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Adaptive Multi-Hypergraph Convolutional Networks
for 3D Object Classification

Liping Nong

Abstract—3D object classification is an important task in
computer vision. In order to explore the high-order and multi-
modal correlations among 3D data, we propose an adaptive
multi-hypergraph convolutional networks (AMHCN) framework
to enhance 3D object classification performance. The proposed
network improves the current hypergraph neural networks in two
aspects. Firstly, existing networks rely on hyperedge constrained
neighborhoods for feature aggregation, which may introduce noise
or ignore positive information outside the hyperedges. To this
end, we develop the partially absorbing random walks (PARW)
to hypergraph for capturing optimal vertex neighborhoods from
hypergraph globally. Then, based on the PARW on hypergraph,
we design a new hypergraph convolution operator to learn
deep embeddings from the optimized high-order correlation,
which enables effective information propagation among the
most relevant vertices. Secondly, concerning the multi-modal
representations in practice, the current multi-modal hypergraph
learning models either treat all modalities equally or introduce
abundant parameters to learn weights of different modalities.
To overcome these shortcomings, we propose a simple but
effective dynamic weighting strategy for combining multi-modal
representations, in which the importance of each modality can
be adjusted adaptively by the loss function. We apply the
proposed model to 3D object classification, and the experimental
results on two 3D benchmark datasets demonstrate that our
method outperforms the state-of-the-art methods, testifying to the
effectiveness of both our convolution method and multi-modality
fusion strategy.
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I. INTRODUCTION

OBIJECT classification, as the basis of 3D scene under-
3D standing and analysis, has a wide application prospect
in automatic driving, medical diagnosis, digital entertainment,
architecture design and many other fields. With the flourish of
deep learning, various deep networks have been investigated
for this task [1]-[8]. In recent years, to explore the correlations
among 3D objects and potential complementarity among differ-
ent 3D feature representations (i.e., multi-modal features), hy-
pergraph neural networks have been developed for object recog-
nition [9]-[13]. In these networks, 3D data correlations are for-
mulated into one or multiple hypergraphs and deep learning is
conducted on the hypergraph structure. Hypergraph is a power-
ful tool for modeling complex, high-order and multi-modal data
relationships with its flexible hyperedges [9], [14]. The applica-
tion of hypergraph neural networks in learning 3D data can pro-
mote feature fusion among multiple objects and multi-modality,
thus bringing a breakthrough in the recognition performance.
However, the investigation of deep learning on hypergraph is
still in its infancy [15]. How to design effective hypergraph neu-
ral networks, especially multi-modal data oriented networks, to
improve object recognition performance remains a challenging
topic.

Hypergraph neural network is one of the most prominent
hypergraph learning models, which has been applied to emo-
tion recognition [16], recommendation system [17], stock anal-
ysis [18], visual classification [9], [10], [12], [19], etc. The cur-
rent approaches can be divided into two categories. One is to
transform the hypergraph into a normal graph,! and then the ma-
ture graph neural networks technology [20] is applied to learn
the normal graph [21]-[23]. Such methods require complicated
transformation processes and are prone to lose high-order infor-
mation. The other is to transform and propagate vertex (node)
feature information directly on hypergraph [9]-[11], [13], [15],
[19], [24]-[26]. Vertex-hyperedge-vertex transformation is the
most common feature transformation and propagation mode in
this kind of networks. Specifically, vertex features are first gath-
ered to hyperedges to form hyperedge features, then the new em-
bedding of each vertex is obtained by aggregating its associated

'In this paper, a normal graph refers to the usual graph in which each edge
only connects two vertices.
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Fig. 1. Examples of different neighborhoods of a vertex vy, in which v be-
longs to hyperedges e; and es. (a) The neighborhood of vertex vy is the */’
shaded part. (b) The neighborhood of vertex v is the blue dots connected by
dotted lines. (c) The neighborhood of vertex vy is the green dots connected by
dotted lines.

hyperedge features. In hypergraph neural networks (HGNN) [9],
a hyperedge convolution operator based on spectral convolution
is first proposed to implement this transformation. This convo-
lution operator is subsequently used in [10], [13], [15], [24]. In
addition, dynamic Hypergraph Neural Networks (DHGNN) [27]
also adopts this transformation. Different from HGNN, it uses
multi-layer perception (MLP) based vertex convolution and hy-
peredge convolution to propagate features. By introducing atten-
tion mechanism [11], [25], [26], this transformation is further
improved that can automatically learn the importance of vertices
and hyperedges. The vertex-hyperedge-vertex transformation is
essentially weighted aggregation of neighborhood information
for each node, whose neighborhood size is determined by its as-
sociated hyperedges, as shown in Fig. 1(a). However, this kind
of neighborhood selection can be suboptimal. Because too large
a hyperedge may introduce noise, while too small one may sepa-
rate data samples from the same cluster and lead to performance
degradation [12], [28]. Though some hypergraph construction
methods [28], [29] may mitigate this problem, the high compu-
tational cost is non-negligible. And in fact constructing an ac-
curate hypergraph is an NP-Hard problem [30]. Therefore, how
to capture a better neighborhood for each vertex based on the
existing hypergraph, such as Fig. 1(b) or (c), by reducing noise
information and utilizing more positive information outside the
hyperedges to improve learning performance is a problem wor-
thy of in-depth study.

In addition, concerning the multi-modal representations in
practice, how to effectively combine the multi-modal data is
still a challenge. In the single hypergraph neural network mod-
els like [9]-[11], a hypergraph is constructed by concatenat-
ing hyperedges from features belonging to different modalities.
In these methods, all modalities are treated equally, which is
not able to reflect the importance of different modalities re-
lated to the task. In order to avoid this problem, recent studies
have attempted to construct multi-hypergraph network struc-
ture for processing multi-modal data, in which different modal-
ities are formulated in multi-hypergraph and the combination
weights are optimized to fuse all modalities. Then, how to de-
termine the weight values becomes an issue to be solved. Zhu
et al. [31] and Shao et al. [16] adopt fully connected (FC) layer
to fuse multi-modal representations. In [32], a bilinear atten-
tion map is used to integrate two multi-channel inputs. In [13],
a learned weighting matrix is used to deal with different dy-
namic hypergraphs. In addition, Cui ez al. [33] introduce a hyper-
graph attention module to combine representations of different
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hypergraphs. Although these methods can automatically learn
weight values, they introduce a large number of parame-
ters, resulting in increased training complexity. To overcome
these shortcomings, it is necessary to develop a simple multi-
hypergraph fusion scheme with low training complexity to learn
multi-modal data.

