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Multiscale finite element methods for 2D/1D problems have been studied in this work to demonstrate their excellent
ability to solve the eddy current problem in a single iron sheet of electrical machines. We believe that these methods are
much more efficient than conventional 3D finite element methods and just as accurate. The 2D/1D multiscale finite element
methods are based on a magnetic vector potential or a current vector potential. Known currents for excitation can be
replaced by the Biot-Savart-field. Boundary conditions allow to integrate planes of symmetry. All approaches consider
eddy currents, an insulation layer and preserve the edge effect. A segment of a fictitious electrical machine has been
studied to demonstrate all above options, the accuracy and the low computational costs of the 2D/1D multiscale finite
element methods. Numerous simulations are presented. Direct and iterative solvers were investigated to reliably solve the
system of equations from 2D/1D MSFEMs.

Index Terms—Biot-Savart-field, direct solver, eddy currents, edge effect, iterative solver, thin iron sheets, 2D/1D multiscale
finite element method MSFEM

I. INTRODUCTION

THE overall dimensions of a laminated core of
electrical machines are essentially larger than the

thickness of a single iron sheet and thus such machines
represent a multiscale problem. Neglecting the magnetic
stray fields at the end region, all iron sheets are exposed
to roughly the same field distribution. Thus, a simulation
of a single sheet instead of the whole core suffices.

The brute force way is to exploit three-dimensional
(3D) finite element methods (FEMs) for the single sheet.
However, simulations with 3D FEMs may still become
too expensive for routine tasks [1].
A very efficient approach is the use of an effective
material with a complex-valued magnetization curve [2].
However, methods with an effective material are re-
stricted to problems in the steady state.
Attractive alternative options to 3D FEMs are space split-
ting two-dimensional/one-dimensional (2D/1D) methods,
see for instance [3], [4] and [5]. To take account of the
eddy currents a 1D diffusion equation is solved. These
methods suffer from a high number of subdivisions along
the thickness of the sheet.
Methods with an effective material and the 2D/1D meth-
ods ignore the edge effect (EE), i.e. the closure paths
of the eddy currents are neglected, see [6] and [7]. The
EE is particularly important, for instance, in the tooth
tips which are exposed to high flux variations ([1]) and
because of the degrading effect due to the cutting process
of iron sheets, see for example [8], [9] and [10].

Therefore, the idea is to replace the 3D FEMs and
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Fig. 1. The segment is a twelfth of a fictitious electrical machine (left)
with a rotor and a stator separated by an air gap and assumed to be in
the xy-plane. Dimensions are in mm. Thickness of the iron sheets is
d=0.5mm. Known opposed currents in conductors with circular cross-
section represent the excitation. Finite element mesh of one half of the
segment (right).

the 2D/1D methods by 2D/1D MSFEMs based on a
magnetic vector potential (MVP) A or a current vector
potential (CVP) T -formulation. The 2D/1D multiscale
finite element methods (MSFEMs) need only a 2D finite
element (FE) mesh. This leads to much less unknowns
in the FE system of equations. The FE system matrix
is much sparser than in 3D FEMs. All this results in
a drastic reduction of computational costs, both mem-
ory requirements and computational times. The 2D/1D
MSFEMs significantly reduce the overhead of the earlier
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2D/1D methods. The versatility of 2D/1D MSFEMs is
that of 3D FEMs for a sheet.
A 2D/1D MSFEM using trigonometric functions across
the thickness of the sheet can be found in [11]. Our
methods also have to consider eddy currents including the
EE, see [7], account for an insulation layer in between
the iron sheets, facilitate boundary conditions (BCs) to
exploit planes of symmetry, and use Biot-Savart-fields
(BSF) to avoid modeling of conductors carrying known
currents. So far, an excitation has been introduced only
by proper BCs in the tiny problem in [12] and [7].

