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Abstract—Differential power processing (DPP) converters are
utilized in photovoltaic (PV) power systems to achieve high-
efficiency power output, even under uneven lighting or mismatched
PV cell situations. Since this DPP concept has been introduced for
PV systems, various topologies and control algorithms have been
proposed and validated, showing the benefits of DPP converters
systems over existing series string and full power processing con-
verter solutions. However, DPP systems are highly coupled and can
be challenging to control. Various architectures, topologies, and
control strategies for both series and parallel DPP architectures
are reviewed and compared. Tradeoffs of different DPP convert-
ers and topologies are discussed. Also, the power curve for the PV
connected to bus, PV to PV, and PV to independent port series
DPP architectures are evaluated in terms of inverter interaction.
To date, the PV to PV series DPP systems have been most widely
implemented and robust system-level control for all architectures
has been a major research focus. Furthermore, research and de-
velopment is still needed, particularly for commercialization and
parallel DPP approaches for emerging PV applications.

Index Terms—Photovoltaic systems, differential power process-
ing (DPP), partial power processing, dc-dc converter, sub-module
converter, system control.

I. INTRODUCTION

THE installation of photovoltaic (PV) powers systems has
been increasing steadily over recent years on a global scale

[1]. Utility-scale and residential grid-connected PV systems are
widely used to provide renewable energy to the grid, but there are
also emerging PV applications, such as solar-powered internet of
things and wearable devices [2]. In most applications, PV cells
or panels are connected in series in achieve the higher voltages
required by the application, as shown in Fig. 1a. However, series
strings of PV cells often experience severe power decrease when
there is mismatch in the PV cells’ electrical characteristics, often
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Fig. 1. PV systems using (a) series string and (b) dc optimizers.

caused by partial shading, panels at different tilt angles, dust
accumulation, or cell degradation [3]–[5].

To overcome this severe power reduction due to series connec-
tion, the concept of individual converters was introduced which
connected each PV panel to an individual converter controlling
the PV panel’s operation. Examples of this kind of system ar-
chitecture are cascaded converters [6], dc optimizers [7], and
microinverters [8]. With this type of system architecture, each
converter is typically able to achieve maximum power point
tracking (MPPT) on each PV panel. However, individual MPPT
for each PV is not possible in some conditions, due to the limited
voltage conversion ratio of the dc-dc converter topology and the
finite voltage or current ratings of the power stage devices [9].
For effective system-level control, it is necessary to adopt both
distributed MPPT and central MPPT [10]. An illustration of dc
optimizers used in a PV system is shown in Fig. 1b. In these
architectures, the converter processes all the PV power, which
is referred to as full power processing (FPP) [11]. Because the
full PV power is processed through the converter, losses are pro-
portional to the produced PV power. While FPP converters are
effective against mismatch, more recently, an improved method
that has lower power losses has been introduced.

The term differential power processing (DPP) for PV sys-
tems was introduced in [12] and patented in [13]. However, the
basic PV DPP concept was introduced earlier in [14], which
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applied battery cell balancing techniques to achieve DPP and
offset losses from partial shading of a PV string. DPP convert-
ers are used to control PV elements, which are either PV panels,
sub-panel strings, or individual PV cells. DPP converters pro-
cess only the difference in power between a PV element and
adjacent elements, while maintaining individual control of the
PV elements. Here, the term architecture refers to the electrical
connections between the PV elements and DPP converters, and
topology refers to the circuit topology of the DPP converter, e.g.,
buck, boost, flyback.

DPP systems for PV systems can be divided into two cat-
egories of DPP architectures: series and parallel. Series DPP
architectures maintain the series connection between PV ele-
ments, and DPP converters provide the required current dif-
ference between adjacent PV elements. These architectures are
appropriate for applications that require an output voltage mul-
tiple times higher than that of the PV element, such as grid-tied
PV inverter systems. The major sub-categories of series DPP
architectures are PV connected to bus (PV-bus), PV connected
to PV (PV-PV), and PV connected to an isolated port (PV-IP).
Conversely, in parallel DPP architectures, the DPP converters
provide the required voltage difference between the PV element
and a common bus. The parallel DPP architecture is more ap-
propriate for applications that require a voltage close to that of
the PV element.

