, and Q = Nq with q ≥ 1, respectively. For each query
sample in the N -way K-shot task, we initialize the one-hot fea-
ture y with a uniform distribution, i.e., each value is set to 1/N .

E. Relation to Existing Graph-Based Models

GAT [54]: Different from the classic GNNs, GAT [54] ex-
ploited attention mechanism amongst all neighbor nodes in the
feature domain after the linear transformation W(k) and com-
putes the weights α based on attention coefficients for graph
update as:

x
(k+1)
i = ρ

⎛
⎝∑

j∈Ni

αijx
(k)
j W(k)

⎞
⎠ , (14)

where Ni denotes the set of the neighbor (i.e., connected) nodes
of xi. Similar to our proposed AGNN model, GAT also consid-
ers self-attention on the nodes. However, unlike our proposed
method, which applies the node self-attention mechanism before
the GNN layer, GAT applies a self-attention mechanism after the
linear transformation W. With a shared attention mechanism
parametrized by a weight vector −→a , GAT allows all neighbor
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nodes to attend to the target node with attention coefficients as:

αij =
exp

(
ρ
(−→a T

[
x
(k)
i W(k)‖x(k)

j W(k)
]))

∑
p∈Ni

exp
(
ρ
(−→a T

[
x
(k)
i W(k)‖x(k)

p W(k)
])) . (15)

However, GAT only considers the relationship among neighbors
in the same layer while it fails to utilize the layer-wise informa-
tion, which may lead to over-smoothing. Furthermore, GAT just
applies self-attention based on node features while ignoring la-
bel information.

TPN [12]: TPN [12] first introduced a transductive mecha-
nism to utilize the entire query set for transductive inference in
few-shot learning. A graph construction module is proposed to
exploit the manifold structure of the novel class space using the
union of support set and query set. Specifically, TPN applies a
relation module to learn the example-wise length-scale parame-
ter σ, which is then used to compute the node similarity matrix
A as:

Aij = exp

(
−1

2
d

(
xi

σi
,
xj

σj

))
, (16)

where d(·, ·) is the Euclidean distance function.
Similar to the proposed neighbor attention mechanism, TPN

only keeps top-k values in each row of A to construct a sparse k-
nearest neighbor graph. With this graph, instead of iterative label
propagation, TPN applies a closed-form solution to propagate
the labels from the support set to the query set:

F ∗ = (I − αS)−1Y, (17)

where S = D−1/2AD−1/2 is the normalized symmetric matrix
in which D is a diagonal matrix with its (i, i)-element equal to
the sum of the i-th row of affinity matrix A. TPN can predict the
class of query samples by regressing directly from support fea-
tures to query features in closed form without large-scale learn-
able parameters. However, the graph structure is fixed upon the
computation of the sparse similarity matrix A for each itera-
tion. Moreover, TPN does not consider the label information for
graph construction and the relationship among different layers,
which limits its performance.

DPGN [14]: Unlike the single graph-based methods men-
tioned above, DPGN [14] proposes a dual-graph architecture
including a point graph and distribution graph to leverage both
instance-level and distribution-level representation to propagate
label information better. The point graph contains node features
of images and follows the same steps in (2) to update graphs,
identical to our proposed AGNN model and other GNN-based
methods. However, the strategy of updating the adjacency matrix
in DPGN is different from our proposed method. Our proposed
AGNN learns a sparse adjacency matrix A(k) with an MLP in
(10) by considering both the node feature information of the cur-
rent layer and the adjacency information of the previous layer,
while DPGN constructs a dual distribution graph by gathering
1-vs-n relation on each node to refine the point graph by deliv-
ering distribution relations between each pair of samples.

V. WHY IT WORKS

A. Discriminative Sample Representation

It is critical to obtain the initial feature representation of the
samples that are sufficiently discriminative (i.e., samples of dif-
ferent classes are separated) for the GNN models in few-shot
tasks. However, most of the existing GNN models work with
generic features using a CNN-based backbone and fail to cap-
ture the task-specific structure. The proposed node self-attention
module exploits the cross-sample correlation and can thus effec-
tively guide the feature representation for each few-shot task.

B. Alleviation of Over-Smoothing and Over-Fitting Problems

Over-fitting arises when learning an over-parametric model
from the limited training data, and it is extremely severe as the
objective of few-shot learning is to generalize the knowledge
from the training set for few-shot tasks. On the other hand, over-
smoothing phenomenon refers to the case where the features of
all (connected) nodes converge to similar values as the model
depth increases. We provide theoretical analysis to show that
the proposed triple-attention mechanism can alleviate both over-
fitting and over-smoothing in GNN training.

Lemma 1: The node self-attention module is equivalent to a
GNN layer if α = 0 as

X(k) =
[
X,Y

]
, A(k) = Cf , W(k) = I. (18)

Proposition 1: Applying the node self-attention module to
replace a GNN layer in AGNN reduces the trainable-parameter
complexity from O{dx(dx + L)} to O{dxde}, where dx and
de represents the input feature dimension and the projected di-
mension in the latent space, respectively. L denotes the depth of
MLP for generating the adjacency metric.

The node self-attention module only involves two linear pro-
jection layers and the 1× 1 kernels that are trainable.

Lemma 1 and Proposition 1 prove that the node self-attention
module involves much fewer trainable parameters than a normal
GNN layer. Thus, applying node self-attention instead of another
GNN layer will reduce the model complexity, thus lowering the
risk of over-fitting.