A small part of the work was presented at CEFC 2022
[13]. First, the basic eddy current problem (ECP) with
BCs is presented in Sec. II. The segment of a fictitious
electric machine in Fig. 1 serves as model problem.
For the sake of simplicity linear material relations and
steady state are assumed, thus the work is carried out
in the frequency domain. Nevertheless all advantages of
2D/1D MSFEMs over 3D FEM can be shown. Then, four
2D/1D MSFEM approaches are introduced in Sec. III.
A motivation of the construction, various properties,
boundary conditions in detail and FE approximation of
the 2D/1D MSFEMs can be found in Secs. III-A, III-B,
III-C and III-D, respectively. In contrast to [12] and [7],
the new approaches (17) and (20) use either H(curl)
or H1 finite element spaces. To evaluate the accuracy
and efficiency of the 2D/1D MSFEMs, mixed FEMs
have been used which are briefly described in Sec. IV.
Simulation results obtained by the 2D/1D MSFEMs by
means of the numerical example in Fig. 1 are presented
in Sec. V. The accuracy of the 2D/1D MSFEMs is shown
in terms field and specific loss distributions in Sec. V-C
and by EC losses in Sec. V-D. To show the computational
cost, the required unknowns, non-zero entries in the
system matrix, and computational times are presented in
Sec. V-E. The ability of 2D/1D MSFEMs to handle small
penetration depths is investigated in terms of frequency
sweeps in Sec. V-F. The accuracy of modeling the EE
by A- and T -formulations has also been studied in the
previous mentioned sections.

In summary, the 2D/1D MSFEMs show high accuracy,
comparable to the expensive 3D FEMs, but require very
low computational cost.

II. EDDY CURRENT PROBLEM

An ECP has to be solved, see Fig. 1. The entire domain
Ω = Ωc ∪ Ω0 ⊂ R3 consists of the conducting domain
(iron sheets) Ωc and the nonconducting domain (air or
insulation layer) Ω0, compare with Fig. 2. The normal
vector n points out of Ω and Ωc, respectively. To facilitate
the representation of the ECP the following definitions

are introduced

ΓH = Γr (1)
ΓJ = Γic ∪ Γrc ∪ Γgc ∪ Γoc ∪ Γbc ∪ Γtc, (2)
ΓB = Γi ∪ Γo ∪ Γl ∪ Γb ∪ Γt, (3)
ΓE = Γlc. (4)

The additional index c means the part of the respective
boundary connected with a conductive domain. The ECP

Fig. 2. One half of the segment in the xy-plane (left), iron sheet in
grey. Detail of the cross-section with iron sheet and with half a layer
of insulation on top and half on the bottom (right), not to scale.

consists of a quasi-static magnetic field

curlH = J , (5)
curlE = − jωB, (6)
divB = 0 (7)

with

J = σE or E = ρJ ,B = µH or H = νB (8)

in Ωc and a static magnetic field

curlH = J0, (9)
divB = 0 (10)

with

B = µ0H or H = ν0B (11)

in Ω0 and the BCs

H × n = 0 on ΓH , (12)
J · n = 0 on ΓJ , (13)
B · n = 0 on ΓB , (14)

E × n = 0 on ΓE , (15)

where H is the magnetic field strength, J the electric
current density, E the electric field strength, B the
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magnetic flux density, σ the electric conductivity, ρ the
electric resistivity, µ the magnetic permeability, ν the
magnetic reluctivity and J0 the prescribed electric current
density, respectively, j denotes the imaginary unit and ω
the angular frequency. Since there is only the magnetic
field in the entire domain Ω, the continuity conditions on
the interface Γc0 between Ωc and Ω0 are

H × n and B · n (16)

which are continuous.
If the symmetry in the segment is not used, Γl does not

exist. In the considered example, the BC B · n = 0 on
Γi ∪ Γo represents a simplification and is in reality only
approximately fulfilled and on Γb∪Γt an assumption that
no magnetic stray field exists.

III. 2D/1D MSFEM FORMULATIONS

The entire domain Ω = Ωm ∪ Ω0 ⊂ R2 is composed
of a laminated domain Ωm = Ωc ∪ Ωi representing an
iron sheet and half an insulation layer on each side of
the sheet, compare with the detail in Fig. 2, and the non-
conducting domain Ω0 representing the air gap between
the rotor and the stator and the space for conductors with
known currents, see also Fig. 1. Note that the meaning
of Ωm and Ω0 depends on the context, either that of a
2D/1D MSFEM or that of the reference solution.

A. 2D/1D MSFEM Approaches

The considered MSFEMs approaches

T̃1 = T0 + ϕ2T2 +HBS (17)

T̃2 = gradΦ0 + ϕ2T2 +HBS (18)

Ã1 = ϕ0
1 gradu10 + ϕ1A1 + grad(ϕ1w1) (19)

Ã2 = ϕ0
1 gradu10 + ϕ1 gradu1 + ϕ1,z(0, 0, w1)

T (20)

are denoted by a tilde, where HBS stands for the Biot-
Savart field. The approaches (17) to (20) are denoted
by TMS1, TMS2, AMS1 and AMS2, respectively. The
potentials T0, T2, Φ0, u10, A1, w1 and u1, respectively,
are unknown and depend on x and y, for example
T0 = T0(x, y). The dependence on the z-direction is
modeled by the micro-shape functions (MSFs) shown in
Fig. 3. The multiplication of a coefficient function or
its derivative by a micro-shape function or its derivative
leads to the space-splitting approaches (17) to (20).

