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Abstract—This paper proposes a novel method to estimate the
parameters of isotropic PMSMs which uses only steady-state
measurements of load conditions commonly available during the
regular operations of off-the-shelf industrial drives. Differently
from existing online and offline approaches, the proposed method
is designed considering real-world scenarios where ad-hoc tests,
additional sensors and the implementation of custom software
procedures, such as signal injection, are highly discouraged.
The rotor flux linkage, the stator resistance and inductance
are estimated with the aid of Adaline neural networks using
two operating conditions of the motor. Considering parameter
variations according to the actual operating conditions as well
as the influence of the inverter nonlinearity and actuation delay,
the estimation errors are minimized by proper selecting these
two optimal conditions. The accuracy of the proposed method
is validated by simulation and experimental studies considering
scenarios with different number of motor operating conditions.

Index Terms—Actuation delay compensation, adaline neural
network, inverter nonlinearity, large scale application, parameter
estimation, rank deficiency, synchronous machines.

I. INTRODUCTION

A. Background

The knowledge of the PMSM parameters, such as in-
ductances, rotor flux linkage, stator resistance, rotor

inertia and viscous friction coefficient, is required for several
reasons. Most of the common control strategies need the
accurate knowledge of the motor parameters to guarantee
system stability while ensuring optimal efficiency and dynamic
performances [1].

The knowledge of such parameters is also crucial in con-
dition monitoring and fault diagnosis applications as well,
e.g., the stator resistance estimation allows to monitor the
temperature rise and the winding insulation, while the rotor
flux linkage estimation is an indicator of the demagnetization
state [2], [3].

The literature reports numerous parameter estimation tech-
niques, mainly divided into offline and online methods [4].
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While ensuring high accuracy, offline estimation approaches
are based on previously collected input/output data through
dedicated tests which need specific laboratory equipment with
the motor disconnected from its application [5]. For example,
in [6], an offline approach is proposed to estimate the rotor
flux linkage using voltage measurements while the PMSM is
driven by an induction motor. In [7], several tests in the whole
torque-speed range are executed to collect the measurement
data required to estimate the motor parameters.

On the other hand, online methodologies do not require the
machine to be disconnected as they estimate the parameters
during normal on-load operations through real-time implemen-
tations on the drive control unit [4]. Online approaches are
mainly implemented using numerical methods [8]–[11], state
observers [12]–[15], and artificial intelligence techniques [2],
[3], [16]. The performances of online approaches are jeopar-
dised by the rank-deficiency issue, i.e., the number of unknown
parameters is higher than the rank of the PMSM model, which
prevents accurate and simultaneous parameters estimations [3],
[17]. Reducing the number of unknown parameters by setting
some of them to nominal values is a possible solution [10].
However, while it is not always possible to retrieve nominal
values, the convergence of the estimation to the actual values
is still not guaranteed [18]. Moreover, variations in operating
conditions, aging effects, and incipient faults increase the
difference between nominal and actual values, thus adversely
affecting the estimation accuracy. More expensive and com-
plex alternatives employ additional measurements, such as
those from torque meters [19]. Signal injection (either current,
voltage or rotor position offset) represents a further solution
to increase the rank of the system [3], [8], [16]. Nevertheless,
in case of current or voltage injections, high signal-to-noise
ratios must be ensured to provide accurate estimations without
influencing the machine parameters [17].

Online methods employ the voltage references in place of
measured phase voltages [20]. Hence, the estimation accuracy
is additionally compromised due to the mismatch between
these two quantities. Such mismatch is mainly due to digital
delays and distortions introduced by the control system and by
the nonlinearity of the voltage source inverter (VSI) [15]. The
VSI nonlinearity can be compensated through an additional
parameter in the PMSM model, i.e. the distorted voltage term
[21].

While affecting the estimation of the rotor flux linkage
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and stator resistance, the voltage distortion caused by the
VSI nonlinearity does not impact the estimation of the q-
axis inductance when the d-axis current is null [22]. Instead,
as shown in this paper, the digital delay also affects the
inductance estimation accuracy and may have a greater impact
on the rotor flux linkage and stator resistance estimations.
The voltage distortion due to the digital delay increases with
the ratio between electrical rotor speed and control sampling
frequency, i.e., when high-speed PMSMs or PMSMs with a
high number of poles are considered. This is one of the reason
of why the main results available in literature of estimation
procedures relying on voltage references show experiments at
low speeds where the effects of digital delays are negligible
[1], [3], [8], [15], [17], [18], [21], [23].