Next, we show that using neighbor attention can help alleviate
over-smoothing for training GNN models. The analysis is based
on the recent works on DropEdge [21] and GNN information
loss [64]. They proved that a sufficiently deep GNN model will
always suffer from “ε-smoothing” [64], where ε is defined as
the error bound of the maximum distance among node features.
Another concept is the “information loss” [64] of a graph model
G, i.e., the dimensionality reduction of the node feature-space
after T layers of GNNs, denoted as ΘT,G. We use these two
concepts to quantify the over-smoothing issue in our analysis.

Theorem 1: Denote the same multi-layer GNN model with
and without neighbor attention as G̃ and G, respectively. Be-
sides, denote the number of GNN layers for them to encounter
the ε-smoothing [64] asT (G̃, ε) andT (G, ε), respectively. With
sufficiently small β in the neighbor attention module, either (i)
T (G̃, ε) ≤ T (G, ε), or (ii) ΘT (G,ε),G > ΘT (G̃,ε),G̃, will hold.
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Remarks: The result shows that the GNN model with the
neighbor attention (i) increases the maximum number of layers
to encounter over-smoothing, or if the number of layers remains,
(ii) the over-smoothing phenomenon is alleviated.

For the above results, we provide the full proofs in Sec-
tion V-C.

C. Proofs of the Proposed Attention Mechanism

We present the detailed proofs of Lemma 1, Proposition 1
regarding the proposed node self-attention, and Theorem 1 re-
garding the neighbor attention.

Proof of Lemma 1: First of all, we analyze the proposed node
self-attention, whose feature and label vector updates are

X̃(1) = CfX, Y(1) = αY+ (1− α) CfY, (19)

where Cf denotes the attention map, X and Y (resp. X(1) and
Y(1)) denote the input (resp. output) feature and label vectors,
respectively.

We prove Lemma 1, which shows that the proposed node
self-attention can alleviate Over-fitting by reducing the model
complexity compared to adding more GNN layers. The output
of the general k-th GNN layer can be represented as

X(k+1) = Fk(X
(k), W(k)) = ρ (Â(k) X(k) W(k)). (20)

With the condition for equivalence, the output of the k-th
GNN layer becomes

X(k+1) = Fk(X
(k), I) = Cf X(k) I = Cf X(k). (21)

Thus, (21) is equivalent to putting the node self-attention to
replace the k-th GNN layer, with X(k+1) = X(1) and X(k) =
[X,Y]. �

Proof of Proposition 1: Next, we prove Proposition 1, which
shows the model complexity decrease from a trainable GNN
layer to the proposed node self-attention module.

For a GNN layer following (2), both W(k) and the MLP(k)

are trainable, corresponding to free parameters scale as O{d2x}
and O{dxL}, respectively. On the contrary, based on Lemma 1,
the proposed node self-attention is equivalent to a GNN layer,
with the W(k) and the MLP(k) fixed. The only trainable param-
eters are linear layers to project features into the latent space
for attention computation and the 1× 1 kernels to fuse the CX

and CY, with the complexity scales as O{dxde} and O{1},
respectively. �

Proofs of Theorem 1: Next, we show that using neighbor at-
tention can help alleviate over-smoothing for training GNN. We
first quantify the degree of over-smoothing using the definitions
from [21] and [64].

Definition 1 (Feature Subspace): Denote the M - dimen-
sional subspace M = {UΣ |U ∈ RV ×M , UTU = IM , Σ ∈
RM×d} as the feature space, with M ≤ V .

Definition 2 (Projection Loss): Denote the operator of pro-
jection X ∈ RV ×dx onto a M -dimensional subspace as PM :
RV ×dx → RV ×dx as

PM(X) = arg min
Z∈M

‖X− Z‖F . (22)

Denote the projection loss θM(X) as

θM(X) = ‖X− PM(X)‖F = min
Z∈M

‖X− Z‖F . (23)

Definition 3 (ε-smoothing): The GNN layer that suffers from
ε-smoothing if θM(X) < ε. Given a multi-layer GNN G with
each the feature output of each layer as X(k), we define the
ε-smoothing layer as the minimal value k that encounters ε-
smoothing, i.e.,

T (G, ε) = min
k

{θM(X) < ε}. (24)

Definition 4 (Dimensionality Reduction): Suppose the di-
mensionality reduction of the node feature-space after T layers
of GNNs is denoted as ΘT,G = dx − T (G, ε).

With these definitions from [21] and [64], we can now prove
Theorem 1 for the neighbor attention in (9) and (10).

Given the original U(k), the solution to (10) is achieved using
the projection onto a �0 unit ball, i.e., keeping the βV elements
of each U

(k)
i with the largest magnitudes [61], i.e.,

Â
(k)
i (j) =

{
U

(k)
i (j) , j ∈ Ωi

β(k)V

0 , j ∈ Ω̄i
β(k)V

(25)

Here, the set Ωi
βV = supp(Â(k)

i ) indexes the top-β(k)V ele-

ments of largest magnitude in U
(k)
i , and Ω̄i

β(k)V
denotes the

complement set of Ωi
K . When Â

(k)
i (j) = 0, it is equivalent to

remove the edge connecting the i-th node and j-th node. Thus,
|Ω̄i

β(k)V
| equals the number of edges been dropped by the neigh-

bor attention, and |Ω̄i
β(k)V

| → V as β(k) → 0.