The MSFs ϕ1, ϕ2 and ϕ0
1, where ϕ1,z is the derivative

of ϕ1 with respect to z are shown in Fig. 3.
Figure 3 shows how the MSFs fit into the periodic
structure with p = d + di, where d is the thickness of
the iron sheet and di that of the insulation layer. The
polynomials

ϕ1(s) = s, ϕ2(s) =
1

2

√
3

2
(s2 − 1) (21)

Fig. 3. Micro-shape functions ϕi: The gray interval [-1, 1] represents
the thickness of the iron sheet, and beyond that up to the dashed–dotted
line, there is the insulation layer.

are used as MSFs with the mapping s = 2z/d, where
s ∈ [−1, 1] and z ∈ [−d/2, d/2]. The MSFs ϕ0

1 is
linear and becomes ±1 on the boundary Γz = {−(d +
di)/2, (d+di)/2}, ϕ1 is piecewise linear and 0 on Γz and
ϕ2 is zero on [−(d+ di)/2,−d/2) and (d/2, (d+ di)/2]
which corresponds to the insulation layer. These polyno-
mials facilitate the required tangential continuity of the
unknowns in the multiscale approaches and ϕ0

1 allows
to prescribe essential BCs. The required symmetry of
the solution with respect to z = 0, is ensured by
selecting either even or odd MSFs in the 2D/1D MSFEM
approaches explicitly.

The approaches (17) to (20) consist basically of three
terms. To explain their meaning, think of the magnetic
field strength H and flux density B for TMS1 and TMS2
and on the electric field strength E and current density
J for AMS1 and AMS2, respectively, and on the other
on the analytic solution of a 1D eddy current flow in an
infinite slab derived for example in [14]. Apart from the
EE, a suitable approach for TMS1 and TMS2 must be an
even function and for AMS1 and AMS2 an odd function
along the sheet thickness, with the middle of the sheet
serving as the origin.

The first term T0 or gradΦ0 of TMS1 and TMS2
provides an average magnetic flux density across p,
the thickness of the sheet including the insulation
layer, which is corrected by the second term ϕ2T2

to account for penetration depth. The EE is simply
modeled by homogenous tangential BCs for T2 on
respective boundaries. Similarly, for AMS1 and AMS2,
the circulation of ϕ0

1 gradu10 yields a constant flux
density across p. A partitioning of the magnetic flux
between iron and insulation layer is accomplished by
the circulation of the second term ϕ1A1 or ϕ1 gradu1.
The third terms grad(ϕ1w1) in (19) or ϕ1,z(0, 0, w1)

T

in (20) represent the EE.
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B. Properties of the MSFEM Formulations

In order to facilitate the discussion of the 2D/1D
MSFEM approaches and to find the true BCs more easily
some intermediate results are presented:

curlT0 =

 0
0

T0y,x − T0x,y

 (22)

curl(ϕ2T2) =

 −ϕ2,zT2y

ϕ2,zT2x

ϕ2(T2y,x − T2x,y)

 (23)

curlHBS = J0 (24)

curl(ϕ0
1 gradu10) =

 −ϕ0
1,zu10,y

ϕ0
1,zu10,x

0

 (25)

curl(ϕ1A1) =

 −ϕ1,zA1y

ϕ1,zA1x

ϕ1(A1y,x −A1x,y)

 (26)

curl(ϕ1 gradu1) =

 −ϕ1,zu1,y

ϕ1,zu1,x

0

 (27)

curl(0, 0, ϕ1,zw1) =

 ϕ1,zw1,y

−ϕ1,zw1,x

0

 (28)

Magnetic fields that occur in air are represented by T0 in
(17). As can be seen in (23) the term ϕ2T2 is essential for
the T -formulations (17) and (18) to get proper eddy cur-
rent density distributions. Setting the trace of T2 to zero
yields the component for the EE Jz = ϕ2(T2y,x−T2x,y).
The other components Jx and Jy vanish, compare with
(23). This is a big advantage over the A-formulations
(19) and (20), which additionally require a third term.
To preserve the EE, ϕ2T2 can not be replaced by a
term like ϕ2 grad(u2), because curl(ϕ2 grad(u2)) does
not have a z-component. In case of A-formulations the
EE is represented by grad(ϕ1w1) and by ϕ1,z(0, 0, w1)