B. Motivation and contributions

Both current online and offline approaches lack of flexibility
and nonintrusivity which are a requirement for the condition
monitoring of commercial motors in large-scale industrial
scenarios. In fact, in these contexts, machine downtimes,
dedicated tests and additional measurement devices required
by offline methods are highly discouraged. On the other side,
effective online approaches relying on signal injection cannot
be practically implemented on off-the-shelves commercial
drives, as it is usually not allowed to access the drive firmware
to implement custom procedures.

The availability of novel Internet-of-Things (IoT) technolo-
gies allows for a more flexible and nonintrusive parameter
estimation due to the enhanced capability to collect, store and
process data. For instance, in [24], an edge/cloud computing
architecture has been proposed for the first time to automat-
ically collect and store data generated by in-service PMSMs
and to identify the electrical parameters with Adaline Neural
Networks (AdNNs). Unfortunately, experimental validation
using real measurements is missing in this study. Furthermore,
the algorithm in [24] requires a high number of work cycles
to estimate the parameters and assumes that voltage measure-
ments are available and that PMSM parameters are constant.

This paper proposes a novel flexible and nonintrusive pa-
rameter estimation procedure which overcomes the limitations
of both offline and online methods documented so far in the
literature. In fact, as in [24], the proposed scheme is designed
to operate in a scenario where only data generated during
the regular operation of the PMSM are available, without
requiring additional sensors. Therefore, only measurements
usually available in standard PMSM drives such as rotor
position, currents, voltage references, and motor temperature
are exploited to provide stator resistance, stator inductance,
and rotor flux linkage estimations. Also, to extend the range
of applicability, the proposed method is designed to estimate
all the parameters by using only two operating conditions.
Thereby, the method can be useful also for drives working in
few different load/speed steady states. Furthermore, a decision-
making algorithm (DMA) has been originally developed to
deal with inevitable parameter variations caused by the chang-
ing operating conditions. The proposed approach is limited
to isotropic PMSM drives under zero d-axis current control,

which are by far the most common among PMSM drives
in industrial contexts and has been widely studied for the
parameter estimation [2], [3], [6], [9], [12], [14], [17]. It has
to be remarked that the proposed procedure is not designed to
be implemented on the drive control unit, thus, it is suitable
for edge/cloud computing architectures capable to collect
and store multiple operating conditions. Therefore, typical
computational constraints to be considered when designing a
real-time algorithm to be embedded in the drive control unit
are not present.

Compared to [24], the main novelties and improvements are
as follows.

• The algorithm proposed in this paper is more flexible as
only two operating conditions are required to estimate the
parameters.

• Differently from [24], this paper makes the realistic
assumption that the true parameters vary according to
the actual operating condition. Indeed, in this paper, the
two operating conditions among the collected ones are
optimally selected to minimize the estimation errors by
considering also the parameter variations.

• Measurement errors are neglected in [24]. Instead, in this
work, the influence of the measurement errors on the
estimation accuracy is taken into account to support the
choice of the optimal operating conditions.

• This work addresses the influence of the inverter non-
linearity and actuation delay on the parameter estima-
tion and proposes a novel compensation method which
ensures accuracy also in medium and high frequency
applications as well.

• Experimental data are used to validate the proposed
approach.

The proposed method is validated with simulation and
experimental data considering a high-speed isotropic PMSM
drive affected by large parameter variations. In particular,
according to the assumptions that ad hoc tests and signal
injection cannot be performed, several scenarios with different
number of available operating conditions are analyzed to
assess the performance of the proposed method.

The rest of the article is organized as follows. Section II
reports the adopted PMSM model with digital delays and
VSI nonlinearity. Section III details the designed estimation
procedure while the simulation and experimental results are
presented in Section IV and V, respectively. Finally, Section
VI outlines the conclusions of the presented work.