In this paper, we propose an adaptive multi-hypergraph con-
volutional networks (AMHCN) architecture for 3D object clas-
sification. First of all, to enable hypergraph convolution to learn
discriminative embeddings from optimal vertex neighborhoods,
we develop partially absorbing random walks (PARW) [34] for
hypergraph to capture clusters on hypergraph structure. PARW
is a stochastic process that can reveal cluster structure under
the cluster assumption [34]. It can keep the good property of
random walk and well capture the global semantic information.
We combine hypergraph random walk [35] and PARW theory
to explore clustering on hypergraph. Compared with the meth-
ods [36]-[38] that require complex optimization processes to
implement clustering or community detection on hypergraph,
this method is simple and easy to implement in neural network.
It is non-trivial to develop PARW on hypergraph because of the
complex structure of hypergraph. We provide a detailed theoret-
ical derivation and probabilistic interpretation for the PARW on
hypergraph. Secondly, with the PARW on hypergraph to obtain
the optimized high-order relationship of each vertex, we design
a new hypergraph convolution operator to learn the vertex deep
embeddings. Finally, we present a dynamic weighting scheme
to adaptively adjust the weights of embeddings corresponding
to different modalities, so as to fuse different information ade-
quately. It is worth noting that our combining scheme is guided
by the loss functions of different modalities and no additional
training parameters are introduced. The proposed network is
capable of jointly considering complex data correlations and
different modal data. Overall, the contributions of this work are:

1) We formulate the problem of optimizing vertex neighbor-
hoods in hypergraph neural networks as capturing clusters
on hypergraph by PARW. As far as we know, we are the
first to develop PARW to hypergraph and apply it to con-
volution operation.

2) We present a new hypergraph convolution operator based
on the PARW on hypergraph, which enables efficient fea-
ture extraction by fully exploiting the high-order relation-
ship and clustering structure therein.

3) We propose a simple but powerful multi-modal data fu-
sion strategy, in which the importance of different modal-
ities can be adjusted automatically with respect to the loss
function.

4) We propose a multi-hypergraph convolutional networks
framework to improve 3D object classification perfor-
mance. The experimental results on the National Taiwan
University (NTU) and ModelNet40 datasets demonstrate
the effectiveness of our network.

II. RELATED WORKS

In this section, we briefly review existing works on both deep
learning methods for 3D object classification and hypergraph
neural networks.
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A. Deep Learning Methods for 3D Object Classification

In recent years, deep learning methods have been widely in-
vestigated in 3D object recognition [1]-[8], [39]-[44], which
have shown superior performance compared with traditional
hand-crafted feature methods. Given a set of 3D objects, the key
issues for classification are how to extract 3D representation (3D
shape descriptors) and how to train a classifier. With volumet-
ric data as input, Wu et al. [45] propose 3D ShapeNets to learn
3D shape feature with a convolutional deep belief network, and
train a linear support vector machine (SVM) to classify meshes.
Maturana et al. [6] propose VoxNet to extract the features of
volumetric data with a 3D convolutional neural network, and
use FC layers for classification. In addition, multi-orientation
volumetric CNN (MO-CNN) [46] extracts 3D shape features
from volumetric data of different orientations through shared
3D CNN and a pooling operation, then uses another 3D CNN to
make a prediction. With point cloud data as input, Qi et al. [1] in-
troduce PointNet, a deep neural network that directly processes
point clouds. The network captures the global feature of object
through feature transformation, MLP and max pooling, then the
global feature is fed into the MLP layer for classification. To
capture local structures in point clouds, Qi ef al. further propose
PointNet++ [8], in which point sets are divided into overlapping
local regions and PointNet is used to extract local features. These
local features are grouped as global feature and sent into the FC
layers for classification. Instead of acting on individual points
like PointNet and PointNet++, Wang et al. [47] propose Edge-
Conv to learn and aggregate global features from local neigh-
borhood graph, which are sent to MLP for classification. Taking
multiple views of 3D objects as input, Su et al. [4] propose a
multi-view convolutional neural network (MVCNN), in which
the view features are generated by CNN. Then these features are
fused by a pooling procedure to generate a compact 3D shape
descriptor, which is then sent to another CNN for classification.
Considering that MVCNN does not pay attention to the intrin-
sic hierarchical correlation and discriminability among views,
Feng et al. [5] propose group-view convolutional neural network
(GVCNN), in which a hierarchical view-group-shape architec-
ture is used to get a better 3D shape descriptor, which is then fed
into FC layer for classification. Similar deep learning networks
with multiple views as input include [2], [3], [42]-[44].

All the methods mentioned above focus on how to capture
better 3D object representation (i.e., 3D shape descriptor). For
classifiers at the end of the network, however, they commonly
adopttraditional deep learning models such as CNN [4], [46], FC
layer [5], [6], [8], [47] and MLP [1], [39], [41] to directly project
their own shape descriptors into the label space. This processing
method has some shortcomings. The first one is that they do not
consider the correlations between objects, that is, lose the global
view of the data distribution in the whole dataset. The other is that
they classify only by the feature representation of an object it-
self without effective fusion of different representations. Current
deep 3D frameworks have generated a wide variety of feature
representations, and some potential complementarity between
these features may exist. To make use of the high-order cor-
relations among objects and the potential relationships among
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different features/modality, some researchers [9]-[13] formulate
3D objects into hypergraph structure, and develop hypergraph
neural networks to integrate the features of multiple objects and
multi-modality, which made a great breakthrough in the per-
formance of object classification. Inspired by these works, we
develop hypergraph convolutional networks for object classifi-
cation.