Since the concept’s introduction, numerous DPP PV systems
have been implemented and verified to show significant output
power improvement compared to the series string connection
and FPP systems, in both even lighting and partial shading
conditions. Further, since only partial power is processed, the
converter power rating can be a fraction of the PV panel’s rat-
ing, which reduces converter cost, passive component size, and
required board area [11], [12]. Further, studies in [15] have
shown that replacing bypass diodes with DPP converters in-
creased reliability by reducing the probability of reverse-bias
and hot spotting problems in PV cells. FPP architectures exhib-
ited a reduction rate in hot spotting events of 100%, while DPP
architectures exhibited a comparable reduction rate of 93% [15].

To achieve the performance benefits of DPP converters in
PV systems, recent research has focused on developing various
architectures and topologies, improving converter design, and
designing effective and reliable system control strategies. How-
ever, each DPP architecture has limitations and trade-offs. This
paper is organized is as follows: Section II details four main
subcategories of series DPP architectures and their operation,
as well as analyzes the interaction with a string-level inverter;
Section III details the parallel DPP architecture and its opera-
tion; and Section IV concludes the paper.

II. SERIES DPP ARCHITECTURES

A. PV to Bus

In the series DPP PV-bus architecture, each DPP converter is
connected between a PV element and the system bus, as shown
in Fig. 2. Each PV element has a bidirectional DPP converter that
can supply or remove current needed to maintain MPP operation
of the PV element. For an ideal system of n PV elements, the

Fig. 2. Series DPP PV-bus architecture with flyback DPP converters.

PV current is determined by

Iss = IP V ,k − IDP P,k (1)

for k = 1, 2, ..., n, where Iss is substring current, IP V ,k is the
kth PV current, and IDP P,k is the input current for the kth PV
current. The return current Ir is determined according to

Ir =
n∑

k=1

VP V ,k IDP P,k

Vbus
(2)

where VP V ,k is the kth PV voltage and Vbus is the string bus
voltage. Then, the string current Istring is

Istring = Iss + Ir (3)

The PV-bus DPP system is highly coupled and return current
Ir is directly linked to the inverter string current Istring , which
makes the interaction with the string-level inverter a challenge.
This is further detailed in Section II-D.

For proper operation, the PV-bus DPP converter topology
must not be a direct topology, where the negative of input and
output are directly connected; typically, an isolated topology
is chosen for the DPP converter. The MPPT of each PV is
achievable at multiple string current values, but there is a unique
minimum where the least amount of power is processed; this is
the target operating point for the system [12]. Operating at this
point reduces power losses and achieves higher output power
than FPP converters [21].

Although this architecture was introduced in early DPP liter-
ature, the original PV-bus concept has not been widely imple-
mented in the literature. Some works have suggested the boost
topology for the DPP converter [12], [22]. However, upon closer
inspection, it is not a true DPP topology. The main switch of the
boost topology is connected to ground such that the converter
sees the full voltage of its associated PV element and all ele-
ments below it. Although the topology allows for MPPT of each
PV element, it is not an effective topology for DPP converters.

For the PV-bus architecture, if a flyback topology is used
for the DPP converter, the turns ratio of the coupled inductor
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Fig. 3. PV-bus-direct architecture with flyback DPP converters.

can be used to scale the input-output voltage ratio based on
the PV and bus voltages. Work in [16] utilizes a flyback as the
DPP converter, but only as a unidirectional converter delivering
power from the bus to the PV elements. The control strategy
allows for exact MPPT of each PV element implemented for
real-time distributed coordination and low computational over-
head, but bidirectional power flow is needed to minimize power
processed through the converters and optimize output power. A
bidirectional flyback topology has also been proposed [12] but
it has not been implemented and experimentally tested for the
PV-bus architecture in the literature. A comprehensive simula-
tion study of power-limited PV-bus converters in [21] identified
power ratings of 15–17% of the PV element power to be effec-
tive against mismatch caused PV cell degradation.