II. PMSM MODEL WITH ACTUATION DELAY AND
INVERTER NONLINEARITY

The discrete-time steady-state model of a PMSM in the dq-
axis reference frame with a zero d-axis current, is [8]:

udq(k) =

[
ud(k)
uq(k)

]
=

[
−Lqω(k)iq(k)

Riq(k) + ψmω(k)

]
, (1)

in which k represents the k-th sample with a sampling period
equal to Ts, udq is the actual dq-axis voltages vector, iq
denotes the q-axis current, ω is the electrical rotor speed,
and Lq , R, and ψm are the q-axis stator inductance, the
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Fig. 1: Information flow of the proposed estimation scheme.

stator resistance, and the rotor flux linkage, respectively.
As previously mentioned, the voltage measurements are not
available, and the dq-axis voltage reference u∗dq is employed
in place of udq . However, the voltage references are affected
by distortions caused by the digital actuation delay and voltage
source inverter (VSI) nonlinearity. The actuation delay is 1.5Ts
being the sum of the delay due to the digital implementation
of the current control Ts and the delay due to the PWM logic
0.5Ts [25]. During the actuation delay, u∗dq((k−1)Ts) is fixed
in the stationary reference frame while the synchronous frame
rotates. Moreover, the VSI nonlinearity introduces additional
voltage terms to the voltage references [3].

Therefore, the discrete-time steady-state model need to be
corrected to ensure the accuracy of the parameter estimation:

ũd(k) = −Lqω(k)iq(k)−Dd(k)Vdead, (2a)
ũq(k) = Riq(k) + ψmω(k)−Dq(k)Vdead, (2b)

where Dd and Dq are coefficients defined as in [3], Vdead
is the distorted voltage. Moreover, ũdq expresses the voltages
with the actuation delay compensation:

ũdq(k) =

[
cos(∆θ) sin(∆θ)
−sin(∆θ) cos(∆θ)

]
u∗dq(k − 1), (3)

where Ts has been omitted for the sake of brevity and ∆θ
is the rotor electrical angular shift during the actuation delay
that, assuming constant speed, is:

∆θ =
3

2
(θ(k)− θ(k − 1)). (4)

The system of equations (2) includes four parameters to be
estimated, i.e., Lq , R, ψm, and Vdead. However, the rank of
this system is two and subsequently at least two operating
conditions are required to solve the rank-deficiency issue.

III. PROPOSED PARAMETER ESTIMATION

Fig. 1 shows the information flow among the steps of the
proposed parameter estimation procedure. The first step is to
detect the motor steady states. Next, the estimation of the
q-axis inductance and distorted voltage term is carried out.
Then, a DMA selects the best operating conditions to estimate
the stator resistance and the rotor flux linkage. The following
subsections details all the main stages including the rationals
behind the DMA.
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Fig. 2: Detection of the q-axis current steady states.

A. Motor steady states detection

Once the data (speed ω, position θ, dq-axis currents idq ,
dq-axis voltage references u∗dq and motor temperature Θ)
have been collected, the first step of the proposed approach
automatically detects the steady state of iq and ω adopting the
R-statistic method, which computes the following index [26]:

Rz(k) = 2

∑∞
i=k−N z(i)

2 − 1
N (

∑∞
i=k−N z(i))

2∑∞
i=k−N+1(z(i)− z(i− 1))2

, (5)

where Rz is the index for the generic variable z and N is
the length of the moving window. The R-statistic algorithm is
designed such that Rz approaches 1 when the variable z is at
the steady state. That is, the variable z is claimed to be at the
steady state at the k-th step if Rz(k) is lower than a critical
threshold Rcrt (to be chosen slightly greater than one). The
tuning of N and Rcrt can be performed via trial-and-error. The
tuned values can be used for different electric drives as they
do not depend on specific drive parameters [24]. To better
illustrate the working principle of the R-statistic algorithm,
Fig. 2 shows the detection of two different steady states of the
q-axis current of a real motor. The sample time is Ts = 25µs
while Rcrt = 1.4 and N = 250. It can be seen how the R-
statistic algorithm detects the perturbation of the steady state
during an abrupt load change and approaches again the unity
when the transient state has ended.