B. Hypergraph Neural Networks

Compared with graph neural networks [20], the investigation
of hypergraph neural networks is in a nascent stage. Driven by
the success of graph neural networks, some researchers propose
transforming hypergraph into a normal graph, and then treat-
ing the hypergraph learning problem as a graph problem on the
approximation. For example, [21]-[23] adopt different rules to
transform a hypergraph to a normal graph, and then use graph
convolutional networks (GCNs) [48] for learning. The transfor-
mation process of these methods is complicated and easy to lose
high-order information. In order to keep the high-order relation-
ship well, more work is to design convolution operators directly
based on hypergraph theory and propagate features on hyper-
graph structure. HGNN [9] is the pioneer of this kind of method.
In HGNN, a hyperedge convolution operator is designed based
on the hypergraph Laplacian, then the output vertex feature is
extracted by aggregating their related hyperedge features. This
hyperedge convolution operator is subsequently used in [10],
[13], [15], [24]. As an extension of HGNN, DHGNN [27] intro-
duces a dynamic hypergraph construction module to update the
hypergraph structure on each layer, and proposes vertex convo-
lution and hyperedge convolution to aggregate vertex and hyper-
edge features, respectively. In addition, Bai ef al. [15] utilize an
attention mechanism to design a hypergraph attention operator
which learns a dynamic connection of hyperedges. In [11], [25],
[26], attention mechanisms are introduced into the process of
vertex convolution and hyperedge convolution, which automat-
ically learn different weights for vertices and hyperedges. These
methods all adopt vertex-hyperedge-vertex feature transforma-
tion and propagation mode, i.e., the connected vertex features
are first aggregated to generate hyperedge features, then the hy-
peredge features are aggregated as new vertex embeddings. In
these methods, the convolution range (or receptive field) of a
vertex depends on the hyperedge size, which makes it difficult
to obtain effective information from hypergraph globally. Shi
et al. [12] propose a hypergraph convolution operator based on
the high-order correlation optimized by a hypergraph regulariza-
tion framework. In form, the convolution operator bears some
resemblance to ours in that they are related to the inverse of the
hypergraph Laplacian. However, our operator is derived from
the theory of random walk, which is more explanatory.

For multi-modal data, it is not trivial to find the optimal
multi-modal feature combination. In HGNN [9], the hyperedges
generated from features of different modalities are concatenated
as a hypergraph. The same concatenation method is used in sin-
gle hypergraph models [10], [11], [19]. These methods concate-
nate different modalities with equal weight, which fails to reflect
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Fig. 2. An example of semi-supervised classification based on hypergraph
learning with 3D objects as input.

the significance of different modalities related to the task. To ad-
dress this problem, many researchers propose multi-hypergraph
neural networks and assign different weights to combine the
deep embeddings of different hypergraphs. In [31] and [16],
multiple hypergraphs are generated according to different
modalities, and the multi-modal representations are automati-
cally combined by FC layer. In [32], a bilinear attention map is
used to integrate the multi-modal inputs for getting the final joint
representation. Besides, Liu et al. [13] adopt an adaptive, train-
able weighting matrix to group together different hypergraph
representations. Cui et al. [33] propose temporal-relational hy-
pergraph tri-attention networks, in which an attention module
is used to combine the representations of different hypergraphs.
Although these methods can automatically combine different
hypergraph representations, they increase a large number of pa-
rameters, resulting in increased computational complexity. In
this work, we try to propose an adaptive multi-hypergraph learn-
ing model, where the weights of different modalities are obtained
as simple as possible without increasing the training parameters.

III. METHODOLOGY

A. Problem Statement

We consider the general problem of semi-supervised learning
(SSL) with the goal of learning a mapping from a set of data
points X to the corresponding labels in Y = {y1,y2,...,¥c},
where c is the number of categories. The input data points are di-
vided into two parts: the labeled data A; and the unlabeled data
X,. The labels associated with the labeled data are provided.
The goal of this paper is to develop a deep convolution archi-
tecture based on hypergraphs that, using data features as input,
maps each vertex (object) to a corresponding label and hence
predicts the labels associated with the unlabeled data X, . Fig. 2
shows the illustration of semi-supervised classification based on
hypergraph learning with 3D objects as input.

B. Hypergraph Construction

Given a set of data points X = [x1,Xa,...,xy]7 € RV*d

with one type of d-dim feature, a hypergraph G = {V, &, W} is
constructed to formulate the correlations among objects, where
V denotes a vertex set, £ is a hyperedge setand W € RI€*I€lisa
diagonal hyperedge weight matrix. Let each hyperedge e € £ be
assigned a positive weight w(e). Hyperedges can be generated
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by many approaches, such as kNN, e-ball, and sparse represen-
tation [49]. In this work, we select the commonly used ANN
strategy to construct a connected hypergraph. Specifically, for
N given objects X, let each vertex denote one object, then there
are N vertices in total. The hyperedges are generated as follows:
each time, one vertex is selected as the centroid, and then the
distance (e.g., the Euclidean distance) between the centroid and
other vertices is calculated, and finally a corresponding hyper-
edge e is generated by connecting the centroid and its nearest &k
neighbors.

A hypergraph with N vertices can be represented by an
N x |€| incidence matrix H, with entries defined as:

1, ifvee
h(v,e) =< 1
(v,e) {0, ifvee W
Then, the degree of a vertex v € ) and the degree of a hyperedge
e € & are defined as follows:

d(v) = Y w(e)h(v,e) 2)

ecé

d(e) = Zh(v,e) 3)
vey
We further denote D,, and D, as the diagonal matrices of the
vertex degrees and the hyperedge degrees, respectively. In this
work, the weight of each hyperedge is initialized as 1.

C. Fartially Absorbing Random Walks on Hypergraph

Random walk is a simple but powerful tool for extract-
ing information on the relational structure of interacting sys-
tems [50]. At present, there are some methods that use random
walk to realize node clustering or community detection on hy-
pergraph [36]-[38]. However, they usually require complex op-
timization processes and are not suitable for neural networks.
The recently proposed PARW [34] is a stochastic process that
can implement cluster assumption in terms of random walks. It
avoids the problem that a random walk converges to a stationary
distribution determined only by the degree of each node with-
out capturing the global semantic structure of the topology. It
is easy to implement clustering. Therefore, we generalize it to
hypergraph to reveal clustering in hypergraph structure. Specifi-
cally, PARW is a second-order Markovchain with partial absorp-
tion at each state. Given a stochastic process X = {X; : t > 0}
on the state space N = {1,2,...,n}. Let the initial state be
Xo = 1, the next state X7 is determined by the transition prob-
ability P(X; = j|Xo = i) = p;j, and the subsequent states are
determined by the following transition probabilities:

P(Xiy2 = jlXey1 =0, Xy = k)
1, ifi=ji=k
=140, ifi£ji=k 4
P(Xiyo = j|Xey1 = 1) =piy, if i#k
The transition probabilities in (4) are independent of ¢, hence the
stochastic process X is time homogeneous. If a random walker

starts from state ¢, it would stay in the current state with prob-
ability p;;, or move to another state in the next step behaving
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like a usual random walk. Once it stays, it will get absorbed into
the current state and remain forever. The above process is called
a partially absorbing random walk (PARW), where p;; stands
for the absorption rate of state ¢. When 0 < p;; < 1, the state ¢
is called a partially absorbed state. It is a fully absorbing state
when p;; = 1, and transient state when p;; = 0.