There are also variations of the PV-bus architecture, such as
[17] and [18], which is actually a unidirectional bus-to-PV DPP
architecture. The converter topologies have been shown using
a stacked LLC resonant converter driven by two switches [17]
and a multi-stacked SEPIC converter with only one switch [18].
The multiple stacked converters are driven by just one or two
switches, which reduces the amount of active parts and simpli-
fies the control. However, the topologies only allow for voltage
equalization of the PV elements, rather than exact MPPT. Also,
due to the unidirectional nature of the converters, more power is
processed than with bidirectional DPP converters, but it is still
effective compared to series PV strings or FPP converters.

Another variation of the PV-bus architecture is the PV-bus-
direct architecture, shown in Fig. 3, which utilizes a string dc-
dc (boost) converter to control the PV substring current and
connects the output of the DPP converters directly to the string
converter output voltage bus [19]. This allows the string current
to be directly controlled by the string dc-dc converter. The main
string power is processed through this converter, which increases
converter losses compared to the original PV-bus architecture,
but the advantage is the decoupling of the substring current
on the input side and the inverter string current on the output
side. Because string converter can independently control the

substring current, the system more reliability maintains optimal
power operation without being directly affected by changes in
the inverter string current.

A bidirectional flyback topology with individual MPPT PV
control for the DPP converters has been shown in [19], [20].
At the system control level, the string boost converter can im-
plement a least power point tracking (LPPT) algorithm, which
operates at the string current that minimizes power processed
through all DPP converters [19], or a unit LPPT, which oper-
ates at the string current that minimizes the worst-case power
processed through any one DPP converter [20].

The PV-bus implementation details are summarized in Ta-
ble I. In order to simplify control, most of the implementations
have either implemented unidirectional DPP converters or used
the PV-bus-direct architecture. One challenge in designing PV-
bus DPP converters is the high voltage step-up ratio from the
PV- to bus-side. In a string of n PV elements, the output volt-
age of the DPP converters should be rated at n times the input
voltage. While this is reasonable for small numbers, it becomes
problematic for long strings of PV elements. Another challenge
is the lack of scalability. Once a converter is designed and op-
timized for a set voltage ratio, the system cannot significantly
increase the number of PV elements without redesigning the
DPP converter.

B. PV to PV

In the series DPP PV-PV architecture, each DPP converter is
connected between one PV element and another PV element, as
shown in Fig. 4. Each DPP converter is bidirectional and can
supply or remove current needed to maintain MPP operation of
one of the PV elements. For a string of n PV elements, there
are n − 1 DPP converters, where each DPP converter controls
one PV at its MPPT. However, one of the PV elements is not
controlled by a DPP converter, but by the the PV string current
of the system. Let the duty ratio of the kth DPP converter be

Dk =
VP V ,k

VP V ,k−1 + VP V ,k
(4)

Then, operation of an ideal PV-PV system is best expressed
in matrix form as in (5) shown at the bottom of next page,
where IDP P,k is as labeled in Fig. 4. This system is also highly
coupled, as shown in (5) shown at the bottom of next page,
such that effective controllers must be carefully designed. The
PV string current Istring that maximizes the power produced
by all PV elements, including the one without a dedicated DPP
converter, is the target operating point of the system. For given
conditions of the PV elements, there is one unique PV string
value that will achieve optimal power generation [12].

For the PV-PV DPP converter topology, a bidirectional
switched-inductor is most commonly used [12], [14], [22], [26],
[27], which can also be thought of as a bidirectional buck-boost
converter and is referred to as a delta converter in [24], [25]. An
alternate topology for the DPP converter is a resonant switched-
capacitor converter [28]–[30], which allows for zero voltage
switching and higher efficiency over a wider operating range.
Work in [23] proposes a type of unidirectional DPP converter
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TABLE I
COMPARISON OF SERIES DPP PV-BUS ARCHITECTURES

Fig. 4. Series DPP PV-PV architecture with switched inductor or resonant
switched-capacitor DPP converters.

for voltage balance of sub-panel PV elements that uses a single
inductor to reduce magnetic components. All PV-PV topologies
are non-isolated topologies that can be implemented in small
packages and at relatively low cost, both of which are primary
concerns in the PV industry.