Therefore, when β(k) is sufficiently small, there are a suffi-
cient number of edges being dropped by the neighbor attention.
Based on the Theorem 1 in [21], we have either of the two to
alleviate the over-smoothing phenomenon:
� The number of layers without ε-smoothing increases by

neighbor attention via sparsity, i.e., T (G̃, ε) ≤ T (G, ε).
� The information loss (i.e., dimensionality reduction by fea-

ture embedding) decreases by neighbor attention via spar-
sity, i.e., ΘT (G,ε),G > ΘT (G̃,ε),G̃. �

VI. EXPERIMENTS

To evaluate the performance of our proposed AGNN method
for few-shot classification, we conducted various experiments
on four benchmarks. In this section, we first describe the
dataset information and implementation details of our network.
Then we conduct extensive experiments under several extended
few-shot classification tasks, including standard classification,
fine-grained classification, and semi-supervised classification
under both transductive and inductive settings to evaluate the
generalizability of the AGNN model. Finally, we perform ab-
lation studies to analyze the effectiveness of each attention
mechanism.
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A. Dataset Description

We conduct few-shot image classification experiments
on four benchmarks, including Mini-ImageNet [2], Tiered-
ImageNet [65], Flowers-102 [36], [66], and Caltech-UCSD
Birds 200-2011 [67].

Mini-ImageNet: Mini-ImageNet contains 60000 images of
100 different classes extracted from the ILSVRC-12 chal-
lenge [68]. We follow the dataset splits proposed by [31], i.e.,
64, 16, and 20 classes for training, validation, and testing, re-
spectively.

Tiered-ImageNet: Tiered-ImageNet dataset is a more chal-
lenging data subset also from the ILSVRC-12 challenge [68],
which contains more classes that are organized in a hierar-
chical structure, i.e., 608 classes from 34 top categories. We
follow the setups proposed by [65] and split 34 top cate-
gories (resp. 608 classes) into 20 (resp. 351), 6 (resp. 97),
and 8 (resp. 160) classes for training, validation, and testing,
respectively.

Flowers-102: Flowers-102 [66] was initially proposed for
fine-grained image classification of flowers. It contains 102
different flowers with 8189 images, and each image size is
84× 84× 3. There are large variations of scale, pose, and light
of flower images. In addition, some categories have significant
variations within classes. Following the spilt in [36], we split 102
classes into 52, 25, and 25 for training, validation, and testing,
respectively.

Caltech-UCSD Birds 200-2011: CUB [67] was also initially
proposed for fine-grained image classification. It contains 200
different birds with 11788 images, and each image size is 84×
84× 3. Compared with the classic image classification task, we
need to find the minor difference between classes, making it a
more challenging problem. Following the spilt in [69], we split
200 classes into 100, 50, and 50 for training, validation, and
testing, respectively.

B. Implementation Details

We follow most of the DNN-based few-shot learning
schemes [2], [3], [5] and first apply the popular ConvNet-4
as the backbone feature extractor, with 3× 3 convolution ker-
nels, numbers of channels as [64,96,128,256] at correspond-
ing layers, a batch normalization layer, a max pooling layer,
and a LeakyReLU activation layer. Besides, two dropout lay-
ers are adapted to the last two convolution blocks to alleviate
over-fitting [5]. Furthermore, to compare with the more com-
plicated CNN-based methods, we also apply ResNet-12 as the
backbone, following a similar setup in [38]. On this basis, a
fully-connected layer with batch normalization is added to the
end for dimensionality reduction. We conducted both 5-way
1-shot and 5-way 5-shot experiments, under both inductive and
transductive settings [12]. We use only one query sample for
the inductive and one query sample per class for the transduc-
tive experiments on the ConvNet-4 and ResNet-12 backbone.
Our models are all trained using Adam optimizer with an ini-
tial learning rate of 1× 10−3. For the ConvNet-4 backbone, the
weight decay is set to 10−6 and the mini-batch sizes are set to 40
for all settings. For the ResNet-12 backbone, the weight decay is

TABLE I
FEW-SHOT CLASSIFICATION ACCURACY AVERAGED OVER MINI-IMAGENET

AND TIERED-IMAGENET DATASETS WITH THE CONVNET-4 BACKBONE. UNDER

EACH SETTING (I.E., TRANSDUCTIVE OR INDUCTIVE, 1-SHOT OR 5-SHOT), THE

BEST AND SECOND BEST RESULTS UNDER EACH DATASET ARE HIGHLIGHTED

AS RED AND BLUE, RESPECTIVELY. † INDICATES THAT THE SETFEAT METHOD

ADOPTS THE CONVNET4 BACKBONE WITH ADDITIONAL 10 SELF-ATTENTION

MODULES. � DENOTES THAT THE GNN RESULT IS OUR IMPLEMENTATION

BASED ON PUBLIC CODE. � SHOWS THAT MCGN HAS A DIFFERENT

TRANSDUCTIVE SETTING FROM OTHER GNN BASED METHODS

10−5, and the mini-batch sizes are set to 28. We reduce the learn-
ing rate to 0.1 every 15 K and 18 K epochs over mini-ImageNet
and tiered-ImageNet, respectively. The output feature dimen-
sion of two backbones is 128, and the number of GNN layers is
set to 5. The weighting parameter α in Eq (8) is set to 0.5 and
0.9 for mini-ImageNet and tiered-ImageNet, respectively.