PARW theory has been applied to graph and has shown to
be well suited for implementing the cluster assumption for
graph-based learning [34]. Hypergraph is an extension of graph.
Borrowing from the idea of the PARW on graph, we develop
PARW to hypergraph for exploring latent clustering on hyper-
graph structure. First of all, in order to obtain the absorption
probability matrix on the hypergraph, we need to find a sym-
metric non-negative hypergraph adjacency matrix with zeros on
the diagonal entries. The hypergraph adjacency matrix defined
in [51] is used in this work, i.e.,

Sijz{o’ o=y 5)
’ ZeEE:vi;Ujee J(elﬁ’ if ¢ # J
We rewrite (5) in matrix form as:

S =H(D. —I)'H" — Diag (H(D. —I)"'H") (6

where Diag(-) denotes a diagonal matrix obtained by setting to
zero the off-diagonal elements of a matrix -. In [35], a typical
random walk on a hypergraph is given as P = D 'S. It means
that a random walk at vertex v; will transfer to another ver-
tex v; belonging to the same hyperedge e with probability P; ;
in the next step. The corresponding Laplacian is L = D,, — S.
With these definitions, we introduce a regularization matrix
A = diag(A1,re,...,An) with &; > 0 to define the first order
transition probabilities of a PARW on hypergraph as:

Dij = Asﬁ’ le:j (7

Tra HiF

The state ¢ is an absorbing state (either partially or fully) when
A; > 0, and it is a transient state when A; = 0. It is obvious that
pi,; = 0. The transition probability matrix satisfies the condition
that the row sum is 1, which is proved as follows:

Proof: Let 1 € RY denote the all-one vector, 0y € R
denote the zero vector and d,, € RY be the vector containing
the degrees of vertices of hypergraph G. Since

s = ZSU+ > 8

JEV JEV,jF£I

1
R PP e

JEV,j#i ec€ivi,v e

Z 6
JGVZJ:#;
- D hlGe)

_25 Z 6
JGVJ#
h(i,e)
=) - (0(e)
;5(6)—1

~1)=d,
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Thus, Z Dij =

jev

R

J#1,5€V ki + d

Next we calculate the absorption probabilities on hypergraph.
Let A = [a;;] € RV*Y represent the absorption probability
matrix on hypergraph, where a;; stands for the probability that
arandom walk starting from state ¢ is absorbed by state j in any
finite number of steps. Referring to [34], the absorbing proba-
bilities {a;;} satisfy the following equations:

@i =5 d - Z et (80)
aj =y —r Si_ i (8b)
i )» T d Qg J
ki
In fact, A has a closed-form on hypergraph, i.e., A = (A +

L) 'A.

Proof: A is positive as A; > 0 for some 7. Then A + L
is positive definite and non-singular. Moreover, since D,, is
non-singular, A + D, is non-singular. Therefore, I — (A +
D,) 'S = (A +D,) (A + L) is non-singular. By rewriting
(8a) and (8b) in matrix form, we have:

I-(A+D,)'S)A=(A+D,)'A
Therefore, we get the following equation:
A=I-(A+D,) 'S (A+D,)'A
=(A+D,-S)'A=(A+L)'A

Below we prove that A is a probability matrix, i.e., A is a
non-negative matrix with each row summing up to 1.
Proof: Suppose A; > 0 for some 7. Then,

(A+L)y'=(A+D,—-8)"!
=(I-(A+D,)'S)”

=> (A+D,)"

k>0

Y(A+D,)!

1s)k(A+Dv)—1 Z O

Therefore, A > 0, where O denotes the zero matrix. We have
proved that Z7€V = d;, so it is easy to get L1y = (D, —
S)1y = Oy. Then we have (A+L)(Aly —1n)=(A+
L)((A+ L) 'Aly — 1y) = Oy. Accordingly, Aly = 1y.
According to the study in [34], by setting A = oI (« > 0),
the absorption probabilities vary slowly within the cluster while
dropping sharply outside. This nice property of the PARW with
A = oI (a > 0) canbe used to identify the clusters and has been
proven to achieve superior performance on classification/semi-
supervised learning. Hence, we set A = ol to capture the clus-
tering structure on the hypergraph, which is expressed as:

A=(al+L) o )

Equation (9) can be understood as an optimized high-order
relationship on a hypergraph. In essence, hypergraph is a clus-
tering hypothesis, but this original clustering is likely to be noisy
and not optimal. The combination of PARW and hypergraph
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can obtain optimized clustering on the basis of rough clustering,
thereby providing a faithful affinity map/similarity metric.

With the PARW on hypergraph, the most relevant vertices
for a vertex from the entire hypergraph structure can be auto-
matically found. That is, vertices with similar properties on the
hypergraph will form a homogeneous region. Therefore, we can
design a PARW based convolution operator to compute the new
features of a vertex as weighted aggregation of itself and its
related region,” thereby promoting effective information trans-
mission between vertices.

D. Hypergraph Convolution

Based on the PARW on hypergraph above to measure the tran-
sition probability between two vertices, we now design the hy-
pergraph convolution operator to propagate the embeddings (or
features) of each vertex in a hypergraph neural network. Specif-
ically, for each hypergraph, a similarity measure A € RY*¥
is obtained to encode high-order correlations. Then combined
with input data X € RV >4, a filter function f(-) is designed to
extract the end-to-end description of the data for classification,
which can be denoted as Z = f(X, A), where Z € RV*¢ de-
notes the matrix of convolved feature. Multiple convolutional
layers are employed in our network, and the hypergraph convo-
lution operator is defined as:

Z) = 5 (AZO W) (10)
where Z( is the matrix of activations in the I-th layer, the ini-
tial activation is Z(®©) = X. ©WY is the parameter to be learned
during training in layer [ and o is the activation function, e.g.,
ReLU(+) = max(0, -). For example, for a two-layer convolu-
tional network, the output of the final convolution layer is:

Z = A ReluAXO©)e® (11)
where ©(©) € R4" is an input-to-hidden weight matrix for a
hidden layer with h feature maps. ") € R"*¢ is a hidden-to-
output weight matrix.