The main advantage of the PV-PV DPP converter is that the
converter is rated based on the voltage characteristics of the PV
element, such that it is independent of the main bus voltage.
However, work in [21] showed that the maximum power pro-
cessed in any DPP converter increases with PV string length,
such that the required current rating of the DPP converter in-
creases with PV string length. Still, PV-PV DPP converters have
more potential for scalability than the PV-bus architecture. For
PV-PV converters, the MPPT control algorithm should also be
distributed to allow for easy scalability, however this is a non-
trivial problem. Thus, much research on PV-PV converters has
focused on distributed control algorithms.

In terms of control, work in [23], [28]–[30] focuses on volt-
age balance using low-complexity control techniques to achieve
control near the MPP of the PV element while the string inter-
acts with an inverter running standard MPPT algorithms. Work
in [12] tested both constant voltage control and perturb and ob-
serve (P&O) MPPT control in the DPP converter coupled with a
slower P&O MPPT at the string level [31]. The voltage reference
control in the DPP converter requires fewer sensors and simpler
control but only achieves near MPPT, while P&O achieves ex-
act MPPT but requires more sensors and a digital controller.
Work in [30] applied PV-PV converters to a dc microgrid appli-
cation, where voltage balancing mode was utilized to achieve
near-MPP operation during islanding mode and P&O MPPT for
exact-MPP operation during grid-connected mode. Also, studies
of power-limited PV-PV converters in [21] identified power rat-
ings at 23–33% of the PV element power to be effective against
power loss from long-term degradation.

Recent research has also focused on convergence to maintain
maximum power point (MPP) operation for all PV elements.
Work in [29] implemented a hill climbing MPPT for each reso-
nant switched capacitor DPP converter, achieving exact MPPT.
The algorithm was verified with 10 PV panels and 9 DPP con-
verters, but convergence was on the minute time scale. Work in
[26] focused on developing an algorithm for distributed control
where the string-level converter used a slow-changing current-
based P&O control while the DPP converters implemented a
faster control loop. The DPP converter algorithm involved two
perturbations and information exchange between neighboring
converters, and was verified to be an effective distributed con-
trol for larger-scale systems. Alternatively, work in [27] im-
plements a double-stage time-sharing MPPT approach where
the algorithms for all converters are implemented on one dig-
ital controller. Both the DPP and string-level converters use a
voltage-based P&O algorithm, but the control strategy coordi-
nates their tracking. Experimental results show that it is effective
against sudden irradiance changes, but its ability to scale up is

⎡
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TABLE II
COMPARISON OF SERIES DPP PV-PV ARCHITECTURES

Fig. 5. Series DPP PV-IP architecture with flyback DPP converters.

limited. The PV-PV converter and control implementation de-
tails are summarized in Table II, where the experimental setup
column details the number of PV elements and number of DPP
converters used in experimental validation.

C. PV to Isolated Port

In the series DPP PV-IP architecture, also called PV-to-
virtual-bus [12], each DPP converter is connected between a
PV element and an independent isolated bus, as shown in Fig. 5.
Each PV element has a bidirectional DPP converter that can
deliver power to or from the isolated port to optimize PV power.
The power into and out of the isolated port must be balanced
such that an ideal system must follow

n∑

k=1

VP V ,k IDP P,k = 0 (6)

where IDP P,k is as labeled in Fig. 5. Then, the string current is
defined as

Istring = IP V ,k − IDP P,k (7)

for k = 1, 2, . . . , n.