C. Standard Few-Shot Image Classification

We compare the proposed AGNN to state-of-the-art CNN-
and GNN-based methods, using the ConvNet-4 and ResNet-12
backbone, and Tables I, II list the average accuracy of the
few-shot image classification, respectively. Table I shows that
the proposed AGNN has achieved state-of-the-art performances
under 5-way 1-shot and 5-shot settings and outperforms GNN-
based methods by about 9.67% and 3.33% over mini-ImageNet
and tiered-ImageNet datasets under the ConvNet-4 backbone
under the 1-shot setting. When adopting a deeper backbone
network (i.e., ResNet-12), we can observe a consistent result,
which demonstrates the effectiveness of the AGNN approach.
Furthermore, when comparing the results of the two backbones
on the same tiered-ImageNet dataset, we can find that the perfor-
mance improvement of the GNN-based methods is not obvious.
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TABLE II
FEW-SHOT CLASSIFICATION ACCURACY AVERAGED OVER TIERED-IMAGENET

WITH THE RESNET-BASED BACKBONE. THE BEST (RESP. SECOND BEST)
RESULTS ARE HIGHLIGHTED AS RED (RESP. BLUE)

TABLE III
FEW-SHOT CLASSIFICATION ACCURACY AVERAGED OVER CUB AND

FLOWERS-102 DATASETS WITH THE CONVNET-4 BACKBONE. THE BEST AND

SECOND BEST RESULTS UNDER EACH SETTING AND DATASET ARE

HIGHLIGHTED AS RED AND BLUE, RESPECTIVELY

One possible explanation is that GNN methods mainly exploit
graph structure to collect and exploit important information from
neighboring nodes. However, deeper feature extractors can only
help better initialization, which is less relevant to GNN layers.
Another observation is that for the same method, the accuracy
of transductive learning is typically better than that of induc-
tive learning, by further exploiting the correlation amongst the
multiple query samples.

D. Fine-Grained Few-Shot Classification

We also evaluate the proposed AGNN method on two fine-
grained datasets (i.e., CUB and Flowers-102) under the few-
shot setting. Compared with classification tasks on standard
datasets such as the mini-ImageNet dataset, the few-shot fine-
grained classification task is more challenging due to the sig-
nificant intra-class variance and inter-class similarity. Table III

TABLE IV
COMPARISON OF FULLY SUPERVISED AND SEMI-SUPERVISED FEW-SHOT

CLASSIFICATION ON THE TIERED-IMAGENET BENCHMARK UNDER THE 5-WAY

SETTING. HERE “FS” MEANS THE TYPICAL FULLY SUPERVISED FEW-SHOT

SETTING. THE PERCENTAGE UNDER THE SEMI-SUPERVISED SETTING

CORRESPONDS TO THE PROPORTION OF LABEL SAMPLES IN EACH CLASS OF

SUPPORT SET UNDER THE 5-SHOT SETTING

summarizes the 5-way classification results with the ConvNet-4
backbone over CUB and Flowers-102 datasets. It can be seen
that our proposed AGNN achieves state-of-the-art performance
on both datasets for both 1-shot and 5-shot settings. Our pro-
posed AGNN improves GNN by a large margin ranging from
2.09% to 8.36% on both target datasets, which validates the ef-
fectiveness of the proposed attention mechanisms. Notably, we
observe that GNN-based few-shot methods perform better than
other few-shot methods, proving that GNN can help exploit the
intra-class and inter-class relationships between samples, espe-
cially for the fine-grained classification task.

E. Semi-Supervised Few-Shot Classification

For the semi-supervised experiment, we follow the typical
5-way 5-shot setting with only a partially labeled support set [5],
[13]. We conduct the experiments over the tiered-ImageNet
benchmark, and the result is presented in Table IV. For each
class, we set the same labeled ratio of the support samples, e.g.,
20% labeled ratio corresponds to one labeled support sample
and four unlabeled support samples. We perform the ProtoNet
method [3] as the baseline for comparison and report the results
of two versions according to whether the method utilizes the
unlabeled support samples. Here the original version of the Pro-
toNet method means that we ignore unlabeled support samples
and only use the partially labeled support samples of each class
to compute prototype for classification, which is equivalent to
the corresponding few-shot setting, i.e., 20% (resp. 80%) in the
semi-supervised setting is equal to the fully supervised 5-way
1-shot (resp. 4-shot) setting. In contrast, we also implement a
new version of the ProtoNet denoted as “ProtoNet w/ unlabeled,”
i.e., considering these unlabeled support samples as extra query
samples during training for semi-supervised learning.

As shown in Table IV, we can observe that semi-supervised
learning increases the performance of all methods in com-
parison to the results under the typical fully-supervised few-
shot setting with the same number of labeled support sam-
ples (0.85%, 0.97%, 1.09%, 2.70%, 4.78%, 8.07% for Pro-
toNet, GNN, EGNN, AGNN, DPGN, and TLRM, respectively).
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Furthermore, we find that the difference between the ProtoNet
baseline and GNN-based methods under the semi-supervised
setting becomes larger. This indicates that GNN-based methods
can obtain a more discriminative relationship representation via
graph structure. The proposed AGNN outperforms the GNN,
EGNN, and TLRM in all cases. Furthermore, AGNN achieves
better performance than DPGN under the 20% semi-supervised
setting, while DPGN performs slightly better under the 80%
semi-supervised setting. A plausible explanation is that DPGN
applies a dual-graph structure to encode distribution and in-
stance information, which can better propagate label information
when there is less unlabeled data (corresponding to the 80%
semi-supervised setting) but may convey misinformation be-
tween the dual-graph when data missing is severe (correspond-
ing to the 20% semi-supervised setting). Notably, the perfor-
mance gap between the proposed AGNN and EGNN becomes
larger under the semi-supervised setting, which proves the abil-
ity of proposed attention mechanisms to integrate more accurate
and essential information via graph convolution. Moreover, there
exists another popular semi-supervised few-shot setting, i.e.,
each few-shot task consists of additional unlabeled data for each
category. Different from semi-supervised settings in GNN-based
methods, methods of this type utilize additional information to
help adjust the class distribution to reduce bias. To evaluate the
effectiveness of the proposed method, we also compare the re-
sults with one of the state-of-the-art method Cluster-FSL [77]
in our setting. For a fair comparison, we change the support and
unlabeled size for Cluster-FSL to match our setting, e.g., for
80% semi-supervised setting, we set the support size to 4 and
the unlabeled size to 1. Compared to Cluster-FSL, GNN-based
methods perform better, which demonstrates the superiority of
our proposed attention modules.