In order to improve the computational efficiency of convolu-
tion operation, we set the elements of A smaller than a threshold
71 to 0, since most elements in A are actually very close to 0.
The setting of n will be further discussed in the experiment.

E. Adaptive Multi-Hypergraph Convolutional Networks

In many applications, the data representation tends to be
multi-modal and how to combine different modalities is still
a challenging issue. To this end, we propose an adaptive convo-
lutional networks framework based on multi-hypergraph.

Assuming there are m modalities in total, then m hypergraphs
are generated accordingly. For the i-th modality data, a hyper-
graph G; = {V;, &;, W, } is generated to formulate the data re-
lationship based on the aforementioned ANN strategy. With the
hypergraph G;, a corresponding similarity matrix A is obtained
based on (9). For each modality, we build a hypergraph neural
network model to learn the intermediate representation. The lay-
erwise propagation rule of the ¢-th hypergraph neural network
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with L layers is written as:

Z; = o(Ai(.. .0c(AX,0!"). . )e; )y (12)

We consider a simple strategy to combine the m output in-
termediate representations and obtain the output of the whole
model:

m
Zc =) BiZ (13)
i=1
where [3; is the combination weight for the i-th modality sub-
jectingto Y ;" 3; = land 3; > 0.

For the value of f3;, a natural idea is to obtain through learn-
ing, but this scheme does not work well in our context. Here we
present a method based on the loss function. For each modal-
ity, we use the cross-entropy error over all labeled examples to
express its loss value, i.e.,

L(Z;) = — Z ZYWZ In (softmax(Z;)),,  (14)

peEX; g=1

where A] is the set of node indices that have labels. The softmax
function is defined as softmax(z;) = exp(z;)/ _; exp(z;).
L(Z;) reflects the error between the estimated label and the true
label for the i-th modality data. The smaller the £(Z;), the more
discriminative features are extracted by the network under this
mode, and the greater weight should be given. A dynamic weight
function is designed to realize the above idea. That is, we calcu-
late the minimum value of the loss function for each modality in
the training process, and then obtain the weight value based on
this minimum value. More specifically, for the i-th modality, we
first calculate its minimum loss value of the previous ¢ training
epochs:

1\/[11\1_,6(27 t) = min {E(Zl)‘l, £(Zi)|2; ey E(Zl)‘t} (15)

where L£(Z;)|, represents the loss value of the i-th modality data
in the ¢-th training epoch. Then we use the following attention
mechanism to calculate the weighted values in the ¢-th epoch:

(B1(¢), B2(t), ..., Bm(t)) = softmax(—MIN_L(1,t),

—MIN_L(2,t),...,—~MIN_L(m, 1)) (16)

In (16), we utilize the monotonically decreasing property of
exp(—x) to realize the idea that the smaller the loss value, the
larger the weight value. This attention mechanism makes the
weight values of different modalities adaptive to the minimum
loss values and does not require additional training parameters,
which offers huge advantages over the current methods of in-
troducing a large number of learning parameters, such as hyper-
graph attention in [33] and FC layer in [31] and [16].

Since dynamic weight values are employed, we then rewrite
the (13) as:

Zo(t) = Bi(t)Zi(t) (17)
i=1

The overall architecture of the proposed network is illustrated

in Fig. 3. First, different modalities are formulated as different

hypergraph structures. Then the similarity measure matrix A;
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concerned with hypergraph structure is pre-computed. Next, A;
and the corresponding feature X; are sent to the i-th convolu-
tional network for training. In this way, different modality fea-
tures with various scales and dimensions are trained individually
in different networks. And then the weights of all modalities are
obtained according to the attention mechanism guided by their
minimum loss values. Finally, the linear weighted sum of the
deep embeddings of all modalities is taken as the object de-
scriptor which is fed into the softmax layer for classification.

Computational complexity. For the calculation of the PARW
probability matrix A, it involves matrix inversion, which is
of great computational complexity. But fortunately, there are
many mature fast inversion methods, such as Jacobi numerical
method, QR decomposition, LU decomposition and Cholesky
decomposition. In our implementation, we use the LU decom-
position method for inversion, which has moderate complexity
(i.e., O(N?)) and easy to parallel computing [52]. For convolu-
tion operation, assuming that the number of non-zero elements
in A is |g| and the number of convolutional layers is 2, then the
computational complexity of (11) is O(|o|dhc). If there are m
modalities, then the complexity of convolution operation of the
entire network is O(m/|p|dhc).

IV. EXPERIMENTS

The proposed AMHCN framework is applied to 3D object
classification to evaluate performance. In this section, we first in-
troduce datasets and experimental settings (Section IV-A). Next,
we provide experimental results and comparisons of AMHCN
on 3D shape classification task (Section IV-B). Then, the abla-
tion study experiments are provided (Section IV-C). After that,
we validate our network design (Section IV-D) and discuss the
time and space complexity of our network (Section IV-E). Fi-
nally, the visualization of features is demonstrated IV-F.

A. Datasets and Implementation details

Two public 3D datasets, i.e., the ModelNet40 dataset [45] and
the National Taiwan University (NTU) 3D model dataset [53] are
selected as testing benchmarks. The ModelNet40 dataset con-
tains 12311 objects from 40 popular categories. We follow [45]
to use the official split to conduct the training/testing split, where
9843 objects are used for training and 2468 objects are used
for testing. The NTU dataset is composed of 2012 3D shapes
from 67 categories, such as boat, bomb, book, car, chair, gui-
tar, gun, hat and helicopter. We employ two approaches to split

Multi-modality fusion Output
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Overview of the proposed adaptive multi-hypergraph convolutional networks.
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Fig. 4. Example 3D objects from ModelNet40 and NTU datasets. (a) Model-
Net40. (b) NTU.

this dataset. The first is to follow [9]-[11] using 1639 objects
for training and 373 objects for testing. The second is to fol-
low [54] with 50% data for training and 50% for testing. Fig. 4
demonstrates the example objects from the ModelNet40 and
NTU datasets, and Table I summarizes the data.

We follow [9], [54] to employ two recent state-of-the-
art multi-view based 3D shape descriptors to represent each
object, including multi-view convolutional neural network
(MVCNN) [4] feature and group-view convolutional neural net-
work (GVCNN) [5] feature. These two features are chosen be-
cause they contain rich information about 3D shapes. The pro-
cess of extracting these two features is as follows: First, a set of
12 virtual cameras are used to capture views of an object with
30 ° interval, so that each object contains 12 views. Then, the
4096-d MVCNN feature and 2048-d GVCNN feature are ex-
tracted to describe objects according to [4] and [5], respectively.