For proper operation, the DPP converter topology should be a
bidirectional isolated topology. The advantage of this architec-
ture is that each PV element’s power can be exchanged directly
with the independent bus that has a lower voltage than the bus
voltage, which reduces component voltage ratings and cost.
However, in order to maintain a stable voltage of the isolated
bus, the power into and out of the bus must be equal, as in (6).
This means that exact MPPT may not be achievable at any given
string current, which is a trade-off of choosing this architecture.

Most of the research on the PV-IP architecture has focused
on developing effective control algorithms for the DPP convert-
ers and mathematically proving stability. The first work was
[32], which compared a non-isolated and isolated DPP topol-
ogy, finding the isolated bidirectional flyback converter more
effective. The proposed control was for each DPP converter to
control the PV voltage based on the voltage of the isolated port,
which achieves near-MPP tracking through voltage balancing.
The implementation was for three sub-strings of a PV panel
and three DPP converters connected to one isolated bus. Further
studies in [11] investigated power-limited PV-IP converters and
found that rating at 20–30% of the PV element power is effec-
tive. Similar work in [33] uses the same topology and setup, but
proposes a voltage control strategy of each PV element based
the voltage difference between the PV element and the isolated
bus. The control circuitry is simpler and lower-cost than the
previous work and is aimed at IC implementation. Work in [34],
also used the bidirectional flyback topology but implemented
a fast control algorithm in the DPP converter to achieve ex-
act MPP operation when specifically coordinated with a slower
string-level inverter running MPPT. The implementation details
for the PV-IP DPP systems are summarized in Table III.

D. Inverter Interaction

For DPP systems to be more easily adopted in grid-connected
PV systems, their control system must properly interact with ex-
isting PV string inverters, as shown in Fig. 6. A string inverter
would be used for a full-scale DPP system of many PV pan-
els, but DPP can also be implemented for single panel where
DPP converters compensate mismatch in the substrings and the
inverter is a panel-level microinverter, typically used for res-
idential applications. In both cases, commercial PV inverters
typically run a standard extremum-seeking MPPT algorithm,
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TABLE III
COMPARISON OF SERIES DPP PV-IP ARCHITECTURES

Fig. 6. Series DPP architecture with a grid-connect inverter.

such as P&O. These MPPT algorithms work most effectively
with a smooth, convex power versus current (P-I) curve be-
cause it ensures that the PV string consistently operates at the
system’s true maximum. If there are multiple peaks in the P-I
curve, which commonly occurs in partially-shaded series PV
strings, the system may operate at a local maximum where PV
power is not maximized.

The series DPP architectures are compared to investigate the
shape of the power curve and the maximum output power. Sim-
ulation is used for direct comparison of the series string, con-
ventional PV-bus with exact MPPT control, PV-PV with exact
MPPT control, and PV-IP with voltage balance control. The sim-
ulation setup assumes four PV panels with the nominal MPP at
16 V and 9 A. The PV-bus and PV-IP has four isolated DPP con-
verters and PV-PV has three nonisolated DPP converters. For
the nonisolated PV-PV DPP converters, efficiency is assumed
to be 92%. For the isolated PV-bus and PV-IP DPP converters,
efficiency is assumed to be slightly lower at 85%. Each DPP
converter is power limited such that it can process up to 3 A
of current, which is 33% of the PV power rating. If the DPP
converter reaches the current limit, the control target of exact
MPPT control or voltage balancing cannot be achieved, but the
system operates at the point closest to the target that meets the
constraints of the DPP converter.

Two realistic irradiance data sets from an building-mounted
PV application were used: one with relatively even light and
the second with irradiance variation. The even irradiance set is
376, 406, 418, and 418 W/m2 on each of the four PV elements,
respectively. The uneven irradiance set is 733, 1236, 1240, and

Fig. 7. P-I curve of series string and DPP architectures under (a) relatively
even lighting and (b) partial shading.