The R-statistic method is exploited to extract the motor
operating conditions (OCs) according to Algorithm 1. In this
algorithm, klim and ∆Θlim are tuning parameters that allow to
define the OCs time extension and temperature range. Instead,
i and ki are indexes initialized to one. The set of the Ns
extracted OCs is defined as X = {X1, . . . , XNs

}, where Xi,
i = 1, . . . , Ns, contains the steady-state data of the i-th OC,
as follows:

Xi = {ωi(1), . . . , ωi(Ni), iqi(1), . . . , iqi(Ni),
ũdqi(1), . . . , ũdqi(Ni), Ddi(1), . . . , Ddi(Ni),

Dqi(1), . . . , Dqi(Ni),Θi(1), . . . ,Θi(Ni)},
(6)

where Ni is the number of samples in the i-th OC, Θi denotes
the motor temperature, and ũdqi , Ddi , Dqi are computed using
the measured data according to (3), (4), and [3].

B. Lq and Vdead estimation

The inductance in each OC, Lqi , is estimated using an
AdNN, whose general structure and working principle is
detailed in Appendix A. The estimated q-axis inductance L̂wqi ,
i = 1, . . . , Ns is the weight of the AdNN, the compensated
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Algorithm 1 OCs extraction

Input: Θ(k), Riq (k), Rω(k), klim, ∆Θlim.
Output: Xi

If Riq (k) < 1 and Rω(k) < 1
If ki = 1 or (ki < klim and |Θi(1)−Θ(k)| < ∆Θlim)

a. Set ωi(ki) = ω(k), iqi(ki) = iq(k),
ũdqi(ki) = ũdq(k), Ddi(ki) = Dd(k),
Dqi(ki) = Dq(k), Θi(ki) = Θ(k);

b. Set ki = ki + 1.
else

Set Ni = ki−1, i = i+ 1, ki = 1.
else

If Riq (k − 1) < 1 and Rω(k − 1) < 1
Set Ni = ki−1, i = i+ 1, ki = 1

else
Set i = i, ki = 1

d-axis voltage ũdi is the measured output, the estimated d-axis
voltage ûdi is the network’s output, and the bias is set equal
to zero. The inductance estimation is updated as follows:

L̂wqi(k) = L̂wqi(k − 1)− 2ηLωi(k)iqi(k) (ũdi(k)− ûdi(k)) ,

ûdi(k) = −ω(k)iqi(k)L̂wqi(k − 1), (7)

where k = 1, . . . , Ni, and ηL is the learning rate that can be
dynamically adjusted to regulate the convergence speed, see
Appendix A for a detailed analysis. The estimated inductance,
L̂qi , is set to the final network weight, i.e., L̂qi = L̂wqi(Ni). It is
worth underlining that the estimation of Lqi can be performed
without knowing the term Vdeadi even though is based on (2a).
In fact, since the coefficient Ddi has zero-mean when id = 0,
it does not affect the estimation of Lqi if L̂wqi is filtered [3].
The impact of measurements error on the estimated inductance
is analyzed in Appendix B.

For each OC, once L̂qi has been computed, the estimation
of the corresponding Vdeadi is obtained by means of an
optimization problem based on (2a):

min
V̂deadi

Ni∑
k=Ni−Nsi+1

(Ddi(k)V̂deadi + ũdi(k) + L̂qiωi(k)iqi(k)))
2, (8)

where Nsi = 2π
6ωiTs

represents the number of available samples
in a period of the function Ddi(k)V̂deadi [3]. Note that the
estimation of the distorted voltage is particularly challenging
as it is based on the harmonic content of the d-axis equation
(Ddi has zero mean) which can be corrupted by noise and
measurement errors [3]. Furthermore, the accuracy of the
solution of this optimization problem depends on Nsi as the
availability of a high number of samples increases the opti-
mization robustness, especially with respect to measurement
errors and additional phenomena not considered in (2a).

C. R and ψm estimation

As previously mentioned, to overcome the rank-deficiency
issue of (2b), two different OCs among those collected
are used to estimate both R and ψm. The first OC, α ∈

{1, . . . , Ns}, feeds an AdNN, i.e. AdNN1, for the estimation
of ψm, while the second OC, β ∈ {1, . . . , Ns} \ {α}, feeds a
second Adaline NN, i.e. AdNN2, for the estimation of R. Due
to their simplicity, accuracy, and low computational burden,
AdNNs have also been used in [2] and [3] to estimate the
stator resistance and rotor flux linkage. However, note that in
these works the AdNNs have been designed by considering
a modified steady-state model of the PMSM with the signal
injection, which simplifies the solution of the rank-deficient
problem. Instead, in the present work, the rank-deficient prob-
lem has been originally solved with two AdNNs based on the
model of the PMSM without signal injection.