F. Robustness in Transductive Learning

Comparing to the typical inductive setting in few-shot learn-
ing, transductive few-shot learning is a novel setting first pro-
posed in [12], which allows the model to utilize the whole unla-
beled query instances in each few-shot task, leading to promis-
ing results. While the sampled query samples are always uni-
formly distributed for each class in the conventional transduc-
tive learning setting [12], such an assumption may not hold in
practice, e.g., the query set contains the random number of
samples for each class. This problem may be severe, especially
for GNN-based models, which may learn the distribution of each
class by graph convolution during meta-training. We study how
robust the proposed AGNN is for such a setting by comparing
it to the baseline GNN [5] only with layer memory attention,
DPGN [14] and AGNN without specific attention mechanism.
In the training phase, we simulate a fixed number of query sets
(i.e., 25) and change the number of test samples for each class
correspondingly for all methods under such a setting. Table V
shows the image classification accuracy with 5-way 1-shot trans-
ductive learning with 5 query samples in each class, averaged
over the tiered-ImageNet dataset. It can be found that the accu-
racies of all GNN-based methods decrease due to the different
class distributions in each graph between training and testing

TABLE V
EFFECT OF QUERY SAMPLES DISTRIBUTION OVER TIERED-IMAGENET DATASET

FOR THE 5-WAY 1-SHOT TASK UNDER THE TRANSDUCTIVE SETTING. THE

TOTAL NUMBER OF QUERY SAMPLES UNDER THE TWO SETTINGS REMAINS

THE SAME (I.E., 25)

Fig. 4. Ablation study: Classification accuracies using AGNN (3 to 7 layers)
and its variations over the tiered-ImageNet dataset.

tasks, especially for the DPGN method that delivers distribu-
tion relations between nodes in the distribution graph to refine
the point graph for classification. In contrast, with the query-set
samples of “random” labels, the proposed AGNN can still gen-
erate significantly better results compared to the vanilla GNN.
We also observe that each proposed attention mechanism con-
tributes to robustness. For example, neighbor attention can help
prevent “over-mixing” with all nodes, as the sparse adjacency
matrix can attend to the related nodes (i.e., nodes with the same
class) in an adaptive way,

G. Ablation Study

We investigate the effectiveness of each proposed attention
module by conducting the following ablation study.

1) Impact of AGNN Layers: Fig. 4 plots the image classifi-
cation accuracy over the tiered-ImageNet dataset, with differ-
ent variations of the proposed AGNN, by removing the node
self-attention (self att), neighbor attention (neigh att), and layer
memory attention (memory att) modules. We also compare
with our previous work [28]. It is clear that all variants except
our own method generate degraded results as GNN layers go
deeper, and some even suffer from more severe over-smoothing,
i.e., the accuracy of GNN without any attention mechanisms
drops quickly as the number of GNN layers increases. Results
also show that neighbor and layer memory attentions are more
essential to alleviate the over-smoothing problem. This is con-
sistent with our expectations as the node self-attention is only
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Fig. 5. T-SNE visualization of node features under 5-way 1-shot with 10 query
samples in each class on the testing set of the mini-ImageNet dataset. From left
to right: the baseline GNN method with n = 7 layers and the proposed AGNN
method with different layers, i.e., n = 3, 5, and 7.

adopted before the operation of graph convolution, which has
less impact on the over-smoothing issue. Furthermore, with the
comparison between the two AGNN versions, we conclude the
proposed layer-wise neighbor attention can provide better affin-
ity. A reasonable explanation is that the layer-wise neighbor
attention mechanism adopts the previously learned neighbor in-
formation (i.e., adjacency matrix) as prior knowledge, which
can better help learn more accurate affinity between nodes and
avoid over-fitting to the features in the current layer. Moreover,
the dynamic sparsity ratio can force GNNs to aggregate different
degrees of neighbor information at different layers, thereby pro-
viding flexible graph structures for various tasks and alleviating
over-fitting and over-smoothing issues.

We also plot the t-SNE visualizations of different layers for
the proposed AGNN (n = 3,n = 5, andn = 7) and the baseline
GNN method (n = 7) over mini-ImageNet, which is shown in
Fig. 5. Results show that as the GNN layer goes deeper, i.e.,
n = 7, the baseline method appears to over-smoothing issues
on the testing set. In this case, the few-shot GNN-based method
failed to generalize to novel tasks without attention or regular-
ized terms. In contrast, the proposed AGNN method can allevi-
ate this issue even at very deep layers. Another observation is
that as the number of layers increases, the AGNN performance
first increases and then decreases, and when n = 5, the AGNN
achieves the best t-SNE performance. A reasonable explanation
is that the proposed attention modules can build a flexible graph
model, which helps to alleviate the over-smoothing issue for
deep GNN layers and generalize well to unseen tasks to avoid
the over-fitting problem.