TABLE IV
SERIES DPP ARCHITECTURE COMPARISON RESULTS

1240 W/m2 . This PV setup was simulated using Matlab to de-
termine the steady-state operating point at a given inverter string
current, and the string current was swept from 0 to the short-
circuit current. The resulting P-I curves for series string and the
three DPP architectures are shown in Fig. 7. Calculations of
output power and improvement over the series string is shown
in Table IV.
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1) Even Lighting Case: Results for the even lighting case are
shown in Fig. 7a, where irradiance is lower and only varies from
376 to 418 W/m2 . The curve for series string is not convex, but
there this a global MPP around 3.5 A, where most extremum-
seeking MPPT algorithms would successfully track. PV-PV and
PV-IP exhibit smooth convex curves that allow for the inverter
to consistently operate at the MPP.

For the PV-bus architecture under exact MPPT control, points
shown are only for those where the value of current Iss (shown
in Fig. 2) is positive, as negative values of Iss are not practi-
cal. As shown, PV-bus does not have a convex P-I curve and
displays a linear region from 3.1 to 3.6 A. In this region, there
are two solutions to the DPP system that achieve MPP opera-
tion and yield the same string current: one with a positive Ir

(shown in Fig. 2) and the other with a negative Ir . Note that
some string currents have two or even three potential solutions
while other string currents have no solutions. Also, the 3.6-A
global MPP has solutions at lower currents but no solutions at
higher currents, meaning that exact MPPT cannot be achieved
at currents higher than the MPP. With a extremely fast MPPT
algorithm, the PV-bus architecture may not interact well with
inverters due to the irregular shape of the P-I curve. The actual
power curve of the PV-bus architecture depends on the specific
implementation of the MPPT control. Thus, care must be taken
in designing the PV-bus control algorithm to reach the global
MPP, while ensuring a smooth power curve that interacts well
with the inverter.

In terms of maximum output power in this case, the DPP
architectures show a slight increase of 1.2–1.7% over series
string. This relatively small increase is expected in even condi-
tions, as series string is quite effective in even conditions. Still,
the DPP architectures all show some improvement, with PV-PV
exhibiting the highest improvement of 1.7%.

2) Unven Lighting Case: Results for the uneven lighting
case are shown in Fig. 7b, where one panel is shaded at
733 W/m2 and the other three are in the range of 1236 to
1240 W/m2 . Due to the partial shading, the series string shows
two distinct peaks where an extremum-seeking MPPT algorithm
may operate at either the global maximum or the lower-power
local maximum. The PV-IP with voltage balance control has
a smooth convex shape such that the MPP will be effectively
tracked. In this case, the PV-PV architecture does not have a
convex shape and shows two distinct local maxima. This is
due to the rating limitation of the DPP converter. Because the
MPP of the four panels are significantly different, the PV-PV
DPP converters are not able to fully compensate the difference,
which results in reduced performance and multiple peaks in
the power curve. Although the PV-PV architecture is able to
reach 10.5% higher power that series string at the global maxi-
mum, the inverter MPPT algorithm may end up operating at the
lower-power local maximum.

For the uneven light case, the PV-bus architecture with ex-
act MPPT control again shows an irregular, nonconvex curve.
However, the range of string currents with solutions (satisfying
Iss > 0) is wider than in the even lighting case. Because the dif-
ference in PV MPP currents is large, the 3-A current limit of the
DPP converters is easily reached, which affects the P-I curve.

As a result, the curve is smoother below 10 A which includes
the global MPP at 9.6 A, but the curve above 10 A is irregular
and results in a lower-power local maximum point. Improved
design of the PV-bus control algorithm is crucial for creating a
smoother power curve without multiple peaks.

For maximum output power in the uneven lighting case, the
DPP architectures show a more significant increase of 10.5–
18.1% over series string. In this case, PV-PV exhibits the lowest
improvement of 10.5%, while PV-bus exhibits the highest im-
provement of 18.1%. All DPP architectures exhibit a substantial
power increase even with the DPP converter is rated at only 33%
of the PV power.