T

in (19) and (20), respectively. Laminar currents due to
ϕ0
1 gradu10 generate a total magnetic flux (25), which

is perturbed either by (26), see [7], or by (27). The z-
component of curl(ϕ1A1) provides a smoothing of the
magnetic field at the transition from the iron sheet to the
air. While the z-component of the current density due
to ϕ1,zw1 is accompanied by the magnetic field (28),
grad(ϕ1w1) does not yield a magnetic field.

Known total source currents in conductors pointing in
z-direction and considering a penetration depth could be
simply prescribed by T0. On the other hand, a magnetic
flux density, for example, in an air gap of an electric
machine could be simply represented by gradΦ0 or
ϕ0
1 gradu10. The main magnetic flux, which is parallel to

the iron sheet, is considered by all approaches and causes
eddy currents confined to flow in very narrow loops.

C. Boundary Conditions of the 2D/1D MSFEMs

To fulfill the BCs (12) to (15) for the problem in Fig. 2
by the methods (17) to (20) their potentials T0, T2, u10,
A1, u1 and w1 must be specified as follows. Other used
boundaries here are

ΓJ2D
= Γi ∪ Γr ∪ Γo ∪ Γg, (29)

ΓB2D
= Γl ∪ Γi ∪ Γo. (30)

1) TMS1

T0 × n = 0 on ΓH (31)
T2 × n = 0 on ΓJ2D

(32)

−jωµT̃1 · n = 0 on ΓB2D
(33)

ρ curl(T0 +Φ2T2)× n = 0 on ΓE (34)

2) TMS2

Φ0 = 0 on ΓH (35)
T2 × n = 0 on ΓJ2D

(36)

−jωµT̃2 · n = 0 on ΓB2D
(37)

ρ curl(Φ2T2)× n = 0 on ΓE (38)

3) AMS1

ν curl(Ã1)× n = 0 on ΓH (39)

−jωσÃ1 · n = 0 on ΓJ2D
(40)

u10 = 0, (41)
w1 = 0, (42)

A1 × n = 0 on ΓB2D
(43)

4) AMS2

ν curl(Ã2)× n = 0 on ΓH (44)

−jωσÃ2 · n = 0 on ΓJ2D
(45)

u10 = 0, (46)
u1 = 0, (47)
w1 = 0 on ΓB2D

(48)

D. Finite Element Approximation

To obtain the respective weak form of the 2D/1D
MSFEMs approaches, (17) to (20) are substituted into
one of the partial differential equations

curl(ρ curl T̃ ) + jωµT̃ = 0 or (49)

curl(ν curl Ã) + jωσÃ = J0 (50)

and known steps considering the BCs (31) to (48) are
carried out for the FEM ([12], [7], [6]).
Finite element subspaces of the potentials have been
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TABLE I
ORDER OF THE METHODS FEO AND THEIR POTENTIALS

FEO 0 1 2

T ,Φ-Φ T 0 1 2
Φ 1 2 3

TMS1 T0 0 1 2
T2 0 1 2

TMS2 Φ0 1 2 3
T2 0 1 2

A,V -A A 0 1 2
V 1 2 3

AMS1
u10 1 2 3
A1 0 1 2
w1 1 2 3

AMS2
u10 1 2 3
u1 1 2 3
w1 1 1 2

selected as follows: T0 ∈ H(curl,Ω), T2 and A1 ∈
H(curl,Ωm), Φ0 and u10 ∈ H1(Ω) and u1 and w1 ∈
H1(Ωm), see [15]. The MSFs are in the space of periodic
and continuous functions Hper([−p/2, p/2]).
Following the usual designations, we call H(curl) con-
forming FEs edge elements and H1 conforming FEs
nodal elements. The FE order (FEO) refers to edge
elements for T0, T2 and A1, compare with Tab. I. The
FEO of nodal elements for Φ0, u10, u1 and w1 in (19)
is one higher than that of the edge elements for T0, T2,
A1, T and A to be consistent with the de-Rham-complex.
An exception is w1 in (20) with the same order as the
edge elements. MSFEM approach (17) uses only edge
elements and (20) only nodal elements.