2) Comparison with Self-Attention Transformer Mechanism:
As mentioned before, we propose a node self-attention mod-
ule to exploit the relationship between samples by learning
the correlation matrix from feature and label levels, respec-
tively, and introducing a fusion strategy to combine the informa-
tion. Instead of the self-attention mechanism we proposed, the
self-attention transformer [11], [50] is also a popular module that
leverages the relationship between samples to learn discrimina-
tive feature embeddings. To validate the effectiveness of our
proposed node self-attention module, we experiment with these
two kinds of designed modules for few-shot image classifica-
tion. For a fair comparison, we add these two modules (our pro-
posed node self-attention module and self-attention transformer
module) before the AGNN layers to evaluate the performance,
respectively. Note that we concatenate the embedding feature
and one-hot label feature as the input of the self-attention trans-
former module. The output dimension of the linear mapping

TABLE VI
TEST ACCURACY OF DIFFERENT SELF-ATTENTION MECHANISMS OVER THE

MINI-IMAGENET DATASET. � INDICATES THAT THE PROPOSED METHOD

ADOPTS THE SELF-ATTENTION TRANSFORMER LAYER INSTEAD OF THE NODE

SELF-ATTENTION MECHANISM

TABLE VII
COMPARISON WITH DIFFERENT DESIGNS (I.E., FIXED OR FLEXIBLE) OF THE

SPARSITY RATIO β(k) IN THE NEIGHBOR ATTENTION MODULE OF THE AGNN
METHOD UNDER THE 5-WAY 1-SHOT SETTING

function for the transformer is set the same as the input dimen-
sion. We apply ProtoNet [3] as the baseline method for com-
parison. We also incorporate FEAT [11], a few-shot method
that applies the self-attention transformer as one kind of em-
bedding adaptation function into comparison. As we can see
from the results in Table VI, under our AGNN framework, our
node self-attention mechanism can achieve an improvement of
13.26% and 1.40% over the self-attention transformer under
5-way 1-shot and 5-way 5-shot settings, respectively. It shows
that node self-attention can implement rich relationships be-
tween samples from different levels and fuse them better. More-
over, we find that our proposed method with the transformer can
also obtain a performance improvement compared with Pro-
toNet with the transformer, which validates the effectiveness of
our proposed AGNN method.

3) Design Choice of Sparsity Ratio: To validate the effec-
tiveness of our proposed flexible setting of sparsity ratio in the
neighbor attention module, we consider two different sparsity
ratio designs, i.e., a fixed value for all AGNN layers or differ-
ent values for each AGNN layer. In both designs, the number
of AGNN layers is set to 5, i.e., the integer k ranges from 0 to
4. Table VII shows the classification accuracy with two sparsity
ratio designs in the neighbor attention module under the 5-way
1-shot setting. Results show that the classification accuracy of
AGNN is affected by the sparsity ratio, and β(k) = 1.0 is the
optimal parameter setting considering the fixed sparsity ratio de-
sign under the 1-shot setting. Compared with the results of fixed
sparsity design, we observe that our proposed variable sparsity
ratios can significantly improve the performance of few-shot
classification tasks. A plausible explanation is that this dynamic
layer-wise sparsity ratio design brings more flexibility to each
AGNN layer. Specifically, we need to aggregate more neighbor
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TABLE VIII
INDUCTIVE ACCURACY ON MINI-IMAGENET AND TIERED-IMAGENET DATASETS

UNDER 5-WAY 1-SHOT SETTING. “-” MEANS NOT APPLYING THE NODE

SELF-ATTENTION MECHANISM

TABLE IX
ABLATION STUDY: EFFECTS OF THE PROPOSED ATTENTION MODULES OVER

MINI-IMAGENET

information in shallow AGNN layers to learn feature representa-
tions. Thus, there is no need to impose strong sparsity constraints
in the first few layers, that is, no or less sparsity, i.e., a higher
value of β. However, as AGNN goes deeper, we need to force
the model to capture information only from the most relevant
nodes for classification and avoid over-smoothing issues, i.e.,
nodes with a higher probability of belonging to the same class.

4) Impact of Hyper-Parameters: There are two hyper-
parameters in the proposed AGNN method, namely α and m,
corresponding to the ratio for label fusion and the output fea-
ture dimension of each AGNN layer, respectively. The weighted
parameter α for label fusion ranges between 0 and 1. The num-
ber of dimension m is selected from {16, 32, 48}. Table VIII
shows how varying these two parameters affect the test accu-
racy for image classification averaged over the mini-ImageNet
dataset under the transductive setting. Besides, we also test the
model when the label fusion mechanism is totally removed,
denoted as “-” in the table. The results show that introducing
the node self-attention mechanism before the AGNN layers can
learn more flexible task-relevant features, thereby improving the
performance of the proposed model. It is obvious that m = 32
is a proper ratio for all datasets. The empirical results also show
that the mini-ImageNet dataset is not sensitive to the hyper-
parameters while retaining a larger proportion of ground-truth
label information (i.e., a larger value of α) is more conducive to
improving performance for the tiered-ImageNet dataset.

5) The Effects of the Proposed Attention Modules: Table IX
summarizes the effects of the proposed node self-attention
(self att), neighbor attention (neigh att), and layer memory
attention (mem att) modules over mini-ImageNet. Without
node self-attention, the proposed method directly utilizes
the output feature embeddings extracted from the backbone
network as node representations of the AGNN model. Without
neighbor attention, each AGNN layer adopts a fully connected

adjacency matrix to update node features. Without layer mem-
ory attention, the proposed method does not consider the dense
connection between different AGNN layers, i.e., the node
features of each layer are just the output of the current AGNN
layer. Results show that all modules consistently improve the
classification performance under both 5-way 1-shot and 5-shot
settings over mini-ImageNet. Furthermore, we can observe
that the effectiveness of neighbor and layer memory attentions
is more solid than node self-attention. As neighbor attention
via sparsity constructs a task-specific dynamic and flexible
relationship between nodes, it improves the generalizability of
unseen tasks in few-shot scenarios. In addition, the layer mem-
ory mechanism enables AGNN to aggregate the information
of each layer, which also helps to improve performance. In
contrast, the node self-attention mechanism combines image
and category information to provide a task-specific feature
initialization, which also helps to some extent.