Given the data of the two selected OCs, i.e. Xα and Xβ , the
estimations of ψm and R, i.e., R̂∗, ψ̂∗

m, are obtained according
to Algorithm 2, which outlines the coupling procedure of
the two networks. First, the provisional estimations of both
ψm and R are initialized to zero and both rotor flux linkage
and stator resistance estimations can be performed at the first
iteration. The estimation of ψm (step 2) is provided by AdNN1
based on the followings:

ψ̂wm(k) = ψ̂wm(k − 1)+

+ 2ηψωα(k)
(
ũqα(k) +Dqα(k)V̂deadα − ûqα(k)

)
,

ûqα(k) = R̂∗(j−1)

iqα(k) + ωα(k)ψ̂
w
m(k − 1),

(9)

where ηψ is the learning rate and R̂∗(j−1)

is the estimated
stator resistance at the j-th iteration. According to Appendix
A, ψ̂wm is the weight, ũqα is the measured output, ûqα is the
estimated output, ωα is the input and R̂∗(j−1)

iqα is the bias.
Analogously, the estimation of R (step 3) is provided by

AdNN2:

R̂w(k) = R̂w(k − 1)+

+ 2ηRiqβ (k)(ũqβ (k) +Dqβ (k)V̂deadβ − ûqβ (k)),

ûqβ (k) = R̂w(k)iqβ (k) + ωβ(k)ψ̂
∗(j)

m ,

(10)

where ηR is the learning rate and ψ̂∗(j)

m is the estimated rotor
flux linkage at the j-th iteration. Let’s underline that the
provisional estimations are set equal to the last values provided
by AdNN1 and AdNN2 at the j-th iteration. As mentioned for
ηL, also ηψ and ηR can be dynamically adjusted to ensure the
convergence of AdNN1 and AdNN2. The steps 2 and 3 of
Algorithm 2 are repeated until the following stop criterion is
satisfied: ∣∣∣ ψ̂∗(j)

m − ψ̂∗(j−1)

m

ψ̂∗(j)

m

∣∣∣+ ∣∣∣ R̂∗(j) − R̂∗(j−1)

R̂∗(j)

∣∣∣ < ϵ, (11)

where ϵ is a small threshold.

D. Convergence analysis

In the following subsection, the convergence properties of
the proposed Algorithm 2 is analysed to determine the criteria
of the selection of the OCs used to estimate both resistance and
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Algorithm 2 Operation of the coupled Adaline NNs

Input: Xα, Xβ , Vdeadα , Vdeadβ .
Output: Estimations R̂∗, ψ̂∗

m

1: Provisional estimations initialization
Set R∗(0)

= 0, ψ̂∗(0)

m = 0, and j = 1.
2: Rotor flux linkage estimation

a. Set ψ̂wm(0) = ψ̂∗(j−1)

m ;
b. Compute ψ̂wm(k), with k = 1, . . . , Nα, as in (9);
c. Set ψ̂∗(j)

m = ψ̂wm(Nα).
3: Stator resistance estimation

a. Set R̂w(0) = R̂∗(j−1)

;
b. Compute R̂w(k), with k = 1, . . . , Nβ , as in (10);
c. Set R̂∗(j)

= R̂w(Nβ).
4: Stop Criterion

if (11) is satisfied then return R̂∗ = R̂∗(j)

and ψ̂∗
m = ψ̂∗(j)

m .
Otherwise, set j = j + 1 and go back to step 2.

rotor flux linkage. Indeed, by solving the difference equation
in (9), it results that:

ψwm(k) = c
(
1− 2ηψωα(k)

2
)k

+
ũqα(k) +Dqα(k)V̂deadα − R̂∗(j−1)

iqα(k)

ωα(k)
,

(12)

where c is a real constant. We assume that the AdNN1 is at
the steady state at the sample Nα, thus at the j-th iteration of
Algorithm 2:

ψ̂∗(j)

m = ψ̂wm(Nα) =
¯̃uqα + D̄qα V̂deadα − R̂∗(j−1)