The weak forms have been derived as described for
example in [6], [12] and [16] for a MSFEM based on
a MVP and in [12] and [17] for a MSFEM based on a
CVP. Averaging of the coefficients in the bilinear forms
has been carried out to exploit the advantage of the
MSFEMs, see [6] and [12]. Since the material properties
are assumed to be linear, averaging of the coefficients
in z-direction can be carried out analytically. Therefore,
averaging does not effect the FE mesh in the xy-plane.

The BSF HBS is included into the approaches (17) and
(18) based on a CVP. In case of approaches based on a
MVP the known current density J0 is directly considered
on the right hand side in the corresponding linear form
of the MSFEM and integration by parts.

IV. REFERENCE SOLUTIONS

Reference solutions have been computed using the
mixed formulations A, V -A and T ,Φ-Φ ([18]), where V
is the electric scalar potential and Φ the magnetic scalar
potential, and with 3D FE models with second order FEs
of the entire segment in Fig. 1, see also Tab. I. Only
mixed formulations, e.g. T ,Φ-Φ and A, V -A, allow the
modeling of all BCs of the considered specific problem.

For example, the representation of the BC in (2) on Γo

is not possible using only A.
1) Boundary Value Problem with T,Φ-Φ

curl ρ curlT + jωµ(T − gradΦ)

= − curl ρ curlHBS − jωµHBS , (51)
jω div(µ(T − gradΦ)) = −jω div(µHBS) onΩc(52)
−jω div(µ0 gradΦ) = −jω div(µ0HBS) onΩ0(53)

T × n = 0, (54)
Φ = 0 on ΓH (55)

T × n = 0 on ΓJ (56)
−jωµ(T +HBS − gradΦ) · n = 0 on ΓB (57)

ρ curlT × n = 0 on ΓE (58)

2) Boundary Value Problem with A,V -A

curl ν curlA+ jωσ(A+ gradV ) = 0, (59)
div(jωσ(A+ gradV )) = 0 on Ωc (60)

curl ν0 curlA = J0 on Ω0 (61)

ν curlA× n = 0 on ΓH (62)
−jωσ(A+ gradV ) · n = 0 on ΓJ (63)

A× n = 0 on ΓB (64)
V = 0, (65)

A× n = 0 on ΓE (66)

Details of the associated weak forms can be found, for
example, in [18].

V. NUMERICAL SIMULATIONS

A. Problem

The problem is a segment of a fictitious electrical
machine shown with details in Fig. 1. A conductivity of
σ = 2.08·106S/m, a relative permeability of µr = 1, 000,
a frequency of f = 50Hz, a thickness of the sheet of
d = 0.5mm, a fill factor of kf = 0.95 and a peak value of
the current I = 100A have been selected. The BSF fulfills
the rotational symmetry due to the prescribed currents
(24), half of which point into the opposite direction.

B. Results

For the sake of a fair comparison the FE mesh for the
3D FEM has been generated by extrusion of the 2D mesh
for the 2D/1D MSFEMs with prism-shaped elements. The
3D FEM models consist of six layers of elements with
proper thicknesses to account for the penetration depth.

All methods have been implemented in Net-
gen/NGSolve [19] and all problems have been solved by
the direct solver PARDISO [20].
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Fig. 4. Top: Biot-Savart-field |HBS | to the left (|HBS |max =
3, 779kA/m), magnetic flux density |B| of T,Φ-Φ in the middle and
of TMS1 to the right (|B|max = 0.273T), all at z=0. Bottom: Current
density |J | (|J |max = 35kA/m2) of A,V -A to the left, of AMS1
in the middle and of AMS2 to the right, all at z=0.188mm and with
FEO=2 (see Tab. I). The black contours are isolines.

C. Field and Specific Loss Distribution

For comparison, the field and specific loss distributions
in the xy-plane at z=0.188mm are shown in Fig. 4 and
Fig. 5. The EC density distribution in the xz-plane at
y=0.153m is shown in Fig. 6. There is a very satisfactory
agreement in all cases.

D. Eddy Current Losses

The reference solutions for these losses were computed
by T ,Φ-Φ for TMS1 and TMS2, respectively, and by
A, V -A for AMS1 and AMS2, respectively, with 3D FE
models of the entire segment in Fig. 1 with second order
FEs FEO=2. An evaluation of the overall EC losses of
the half problem by means of the relative error

RE =
2P2D/1D − P3D

P3D
· 100% (67)

are shown in Fig. 7. The reference losses P3D of the
entire problem are summarized in Tab. II, P2D/1D are

Fig. 5. Specific losses p in W/m3, range is 0 < p < 100W/m3. Top:
T,Φ-Φ to the left, TMS1 in the middle and TMS2 to the right. Bottom:
A,V -A to the left, TMS1 in the middle and TMS2 to the right. All
at z=0.188mm and with FEO=2 (see Tab. I). The black contours are
isolines.