We use Pytorch to implement our model and deploy it on a
NVIDIA RTX TITAN GPU with 24 G memory. For each modal-
ity data, the kNN strategy is employed to generate a correspond-
ing hypergraph. In this way, each dataset generates two hyper-
graphs based on the MVCNN and GVCNN representations. We
set k = 10 for both the ModelNet40 and NTU datasets. Each
modality is learned with a two-layer hypergraph neural network,
and the dimension of each hidden layer is set to 128. To avoid
overfitting, we randomly dropout the features at 0.1 probabil-
ity for the hidden layers. The tanh is chosen as the nonlinear
activation function. The Adam optimizer [55] is employed to
minimize the cross-entropy loss function with a learning rate of
0.001. We train the network model for a maximum of 600 epochs
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TABLE I
DATA STATISTICS OF MODELNET40 AND NTU DATASETS

. Training  Testing . Feature
Dataset Objects objects objects Categories MVCNN — GVCNN
ModelNet40 12311 9843 2468 40 4096 2048
NTU The first split 2012 1639 373 67 4096 2048
The second split 2012 1006 1006 67 4096 2048
TABLE I TABLE III

EXPERIMENTAL COMPARISON OF DIFFERENT METHODS IN TERMS OF
CLASSIFICATION ACCURACY ON MODELNET40 DATASET

Method Input Accuracy
VoxNet [6] Voxel 83.00%
PC-GAN [7] Voxel 92.70%

PointNet++ [8] Point Cloud 90.70%
AGCN [39] Point Cloud 92.60%
LFT-Net [40] Point Cloud 93.20%
FFPointNet [41] Point Cloud 93.50%
MVCNN [4] Multi-View 90.10%
GVCNN [5] Multi-View 93.10%
MLVCNN [2] Multi-View 94.16%
DAN [42] Multi-View 93.50%
MVSG-DNN [43] Multi-View 92.30%
HMVCM [44] Multi-View 94.57%
DRCNN [3] Multi-View 96.84%
tMHL [56] Multi-View (+Hypergraph) ~ 96.19% ()
CDMH [57] Multi-View (+Hypergraph) 96.76%
HGNN [9] Multi-View (+Hypergraph) 96.70%
iMHL [54] Multi-View (+Hypergraph) 97.16%
HGAT [11] Multi-View (+Hypergraph) 97.10%
MHGNN [10] Multi-View (+Hypergraph) 97.50%
AMHCN Multi-View (+Hypergraph) 97.86%

LThe mark “#” means the result is quoted from [54].

for the NTU and 1000 epochs for the ModelNet40. The regular-
ization of PARW is set to o = 35 for the NTU and o = 60 for
the ModelNet40.

B. 3D Shape Classification Results

The classification accuracy is used as the evaluation met-
ric. On the ModelNet40 dataset, to evaluate the perfor-
mance of the proposed method, the following deep learning
methods are selected for comparison, including methods with
volumetric data as input (VoxNet [6] and PC-GAN [7]), meth-
ods that take point cloud data as input (PointNet++ [8],
AGCN [39], LFT-Net [40] and FFPointNet [41]) and meth-
ods with multi-view as input (MVCNN [4], GVCNN [5],
MLVCNN [2], DAN [42], MVSG-DNN [43], HMVCM [44],
DRCNN [3], tMHL [56], CDMH [57], HGNN [9], iMHL [54],
HGAT [11]and MHGNN [10]). Among the multi-view methods,
tMHL [56], CDMH [57], HGNN [9], iMHL [54], HGAT [11]
and MHGNN [10] all use hypergraph learning to classify 3D
objects, which are similar to ours. For comparison purposes,
we denote the input of this kind of methods as multi-view
(+Hypergraph). The 10-times average accuracy of the proposed
AMHCN for the ModelNet40 and comparisons among these
methods are demonstrated in Table II. It can be observed that the
proposed AMHCN achieves best classification accuracy com-
pared with the other methods. For example, compared with the

EXPERIMENTAL COMPARISON OF DIFFERENT METHODS IN TERMS OF
CLASSIFICATION ACCURACY ON NTU DATASET

Dataset split ‘ Method Input Accuracy
HGNN [9] Multi-View(+Hypergraph) 84.20%
Train/test: CDMH [57] Multi-View(+Hypergraph) 84.45%
1639/373 MHGNN [10] Multi-View (+Hypergraph) 85.50%
HGAT [11] Multi-View (+Hypergraph) 85.50%
AMHCN Multi-View (+Hypergraph) 86.53%

MVCNN [4] Multi-View 74.95% (*)

Train/test: GVCNN [5] Multi-View 74.40% (%)
1006/1006 | MVCNN+SVM [54] Multi-View 77.58%
GVCNN+SVM [54] Multi-View 78.90%

tMHL [56] Multi-View (+Hypergraph)  86.26% (#)

HGNN [9] Multi-View (+Hypergraph) — 89.76% ()
iMHL [54] Multi-View (+Hypergraph) 90.33%
AMHCN Multi-View (+Hypergraph) 92.08%

1The mark “*” indicates the data is reproduced from code provided by the author of
the paper. 2The mark “#” means the result is quoted from [54].

voxel-based classification methods VoxNet and PC-GAN, the
proposed AMHCN achieves gains of 14.86% and 5.16%. As
for the point cloud based methods such as PointNet++, AGCN
and LFT-Net, our network outperforms them with the improve-
ment of 7.16%, 5.26% and 4.66%, respectively. Compared with
multi-view 3D recognition methods such as MVCNN, GVCNN
and HMVCM, the proposed AMHCN obtains gains of 7.76%,
4.76 % and 3.29%, respectively. Compared with HGNN, HGAT
and MHGNN, which also use hypergraph neural network to clas-
sify objects, our network improves 1.16%, 0.76% and 0.36%,
respectively. It is worth mentioning that the multi-scale hyper-
graph neural network (MHGNN) achieves comparable results
to ours. However, its training complexity is higher than ours and
its performance on NTU dataset is worse than ours. These will
be discussed further below.