VII. CONCLUSION

In this paper, we proposed a novel Attentive GNN model
for few-shot learning. The proposed AGNN makes full use of
the relationships between image samples for knowledge model-
ing and generalization. By introducing a triple-attention mech-
anism for graph initialization, graph update, and correlation
across graph layers, the proposed AGNN model effectively al-
leviates over-smoothing and over-fitting issues when applying
deep GNN models. Extensive experiments are conducted on
both standard few-shot classification benchmarks and two more
challenging scenarios (i.e., fine-grained and semi-supervised
few-shot classification tasks), showing that our proposed AGNN
achieved state-of-the-art results comparing to few-shot learning
methods.

Limitations: Despite that the proposed AGNN performs well
for few-shot learning tasks, GNN-based few-shot methods in
general are usually limited by the graph size. To be specific, when
the number of samples in each meta-task increases, GNN-based
few-shot methods require more space and computational com-
plexity for graph construction and feature update, which limits
the extension of such type of methods to other applications. In
future work, it is worth investigating how the proposed method
can adapt to large-scale graphs for more classification tasks.
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[54] P. Veličković et al., “Graph attention networks,” in Proc. Int. Conf.
Learn. Representations, 2018. [Online]. Available: https://openreview.net/
forum?id=rJXMpikCZ

[55] L. Li, Z. Gan, Y. Cheng, and J. Liu, “Relation-aware graph attention net-
work for visual question answering,” in Proc. IEEE/CVF Int. Conf. Com-
put. Vis., 2019, pp. 10313–10322.

[56] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proc. 36th
Int. Conf. Mach. Learn., Int. Mach. Learn. Soc., 2019, pp. 6661–6670.

[57] A. Sperduti and A. Starita, “Supervised neural networks for the classifica-
tion of structures,” IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 714–735,
May 1997.

[58] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017.
[Online]. Available: https://openreview.net/forum?id=SJU4ayYgl

https://dx.doi.org/10.1109/TMM.2022.3141886
https://openreview.net/forum{?}id$=$SyVuRiC5K7
https://openreview.net/forum{?}id$=$SyVuRiC5K7
https://dx.doi.org/10.1109/TMM.2022.3156938
https://openreview.net/forum{?}id$=$Hkx1qkrKPr
https://openreview.net/forum{?}id$=$Hkx1qkrKPr
https://dx.doi.org/10.1109/TPAMI.2021.3074057
https://openreview.net/forum{?}id$=$rJY0-Kcll
https://openreview.net/forum{?}id$=$rJY0-Kcll
https://openreview.net/forum{?}id$=$JWOiYxMG92s
https://openreview.net/forum{?}id$=$eJIJF3-LoZO
https://dx.doi.org/10.1109/TMM.2022.3142955
https://openreview.net/forum{?}id$=$rJXMpikCZ
https://openreview.net/forum{?}id$=$rJXMpikCZ
https://openreview.net/forum{?}id$=$SJU4ayYgl


CHENG et al.: GRAPH NEURAL NETWORKS WITH TRIPLE ATTENTION FOR FEW-SHOT LEARNING 8239

[59] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?,” in Proc. Int. Conf. Learn. Representations, 2019. [Online].
Available: https://openreview.net/forum?id=ryGs6iA5Km

[60] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Proc. NeurIPS workshop Deep Learn. Representation Learn.,
2014.

[61] B. Wen, S. Ravishankar, and Y. Bresler, “Structured overcomplete sparsi-
fying transform learning with convergence guarantees and applications,”
Int. J. Comput. Vis., vol. 114, no. 2/3, pp. 137–167, 2015.

[62] K. Xu et al., “Representation learning on graphs with jumping knowledge
networks,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 5453–5462.

[63] F. Ji, J. Yang, Q. Zhang, and W. P. Tay, “GFCN: A new graph convolutional
network based on parallel flows,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2020, pp. 3332–3336.

[64] K. Oono and T. Suzuki, “Graph neural networks exponentially lose ex-
pressive power for node classification,” in Proc. Int. Conf. Learn. Repre-
sentations, 2020. [Online]. Available: https://openreview.net/forum?id=
S1ldO2EFPr

[65] M. Ren et al., “Meta-learning for semi-supervised few-shot classification,”
in Proc. Int. Conf. Learn. Representations, 2018. [Online]. Available: https:
//openreview.net/forum?id=HJcSzz-CZ

[66] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Proc. IEEE 6th Indian Conf. Comput. Vis.,
Graph. Image Process., 2008, pp. 722–729.

[67] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 dataset,” California Inst. Technol., Tech.
Rep. CNS-TR-2011-001, 2011.

[68] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[69] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang, “A
closer look at few-shot classification,” in Proc. Int. Conf. Learn. Repre-
sentations, 2019. [Online]. Available: https://openreview.net/forum?id=
HkxLXnAcFQ

[70] M. Zhang et al., “IEPT: Instance-level and episode-level pretext tasks for
few-shot learning,” in Proc. Int. Conf. Learn. Representations, 2021. [On-
line]. Available: https://openreview.net/forum?id=xzqLpqRzxLq

[71] Y. Liu et al., “Learning to affiliate: Mutual centralized learning for few-shot
classification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 14411–14420.