Fig. 6. Distribution of the eddy current density |J| in A/m2, range
is 0 < |J| <2.5 · 104A/m2, detail of cross section at y = 0.153m
(compare with Fig. 1). From the top to the bottom: T,Φ-Φ, TMS1,
TMS2, A,V -A, AMS1, AMS2. All with FEO=2 (see Tab. I).
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Fig. 7. Relative error of eddy current losses.

the losses obtained by 2D/1D MSFEMs of the half
problem. Thus, the relative error RE includes also the
ability of the 2D/1D MSFEMs to model the symmetry of
the problem. The relatively large error for lowest order
T ,Φ-Φ can be explained by the fact that the current
density J is the circulation of the CVP curlT being
just piecewise constant with lowest order edge elements.
The high accuracy of 2D/1D MSFEMs with zero order
FEs is due to the local description of the solution using
MSFs. The RE is negligible small for TMS1 and TMS2
and second order FEs. However, the RE is about 1%
for AMS1 and AMS2 independent of the FEO. Simply
speaking, this indicates that the formulations of AMS1
and AMS2 are less suitable.

The capability to represent the EE by the 2D/1D
MSFEMs is presented in Fig. 8. The normal component,
i.e. the z-component, of the current density represents
the so-called EE. The EE is not present in the plane of
symmetry Γl. The losses

PEE = 0.5

∫
Ωc

σ−1JzJ
∗
z dΩ, (68)

where Jz is the z-component of the current density and
* means conjugate complex, have been computed as
a measure to study the capability to consider the EE
by the 2D/1D MSFEMs. The REs on PEE are defined
analogously to (67) and were calculated for TMS1 and
TMS2 with respect to the reference solutions (51) to
(58) and those for AMS1 and AMS2 with (59) to (66).
The RE of the EE practically vanishes for TMS1 and
TMS2 with second order FEs FEO=2, whereas it stays
relatively large for AMS1 and AMS2, as can be seen in
Fig. 8. Modeling of the EE requires just a homogenous

TABLE II
EDDY CURRENT LOSSES

Formulation T ,Φ-Φ A, V -A
P in µW 47.65 47.40

Second order FEs FEO=2, see Tab. I, entire problem.

Fig. 8. Relative error of losses PEE according to (68).

Fig. 9. Number of unknows in thousands (TSD), T -formulations.

BC for T2 for T -formulations, which is exact for the MS-
FEM approaches (17) and (18), respectively. However,
an additional term for A-formulations in the MSFEM
approaches is required, the third term in (19) and (20),
respectively, which is an approximation only.

E. Computational Costs

The number of required unknowns are presented in
Figs. 9 and 10. The FEO of the methods and their

Fig. 10. Number of unknows in thousands (TSD), A-formulations.
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Fig. 11. Non-zero entries in finite element matrix.

Fig. 12. Computation time, half problem.

potentials are summarized in Tab. I. In general, the 2D/1D
MSFEMs require essentially less unknowns than the 3D
FEMs, about a factor of 10. A significant additional
reduction of the unknowns by the 2D/1D MSFEMs can
be obtained by replacing T0 and A1 by gradΦ0 and
gradu1, respectively. To be fair the 3D FEMs could
exploit the symmetry with respect to the plane z=0.

The memory requirement is reflected by means of
the non-zero entries in Fig. 11. Memory requirements
increase visibly less rapidly for 2D/1D MSFEMs and are
at least 10 times smaller than for 3D FEMs.

TMS2 needs less unknowns and less non-zero entries
in the FE-system than TMS1. The same can be stated for
AMS2 and AMS1.

The computation times (CTs) presented in Figs. 12
and 13 consist of the solution of the problem including
the evaluation of eddy current losses P and PEE . In
general, A-formulations require more computation time
than T -formulations and obviously AMS1 requires more
computation time than AMS2. The CTs and their increase
from the half to the entire problem with respect to the
FEO of the 3D reference solutions are essentially higher
than those of the 2D/1D-MSFEM problems. Overall, the
2D/1D MSFEMs are more than 100 times faster than the
3D FEMs for second order FEO.

Fig. 13. Computation time, entire problem.