3) Summary: Overall, all DPP architectures show higher
output power performance than series string. There are nar-
rower power gains in even irradiance conditions, but significant
gains in uneven conditions. The PV-PI architecture with voltage
balancing control consistently exhibits a convex power curve
with good inverter interaction. Although it does not exhibit the
highest output power compared to other DPP architectures, it
shows consistent performance. The power curve of the PV-PV
architecture with exact MPPT control is convex in even lighting
conditions, but multiple peaks can form in uneven lighting con-
ditions when the current limit of the DPP converters is reached.
It is most effective for smaller numbers of panels [21] and in
conditions where heavy partial shading is not expected. The
PV-bus architecture with exact MPPT control has a noncon-
vex P-I curve, which is unfavorable for inverter interaction. For
this reason, alternative control strategies are needed for the PV-
bus architecture to create a convex P-I curve shape, while still
reaching the global MPP. If this problem is overcome, the PV-
bus architecure will be effective for larger numbers of panels
[21] and in conditions with heavy partial shading.

E. Discussion

Although the concept of DPP for PV power has been around
for a number of years and panel-level DPP has been shown to
work with a commercial microinverter in [35], commercializa-
tion of DPP has not yet reached the market. In the PV market,
up-front cost is a primary concern. For DPP systems to be com-
petitive in the commercial market, they must have a system cost
that is similar or lower than existing PV converter systems. As
there are more components than series string and more com-
plex control than FPP, this typically results in a higher up-front
cost. Although DPP converters provide increased energy cap-
turer over the lifetime compared to series string or FPP [21],
many consumers still focus on initial investment cost rather
than lifetime watts per dollar.

Another critical point for commercial adoption is long-term
reliability. PV panels are rated for up to 20 years and main-
tenance labor costs are high, so reliability of PV converters is
crucial. Because DPP is a relatively new technology, it has not
yet endured long-term reliability testing. In general, PV con-
verter companies do not readily adopt new technologies that
are not fully mature. It is important to note that although DPP
technologies have many components, their loading and resulting
component wear is actually lower than FPP systems [12] such
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Fig. 8. Parallel DPP architectures (a) in direct connection with flyback DPP
converters and (b) using a front-end converter with inverted buck converters.

that DPP systems have a lower expected failure rate. Further, if
DPP systems fail they can be designed to have minimal negative
impact on system operation such that the system still functions
properly. For example, if a DPP converter fails and disconnects
itself from the PV string, that PV segment operates as in series
string and still provides its power to the load. Alternatively, var-
ious safety measures can be designed into DPP converters to
adhere to changing safety standards, which is another critical
driver in the PV market.

III. PARALLEL DPP

While series DPP converters are able to compensate for ex-
treme light differences, in some unfavorable cases, they must
process a significant amount of power to achieve individual
MPPT [21], which takes away from the fundamental advan-
tage of the DPP approach. An alternative DPP architecture is
to use parallel DPP converters, as shown in Fig. 8. In a parallel
DPP system, the PV voltage and bus voltage Vbus are related
according to

Vbus = VP V ,k + VDP P,k (8)

for k = 1, 2, . . . , n, where VDP P,k is the output voltage of the
kth DPP converter. Then, load current of an ideal system is

Iload =
n∑

k=1

IP V ,k
VP V ,k

Vbus
(9)

Instead of the DPP converters offsetting current from a com-
mon current as in series DPP, parallel DPP converters offset

voltage from a common voltage bus. Based on the operating
characteristics of PV cells, the voltage characteristics are less
sensitive to extreme light differences than the current character-
istics [38]–[40]. This indicates that when extreme light differ-
ences are expected, parallel connection is more advantageous
for maximizing PV power.

The main advantage of parallel DPP systems is its high system
efficiency, when properly designed with the PV element voltage
close to the dc bus voltage. Each PV cell is able to operate at its
MPP under any lighting condition, while the processed power
and resulting power loss in the converters is proportional to
the voltage difference between the PV element and the dc bus.
Thus far, only a few approaches to implementing parallel DPP
converters have been reported in the literature. There are two
main parallel DPP architectures: direct connection and with a
front-end converter.