[72] A. Afrasiyabi, H. Larochelle, J.-F. Lalonde, and C. Gagné, “Matching
feature sets for few-shot image classification,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2022, pp. 9014–9024.

[73] C. Chen, X. Yang, C. Xu, X. Huang, and Z. Ma, “ECKPN: Explicit
class knowledge propagation network for transductive few-shot learn-
ing,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021,
pp. 6596–6605.

[74] Y. Chen, Z. Liu, H. Xu, T. Darrell, and X. Wang, “Meta-baseline: Exploring
simple meta-learning for few-shot learning,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 9062–9071.

[75] J. Xie, F. Long, J. Lv, Q. Wang, and P. Li, “Joint distribution matters:
Deep brownian distance covariance for few-shot classification,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 7972–7981.

[76] J. Xu, H. Le, M. Huang, S. Athar, and D. Samaras, “Variational feature
disentangling for fine-grained few-shot classification,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2021, pp. 8812–8821.

[77] J. Ling, L. Liao, M. Yang, and J. Shuai, “Semi-supervised few-shot learning
via multi-factor clustering,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2022, pp. 14564–14573.

Hao Cheng received the B.Eng. degree from the
School of Software, Dalian University of Technology,
Dalian, China, in 2016, and the M.S. degree from the
School of Computer Science and Technology, Tian-
jin University, Tianjin, China, in 2019. He is currently
working toward the Ph.D. degree with Nanyang Tech-
nological University, Singapore. His research inter-
ests include few-shot learning, graph neural networks,
and computer vision.

Joey Tianyi Zhou (Senior Member, IEEE) received
the Ph.D. degree in computer science from Nanyang
Technological University, Singapore. He is currently
a Senior Scientist, Investigator and Group Man-
ager with A*STAR Centre for Frontier AI Research
(CFAR), Singapore. He is also holding an Adjunct
Faculty position (adj. Assoc. Prof.) with the National
University of Singapore, Singapore. Before working
with CFAR, he was a Senior Research Engineer with
SONY U.S. Research Center in San Jose, USA. His
research interests mainly focuses on improving the

efficiency and robustness of machine learning algorithms. Dr. Zhou organized
ICDCS annual workshop on Efficient AI meets Edge Computing, ACML’16
workshop on Learning on Big Data workshop and IJCAI’19 workshop on
Multi-output Learning. He is an Associate Editor for IEEE TRANSACTIONS ON

EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE and IEEE ACCESS, IET
Image Processing, and TPC Chair in Mobimedia 2020. He was the recipient of
the NeurIPS Best Reviewer Award in 2017.

Wee Peng Tay (Senior Member, IEEE) received the
B.S. degree in electrical engineering and mathemat-
ics, and the M.S. degree in electrical engineering
from Stanford University, Stanford, CA, USA, in
2002, and the Ph.D. degree in electrical engineer-
ing and computer science from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in
2008. He is currently an Associate Professor with
the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore. Dr.
Tay received the Tan Chin Tuan Exchange Fellowship

in 2015. He is a co-author of the Best Student Paper Award at the Asilomar con-
ference on Signals, Systems, and Computers in 2012 and the IEEE Signal Pro-
cessing Society Young Author Best Paper Award in 2016. His research interests
include signal and information processing over networks, distributed inference
and estimation, statistical privacy, and robust machine learning. He was an As-
sociate Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING (2015–2019),
and is currently an Associate Editor for IEEE TRANSACTIONS ON SIGNAL AND

INFORMATION PROCESSING OVER NETWORKS, the Editor for IEEE TRANSAC-
TIONS ON WIRELESS COMMUNICATIONS, and the Editor of IEEE OPEN JOURNAL

OF VEHICULAR TECHNOLOGY.

Bihan Wen (Member, IEEE) received the B.Eng. de-
gree in electrical and electronic engineering from
Nanyang Technological University, Singapore, in
2012, and the M.S. and Ph.D. degrees in electrical and
computer engineering from the University of Illinois
at Urbana-Champaign, Champaign, IL, USA, in 2015
and 2018, respectively. He is currently a Nanyang
Assistant Professor with the School of Electrical and
Electronic Engineering, Nanyang Technological Uni-
versity. His research interests include machine learn-
ing, computational imaging, computer vision, image

and video processing, and Big Data applications. Dr. Wen was the recipient
of the 2016 Yee Fellowship and the 2012 Professional Engineers Board Gold
Medal. He was also the recipient of the Best Paper Runner Up Award at the
IEEE International Conference on Multimedia and Expo in 2020. He has been
an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR

VIDEO TECHNOLOGY since 2022, and an Associate Editor for MDPI Microma-
chines since 2021. He has also was the Guest Editor for IEEE Signal Processing
Magazine in 2022.

https://openreview.net/forum{?}id$=$ryGs6iA5Km
https://openreview.net/forum{?}id$=$S1ldO2EFPr
https://openreview.net/forum{?}id$=$S1ldO2EFPr
https://openreview.net/forum{?}id$=$HJcSzz-CZ
https://openreview.net/forum{?}id$=$HJcSzz-CZ
https://openreview.net/forum{?}id$=$HkxLXnAcFQ
https://openreview.net/forum{?}id$=$HkxLXnAcFQ
https://openreview.net/forum{?}id$=$xzqLpqRzxLq


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