F. Frequency Sweeps

Some frequency sweeps of EC losses have been inves-
tigated to show the robustness of the 2D/1D MSFEMs
with respect to the penetration depth

δ =

√
2

ωµσ
. (69)

The frequency range of 50 to 6,400 Hz was se-
lected, which means penetration depths of 1.561mm to
0.138mm. All simulations are based on half problems
and FEO=2.

The behavior of the EC losses as a function of δ/d is
shown in Fig. 14 and the behavior of the losses due to
EE is shown in Fig. 15. The overall EC losses obtained
by TMS1 and TMS2 are essentially more accurate than
those by AMS1 and AMS2 as can be seen in Fig. 16.
The relatively large error at small penetration depths in
Fig. 17 is due to the rather coarse FE mesh in the xy-
plane along the edges, compare with Fig. 1. The relative
errors of TMS1 and TMS2 are related to T ,Φ-Φ and of
AMS1 and AMS2 to A,V -A.

In summary, TMS1 and TMS2 are significantly more
accurate than AMS1 and AMS2. To cope also for higher
frequencies, i.e. δ/d ≪ 1, the approaches (17) to (20)
have to be extended to approaches of higher order 2D/1D
MSFEMs. Principal ideas to this end can be found in [6]
and [21].

G. Solving the Equation Systems of 2D/1D MSFEMs

The solvability of the equation systems resulting from
2D/1D MSFEMs and the performance of different solvers
in case of FEO=2 are presented here. One half of
the segment was considered, see Fig. 1. The direct
solvers, the parallel direct solver (PARDISO) [20], the
sparse Cholesky solver (SCS) [22] and the unsymmetric
multifrontal package (UMPFPACK) [23] and the in-
terative solver conjugate gradient method (CGM) with
the preconditioner balancing domain decomposition by
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Fig. 14. Eddy current losses, half problem, FEO=2 see Tab. I.

Fig. 15. Eddy current losses of EE, half problem, FEO=2 see Tab. I.

constraints (BDDC) [24] and with block Jacobi precon-
ditioning (BJPC) [22] were studied.
To evaluate mainly the iterative solvers the residual

r = b−Ax (70)

of the equation system Ax = b with the matrix A, the
vector of degrees of freedom x and the right hand side
b is used to define the reduction factor

fr =
∥r∥2
∥r0∥2

(71)

Fig. 16. Relative error of eddy current losses, half problem, FEO=2
see Tab. I.

Fig. 17. Relative error of eddy current losses of EE, half problem,
FEO=2 see Tab. I.

based on the initial residual r0.
“Usable”, “inaccurate” and “wrong” were chosen in order
to make a more differentiated evaluation of the results.
Investigations show that a rather moderate small value
fr < 10−4 already leads to useful losses using an
iterative solver, compare CGM with BDDC and TMS1
and TMS2. The maximum number of iterations was
chosen generously with 100 in order to see if a solver
can in principle deliver a feasible result.
PARDISO is the only solver that solves all problems in-
cluding the reference problems reliably and, thus allows a
fair comparison. For this reason, PARDISO was selected
for all investigations above in Secs. V-B to Sec. V-F.
SCS is the fastest solver for the 2D/1D MSFEMs. UMPF-
PACK clearly takes more time than PARDISO. CGM
with BJPC always fails, whereas CGM with BDDC is
fast and provides feasible solutions.
Quite similar conclusions can be drawn with FEO=1,
except that the results of AMS1 are slightly better than
those of AMS2. However, this is not presented here.

VI. CONCLUSIONS

The approaches for 2D/1D MSFEMs are quite similar
to those for 3D MSFEMs [16], [17]. While the coefficient
functions for 2D/1D MSFEMs depend on two variables,
those for 3D depend on three variables. Note, the term
ϕ0
1 gradu10 in (19) and (20) is not suitable in 3D.