īqα
ω̄α

, (13)

where the generic variable x̄α stands for xα (Nα). By eval-
uating (2b) in k = Nα and assuming Vdeadα ≈ V̂deadα it
follows:

¯̃uqα + D̄qα V̂deadα = Rαīqα + ψmα
ω̄α, (14)

where Rα and ψmα
are the actual values of the stator resis-

tance and rotor flux linkage in the OC α and at the sample
Nα. Then, substituting (14) in (13) provides:

ψ̂∗(j)

m =
Rαīqα + ψmα

ω̄α − R̂∗(j−1)

īqα
ω̄α

. (15)

Analogously, the stator resistance in the OC β estimated at
the (j − 1)-th iteration is:

R̂∗(j−1)

=
Rβ īqβ + ψmβ

ω̄β − ψ̂∗(j−1)

m ω̄β

īqβ
, (16)

where Rβ and ψmβ
are the actual values of the stator resistance

and rotor flux linkage in the OC β and at the sample Nβ . By
substituting (16) in (15), the following first-order difference
equation is obtained:

ψ̂∗(j)

m = ψmα
+

(
Rα −Rβ +

(
ψ̂∗(j−1)

m − ψmβ

) ω̄β
īqα

)
īqβ
ω̄α

, (17)

whose solution is:

ψ̂∗(j)

m = crj + ψ̂
∗(∞)
m , j ≥ 1, (18)

where c is a real constant, r = īqα ω̄β

īqβ ω̄α
, and

ψ̂
∗(∞)
m =

ψmα
− ψmβ

r

1− r
+ (Rα −Rβ)

īqβ
ω̄α

1− r
, (19)

is the steady-state value of (17). By substituting (18) in (16),
the following holds true:

R̂∗(j)

= −c ω̄β
īqβ

rj + R̂∗(∞)

, j ≥ 1, (20)

where

R̂∗(∞)

=
Rβ −Rαr

1− r
+ (ψmβ

− ψmα)

ω̄β

īqβ

1− r
, (21)

is the steady-state value of R̂∗(j)

.
Considering (18) and (20), which express the estimation of

the resistance and rotor flux linkage at the j-th step, it is clear
that to ensure the convergence of the estimations, the OCs
α and β must be selected in order to satisfy the following
condition:

|r| =
∣∣∣ īqα ω̄β
īqβ ω̄α

∣∣∣ < 1. (22)

In other words, for a given OC α, not all OCs β guarantee the
convergence of the coupled AdNNs. Note that the value of r
also affects the estimation convergence speed, i.e. the number
of iterations required to satisfy the stop criterion (11). If the
convergence condition in (22) is satisfied, then the results of
Algorithm 2 are expressed by (19) and (21). In particular, (21)
can be expressed in the two following forms:

R̂∗(∞)

= Rα + εRα
,

R̂∗(∞)

= Rβ + εRβ
,

(23)

where

εRα =
Rβ −Rα
1− r

+
(ψmβ

− ψmα)
ω̄β

īqβ

1− r
,

εRβ
=

(Rβ −Rα)r

1− r
+

(ψmβ
− ψmα

)
ω̄β

īqβ

1− r
.

(24)

In other words, the stator resistance estimation can be ex-
pressed as the actual stator resistance in the OC α or β
plus a systematic estimation error (εRα

, εRβ
), caused by the

mismatch of ψm and R in the two OCs. The same results
holds for the rotor flux linkage estimation:

ψ̂∗(∞)

m = ψmα + εψmα
,

ψ̂∗(∞)

m = ψmβ
+ εψmβ

,
(25)

where

εψα
=

(ψmα − ψmβ
)r

1− r
+

(Rα −Rβ)
īqβ
ω̄α

1− r
,

εψβ
=

(ψmα
− ψmβ

)

1− r
+

(Rα −Rβ)
īqβ
ω̄α

1− r
.

(26)

It is clear that, when considering an ideal PMSM whose
parameters are constant, then ψmα = ψmβ

= ψm and
Rα = Rβ = R and the estimations would be affected only
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by measurement errors, which are detailed in Appendix B.
However, in a real PMSM, the parameters vary with the OC
(e.g. due to the temperature or the frequency effects) and
the errors expressed by (24) and (26) cannot be neglected.
The DMA, described in the following subsection, chooses the
two OCs α and β among the collected ones to estimate both
resistance and rotor flux linkage in order to minimize these
systematic estimation errors.