On the NTU dataset, we used two different training/test splits.
The experiments are repeatedly run over 10 times and the av-
erage accuracies are reported in Table III. In the first split
(i.e., Train/test: 1639/373), we select HGNN [9], CDMH [57],
MHGNN [10] and HGAT [11] for comparison. They are all hy-
pergraph learning methods. In the second split (i.e., Train/test:
1006/1006), MVCNN [4], GVCNN [5], MVCNN+SVM [54],
GVCNN+SVM [54], tMHL [56] and iMHL [54] are used
for comparison. It can be seen that when the first split is
adopted, the proposed AMHCN is 2.33% higher than HGNN
and 1.03% higher than both the recently proposed MHGNN
and HGAT. For the second split, AMHCN achieves gains of
17.13%, 17.68%, 14.50% and 13.18 % compared with MVCNN,
GVCNN, MVCNN+SVM and GVCNN+SVM, respectively.
When compared with multi-hypergraph learning methods tMHL
and iMHL, our network outperforms them by 5.82% and 1.75%.
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TABLE IV
COMPARISON OF CLASSIFICATION PERFORMANCE OF AMHCN AND ITS VARIANTS
Dataset Generated Hypergraph Method Feature Accuracy
MVCNN GVCNN

v X 85.00%
SHCN(hyperedge convolution) X v 90.70%
v v 90.51%
NTU Single hypergraph v X 88.73%
SHCN(PARW-based convolution) X v 91.52%
v v 91.07%
Multiple hypergraph AMHCN v v 92.08%
v X 91.04%
SHCN(hyperedge convolution) X v 92.67%
v v 96.72%
ModelNet40 Single hypergraph X v 91.93%
SHCN(PARW-based convolution) v X 92.90%
v v 97.64%
Multiple hypergraph AMHCN v v 97.86%

It is worth noting that the classification accuracy of the pro-
posed AMHCN in the second split is 5.55% higher than that in
the first split. It means that the performance gets worse as more
training data is used. This is also the case with HGNN. Some
articles such as [58] also reported similar phenomena. This may
be caused by overfitting. Specifically, when the training data is
very large and the testing data is relatively small, the model may
take the characteristics of a large number of training samples as
the general characteristics of all potential samples, resulting in
poor generalization ability of the model.

Overall, the proposed method can achieve superior perfor-
mance on both ModelNet40 and NTU datasets. The better per-
formance of our network can be attributed to the following
three reasons. Firstly, the use of hypergraph structure to capture
high-order relationships among 3D shapes makes our method
achieve better performance than those without hypergraph such
as MVCNN and GVCNN. In principle, the high-order corre-
lation is more informative, thus being helpful to improve clas-
sification performance. Secondly, by optimizing vertex neigh-
borhoods with PARW, the proposed convolution operator can
learn more discriminative embeddings. Finally, the proposed
multi-hypergraph fusion strategy can better adjust the weights
of different modalities related to classification task, thereby pro-
moting the full integration of different information.

C. Ablation Study

To verify the effectiveness of the proposed convolution and
the multi-hypergraph fusion strategy, we conduct ablation tests
to compare the proposed AMHCN with its variants. In this ex-
periment, the NTU dataset is split into 50% for training and 50%
for testing.

1) Effectiveness of PARW-Based Convolution: We construct
three single hypergraph models based on MVCNN feature,
GVCNN feature, and MVCNN+GVCNN features (i.e., concate-
nating these two features corresponding incidence matrices), re-
spectively, and apply the proposed PARW-based convolution on

each hypergraph to learn deep embeddings. In addition, to com-
pare the performance of the proposed convolution, we also use
the hyperedge convolution in HGNN [9] to learn the three hyper-
graphs (all experimental settings are consistent with this paper).
Hyperedge convolution is the most commonly used convolution
operator [15], [31], and its expression is:

Y = D,"HWD,'H’D,*X0 = GXO (I3
where G = D, "HWD_ 'HTD, ?

We denote the single hypergraph convolutional network us-
ing the proposed PARW-based convolution as SHCN(PARW-
based convolution), and the one using hyperedge convolution
as SHCN(hyperedge convolution). The corresponding experi-
mental results are reported in Table IV. It can be seen that in
single hypergraph learning, the proposed PARW-based convo-
lution achieves better performance than hyperedge convolution
on both NTU and ModelNet40 datasets. For example, on the
NTU dataset, for the hypergraph constructed only by MVCNN
feature, the proposed PARW-based convolution outperforms the
hyperedge convolution with the improvement of 3.73%. For
the hypergraph constructed by GVCNN feature, the proposed
convolution operator is improved by 0.82%. On the Model-
Net40 dataset, when learning the hypergraph constructed by
MVCNN+GVCNN features, the proposed PARW-based convo-
lution obtains gains 0.92% compared with the hyperedge con-
volution.

The main reason why the proposed PARW-based convolution
works is that PARW can optimize vertex neighborhood (or re-
ceptive field). To verify this, we conducted more experiments.
We observe that most of the elements in the absorption proba-
bility matrix A of PARW are O or very close to 0. We set the
elements of A smaller than a threshold 7 to 0, to explore the
relationship between the vertex neighborhood size and network
performance. The impact of 7 on network performance under
different regularization parameter « is shown in Fig. 5. It can
be observed that when n < 1073, the network can achieve rel-
atively stable performance. This means that for a vertex, only
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vertices with similarity (confidence) above 10~ are used for
feature aggregation. We make statistics of the non-zero ele-
ments (i.e., the active nodes) in A at = 10~3 and compare
with those in G of the hyperedge convolution. Fig. 6 reports
the statistical results for the first ten nodes on the hypergraph
generated by GVCNN+MVCNN features. It can be seen that
the neighborhood sizes corresponding to the same vertex in the
two matrices are mostly different. This means that, compared
with the hyperedge convolution, the PARW-based convolution
may use more vertices with high correlation outside the hyper-
edges for feature aggregation, or remove noisy vertices and only
utilize a small number of relevant ones. Learning vertex embed-
dings in the optimized neighborhood is the most direct reason
why PARW-based convolution works. Another possible reason
is that it changes the similarity measurement between vertices
in the neighborhood and gives higher weights to vertices with
higher correlation, thus promoting better propagation of fea-
tures. In summary, compared with convolution operators (e.g.,
hyperedge convolution) whose vertex receptive field depends on
the hyperedge, the proposed PARW-based method can capture
better receptive field for a vertex from the whole hypergraph
structure, thereby obtaining more discriminative embeddings.
2) Effectiveness of Multi-Modal Fusion Strategy: As for the
effectiveness of the proposed multi-modal fusion strategy, it can
be seen from Table IV that the performance of the proposed
AMHCN is better than those of single hypergraph networks,
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both on NTU and ModelNet40. For example, AMHCN im-
proves 3.35% on the NTU and 5.93% on the ModelNet40 com-
pared with SHCN(PARW-based convolution) which only uses
MVCNN feature. Compared with SHCN(PARW-based convolu-
tion) using multi-modality, AMHCN has arelatively obvious im-
provement on the NTU dataset (i.e., a gain of 1.01%), and a slight
improvement on the ModelNet40 dataset. Fig. 7 provides the
testing process of AMHCN, SHCN(PARW-based convolution)
and SHCN(hyperedge convolution) methods using multi-modal
features (i.e., both MVCNN and GVCNN features). These re-
sults once again demonstrate the effectiveness of the proposed
convolution operator and multi-modal combination scheme.