Losses obtained by 2D/1D MSFEMs differ from the
reference losses by less than about one percent. The MS-
FEMs with T -formulations are noticeably more accurate
than MSFEMs with A-formulations.
The 2D/1D MSFEMs are accurate for penetration depths
δ with δ/d ≥ 1, TMS1 and TMS2 provide accurate
results even for clearly smaller δ.
Overall, the number of unknowns for the 2D/1D MS-
FEMs is much smaller than that for the 3D FEMs.
Simulations with 2D/1D MSFEMs are much faster than
those with 3D FEMs.
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The 2D/1D MSFEMs are able to handle problems with
complicated geometries, Biot-Savart fields, symmetries
and the EE.
Application of the proposed methods to the time domain
or to nonlinear problems is obviously possible.
An available 2D FE code supporting H1 and H(curl)
FEs allows in principle the implementation of the pre-
sented 2D/1D MSFEMs. The MSFEM approach (20)
requires only H1 FEs.
Direct solvers are suitable to reliably solve systems of
equations from 2D/1D MSFEMs. CGM with BDDC is
a feasible iterative solver. A specific pre-conditioner for
2D/1D MSFEMs would be helpful for large problems.
The development of a tailored preconditioner for 2D/1D
MSFEMs would be interesting to see if a better perfor-
mance can be achieved.
The use of 2D/1D MSFEMs is a very attractive alternative
to both brute force 3D FEMs and 2D/1D methods.
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[2] M. Schöbinger, I. Tsukerman, and K. Hollaus, “Effective Medium
Transformation: The Case of Eddy Currents in Laminated Iron
Cores,” IEEE Trans. Magn., vol. 57, no. 11, pp. 1–6, 2021.

[3] O. Bottauscio and M. Chiampi, “Analysis of laminated cores
through a directly coupled 2-D/1-D electromagnetic field formu-
lation,” IEEE Trans. Magn., vol. 38, no. 5, pp. 2358–2360, 2002.

[4] J. Pippuri and A. Arkkio, “Time-Harmonic Induction-Machine
Model Including Hysteresis and Eddy Currents in Steel Lamina-
tions,” IEEE Trans. Magn., vol. 45, no. 7, pp. 2981–2989, 2009.

[5] C. Geuzaine, S. Steentjes, K. Hameyer, and F. Henrotte, “Prag-
matic two-step homogenisation technique for ferromagnetic lami-
nated cores,” IET Meas. Sci. Technol., vol. 9, no. 2, pp. 152–159,
2015.
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APPENDIX A

TABLE III
SOLVING THE EQUATION SYSTEMS

Formulation Solver Pre-Cond. P (µW) PE (nW) No. Iterations Simul.-Time (s) fr Result

T,Φ-Φ

PARDISO
-

23.82 92.55 1 30.32 1.41 · 10−7 reference
UMPFPACK

singular, no resultSCS
CGM BJPC
CGM BDDC

A,V -A

PARDISO
-

23.69 120.4 1 47.17 3.75 · 10−8 reference
UMPFPACK

singular, no resultSCS
CGM BJPC
CGM BDDC

TMS1

PARDISO
-

23.82 92.95 1 0.202 1.13 · 10−6 usable
UMPFPACK 23.82 92.95 1 1.574 6.89 · 10−8 usable
SCS 23.82 92.95 1 0.156 8.21 · 10−8 usable
CGM BJPC 5,293 23,733 100 0.187 9.0 · 10−3 wrong
CGM BDDC 23.81 92.78 17 0.187 9.25 · 10−5 usable

TMS2

PARDISO
-

23.82 92.92 1 0.141 1.39 · 10−13 usable
UMPFPACK 23.82 92.92 1 0.453 6.19 · 10−15 usable
SCS 23.82 92.92 1 0.156 2.64 · 10−14 usable
CGM BJPC 1,906 45,036 100 0.172 2.01 · 10−2 wrong
CGM BDDC 23.81 92.75 17 0.141 9.25 · 10−5 usable

AMS1

PARDISO
-

23.92 109.3 1 0.375 3.92 · 10−13 inaccurate
UMPFPACK 23.92 109.3 1 0.942 4.26 · 10−14 inaccurate
SCS 23.92 109.3 1 0.266 1.16 · 10−13 inaccurate
CGM BJPC 53.91 2,283 100 0.320 1.56 wrong
CGM BDDC 23.92 109.3 43 0.344 8.9 · 10−5 inaccurate

AMS2

PARDISO
-

23.95 113.7 1 0.187 8.9 · 10−12 usable
UMPFPACK 23.95 113.7 1 0.656 2.67 · 10−12 usable
SCS 23.95 113.7 1 0.219 7.52 · 10−12 usable
CGM BJPC 79.96 10,723 100 0.217 2.11 wrong
CGM BDDC 23.95 113.7 40 0.219 5.34 · 10−5 usable

BDDC balancing domain decomposition by constraints
BJPC block Jacobi preconditioning
CGM conjugate gradient method
fr reduction of the residual, see (71)
PARDISO parallel direct solver
SCS sparse Cholesky solver
UMPFPACK unsymmetric multifrontal package
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