A. Direct Connection

The direct parallel DPP architecture is shown in Fig. 8a.
Authors in [36], referring to parallel DPP converters as PV
balancers, used a flyback converter for the direct parallel DPP
converter. The flyback converter is not used to provide input-
output isolation, as the positive side the the input and output
are directly connected; it is used because it is one of the few
topologies that achieves DPP in this architecture. Note that a
topology such as the inverted (low-side) buck converter may
seem appropriate at first glance, but it is actually equivalent to a
FPP boost converter and is not an appropriate DPP topology. For
the direct parallel DPP converter, a large voltage step-down ratio
is required. Thus, the coupled inductor turns ratio in the flyback
can be utilized for this goal, but achieving high efficiency is
difficult.

B. With a Front-End Converter

The other parallel DPP architecture with a front-end converter
is shown in Fig. 8b. The front-end converter steps down the bus
voltage to an intermediate voltage level, which becomes the
input of the DPP converters. Although isolated topologies could
be used for this architecture, non-isolated converters with higher
efficiency are more appropriate. Work in [36] used inverted buck
converters for both the front-end and parallel DPP converters.
For a residential PV application, cost analysis showed that this
architecture with the inverted buck topology was more cost
effective and showed similar performance to that of the direct
parallel DPP architecture. Work in [37] also implemented the
architecture with a front-end converter but for a lower-power
energy harvesting PV application with extreme uneven lighting
expected over four PV cells. The inverted buck converter was
used for both the front-end and DPP converters and P&O MPPT
was implemented to achieve individual MPP operation.

C. Discussion

The implementation details for the parallel DPP systems are
summarized in Table V. For these parallel DPP architectures,
converters are unidirectional which makes their design simpler
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TABLE V
COMPARISON OF PARALLEL DPP ARCHITECTURES

than bidirectional converters used in series DPP architectures.
Parallel DPP architectures are highly effective at maximizing
power even under extreme light differences [41], but are most
appropriate when the PV element voltage is similar to the load
voltage. At present, only a few topologies for parallel DPP
converters have been implemented, but it is an area open for
further research.

IV. CONCLUSION

Since the DPP concept for PV systems was introduced in
recent years, various work has been developed and published
in the literature. The advantages of higher output power, lower
converter cost, and better system reliability in DPP PV sys-
tems compared to series string and FPP converters have been
outlined. Most existing research has focused on series DPP ar-
chitectures, which includes PV-bus, PV-PV, PV-IP, and a number
of variations.

For the conventional PV-bus architecture with MPPT con-
trol, there are inverter interaction challenges, but variations of
the PV-bus architecture have been successfully implemented. A
number of unidirectional bus-to-PV converter topologies have
been used to achieve voltage balancing of the PV elements, and
the PV-bus-direct architecture uses an additional string converter
to achieve MPPT of the PV elements but also processes more
power through the string converter. The PV-PV architecture is
the most widely implemented with either the switch inductor or
resonant switched capacitor topology. Various control schemes
have been developed for both voltage balancing and exact MPPT
of the PV elements, with effective inverter MPPT algorithm in-
teraction when the rating limit of the PV-PV converter is not
reached. The PV-IP architecture has been implemented using
flyback converters and both voltage balance and MPPT algo-
rithms have been developed. PV-IP DPP systems have been
shown to work most consistently with standard inverter MPPT
algorithms.

Through the literature and comparative simulation, series
DPP architectures have shown better performance than series
string and FPP converters, and various control strategies have
been proposed that are well-suited for grid-connected PV in-
verter applications. Parallel DPP is less studied in the literature,
but shows promise for lower-voltage and emerging PV applica-
tions. For parallel DPP architectures, the direct DPP converter
connection and approach with a front-end converter have been
shown to effectively achieve MPPT of each PV element. The PV
DPP system architectures, topologies, and control approaches
currently available in the literature have been overviewed and
their advantages and trade-offs have been discussed. Contin-
ued research on PV DPP is still needed for scalable systems,

development for commercialization, long-term reliability, and
emerging PV applications.
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