D. On Parameters

In this section, we discuss the effect of hyperparameters on
network performance. For the NTU dataset, we use the second
split, i.e., 50% for training, 50% for testing.

1) Influence of a: The parameter « is a regularizer of PARW
that controls the absorption rate of each state. Under different
sparse threshold values 7, the effect of o on network perfor-
mance is shown in Fig. 8. It can be observed that the Model-
Net40 dataset can achieve better classification accuracy when «
isabout 50 to 80, while for NTU it is about 30 to 60. When v is too
large or too small, the network can not get the best performance.
These results can be explained that when « is too small, the
probability mass distributes evenly within each cluster or even
on the whole hypergraph, which causes the vertices of different
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clusters to be mixed into the neighborhood of a vertex, making
vertices indistinguishable. When « is too large, most probability
mass is concentrated on a vertex itself, and the convolution al-
most only uses its own features, resulting in low discrimination.
When « is set appropriately, the new embeddings of a vertice
can utilize not only its own feature, but also those of the most rel-
evant vertices, so as to extract the most discriminating features
and improve the classification performance.

2) Influence of k: The parameter k determines the number of
vertices connected by hyperedges in the hypergraph construc-
tion. We vary k values from 5 to 30 at intervals of 5. As shown
in Fig. 9, our network is sensitive to hyperedge size because
our convolution is based on the hypergraph structure. Both the
ModelNet40 and NTU datasets achieve their best classification
accuracy when k is 10. As k gradually increases from 10, the
performance becomes worse. The possible reason is that too
large the hyperedge will introduce noise, resulting in a loss of
discrimination.

3) Influence of Convolution Layer and Feature Map: Now
we discuss the effect of the number of convolutional layers and
value of the feature maps on network performance. We use the
network architecture with two convolution layers. We vary the
number of feature maps of the first convolution layer in [128,
256, 512, 1024]. The length of the convolved features in the
second layer is equal to the number of categories. As shown in
Fig. 10(a), the network can achieve relatively stable performance
on the two datasets when the value of the feature maps varies in

The number of hidden layers indicates the depth of the net-
work. We vary it from 1 to 5. The experimental results are shown
in Fig. 10(b). It can be seen that the best results are obtained with
a 2-layer model for the two datasets. When the number of layers
is greater than 2, the network performance does not increase as
the network becomes deeper. This is because the network pa-
rameters increase with the number of hidden layers, resulting in
overfitting of the network. Therefore, it is impractical to improve
performance only by deepening the network.

E. Time and Space Complexity Analysis

Following PointNet [1], we use the number of parameters
(#params) to measure the space complexity of the network,
and floating-point operations/sample (FLOPs/sample) to mea-
sure the time complexity of the network. The experimental re-
sults of the proposed AMHCN and the comparison with the other
methods are shown in Table V. It can be seen that the number
of parameters of our network is almost equal to that of HGNN,
and lower than MHGNN. In terms of computational cost, the
FLOPs of AMHCN decreases with the increase of threshold 7.
This is because the larger the 7, the sparser the matrix A, and
the smaller the amount of convolution operation of the network.
On the Modelnet40 dataset, when n = 1072, the FLOPs/ sample
of AMHCN is even slightly smaller than that of HGNN. On the
NTU, the FLOPs/sample of AMHCN is equal to that of HGNN
when 7 = 1072, and our network achieves better classification
accuracy. In general, taking consideration of the classification
accuracy, the space and time complexity, our network is much
more suitable for applications in practice.

F. Visualization

To gain an intuitive understanding about the representa-
tion learning ability of AMHCN, we used T-SNE to project
the learned feature representation (i.e., the feature before the
last softmax layer) of our network into 2D space. Meanwhile,
for comparison, we also embed the original MVCNN fea-
ture, GVCNN feature and the learned feature representation of
HGNN into 2D space, in which HGNN takes both GVCNN and
MVCNN features as input. Fig. 11 shows the t-SNE visualiza-
tion of these features. The first column denotes the visualization
of MVCNN feature. The second column denotes the visualiza-
tion of GVCNN feature, and the third and fourth columns are
the visualizations of HGNN and AMHCN output features, re-
spectively. The points with the same color indicate the same
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(b) GVCNN-ModeINet40

(e) MVCNN-NTU

(f) GVCNN-NTU

Fig. 11.

category. It can be observed that the extracted features from
HGNN and AMHCN are much more discriminative than origi-
nal MVCNN and GVCNN features. Furthermore, the proposed
AMHCN demonstrates superior clustering capability, especially
on the ModelNet40 dataset, which can clearly distinguish almost
all categories.

V. CONCLUSION

We have proposed an adaptive multi-hypergraph convolu-
tional networks framework for semi-supervised classification,
which not only explores the complex relationships among dif-
ferent objects but also jointly combines multi-modal data. The
proposed network can effectively utilize the clustering ability of
the PARW on hypergraph to further optimize vertex neighbor-
hood, thus improving the network performance. In addition, the
proposed multi-modal fusion strategy guided by the loss func-
tion can effectively promote multi-modal fusion with low com-
plexity. These contributions enable us to achieve state-of-the-art
classification performance on two 3D benchmark datasets.

There are several potential improvements and extensions to
our network that could be addressed as future work. One is to
speed up the calculation of the absorption probability matrix of
PARW. Although we have adopted LU decomposition to speed
up the inversion operation, it is still a relatively large time cost
for handling large-scale datasets. In the future, we will explore
more strategies for fast matrix inversion. The second is to in-
troduce attention mechanism for improving our PARW-based
hypergraph convolution operator. The third is to explore more
applications for the proposed network.
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