E. Decision-Making Algorithm

First, for any collected OC α and β, with α ̸= β, the
majorants of the systematic errors in (24) and (26) are ap-
proximately computed as follows:

ε̃Rα
=

∣∣∣ R̃β − R̃α
1− r

∣∣∣+
∣∣∣∣∣∣
(ψ̃mβ

− ψ̃mα)
ω̄β

īqβ

1− r

∣∣∣∣∣∣ ,
ε̃Rβ

=
∣∣∣ (R̃β − R̃α)r

1− r

∣∣∣+
∣∣∣∣∣∣
(ψ̃mβ

− ψ̃mα)
ω̄β

īqβ

1− r

∣∣∣∣∣∣ ,
(27)

ε̃ψα =
∣∣∣ (ψ̃mα

− ψ̃mβ
)r

1− r

∣∣∣+ ∣∣∣∣∣ (R̃α − R̃β)
īqα
ω̄α

1− r

∣∣∣∣∣ ,
ε̃ψβ

=
∣∣∣ ψ̃mα

− ψ̃mβ

1− r

∣∣∣+ ∣∣∣∣∣ (R̃α − R̃β)
īqα
ω̄α

1− r

∣∣∣∣∣ ,
(28)

where R̃ι and ψ̃mι are the initial estimations of Rι and
ψmι

, respectively, with ι = α, β. Such initial estimations are
computed using only the available temperature and speed in-
formation related to the OCs. In particular, both resistance and
rotor flux linkage are supposed to depend from temperature
and frequency according to the following laws [27], [28]:

R̃ι = R̂0

(
1 + α0(Θ̄ι − 20)

)(
1 + β̃0

( ω̄ι
2π

)2
)
, (29)

ψ̃mι
= ψ̂0

(
1 + α̃PM0(Θ̄ι − 20)

)
, (30)

where R̃ι depends on both frequency and temperature while
ψ̃mι

depends only on the temperature. In these relationships,
α0 = 0.393%/◦C is the copper temperature coefficient while
β̃0 and α̃PM0 are the supposed frequency coefficient and
PM temperature coefficient, respectively. Considering that the
PM temperature coefficient α̃PM0 is generally in the interval
[−0.2;−0.02] %/◦C, for the supposed coefficient it is set
α̃PM0 = −0.1%/◦C as a trade-off value. Instead, to set
the value of β̃0, a precautionary hypothesis is that the stator
resistance at rated speed is at most ten times the stator
resistance at zero speed. Therefore, β̃0 can be approximately
calculated as:

β̃0 ≈ 9

(ωr

2π )
2
. (31)

with ωr denoting the electrical rated speed. The values of
R̂0 and ψ̂0, i.e. the stator resistance and rotor flux linkage
estimations at zero speed and 20◦C, required to compute (29)

and (30), are obtained by leveraging Algorithm 2. In particular,
for R̂0, the OC β closest to zero speed and 20◦C is selected:

β = argmin
i=1,...,Ns

∣∣∣∣1−(
1 + α0(Θ̄i − 20)

)(
1+β0

( ω̄ι
2π

)2
)∣∣∣∣ , (32)

then, the OC α is chosen such that r is minimized:

α = argmin
i=1,...,Ns

i̸=β

∣∣∣∣ īqi ω̄βīqβ ω̄i

∣∣∣∣ . (33)

Once α and β are defined, Algorithm 2 estimates R̂∗, thus R̂0

is computed as:

R̂0 =
R̂∗(

1 + α0(Θ̄β − 20)
) (

1 + β0
(
ω̄ι

2π

)2) . (34)

In a similar way, for ψ̂0, the OC α closest to 20◦C is chosen:

α = argmin
i=1,...,Ns

∣∣Θ̄i − 20
∣∣ , (35)

then, the OC β is selected always minimizing the index r:

β = argmin
i=1,...,Ns

i̸=α

∣∣∣∣ īqα ω̄iīqi ω̄α

∣∣∣∣ . (36)

Using the selected OCs α and β, Algorithm 2 finds ψ̂∗
m,

therefore ψ̂0 is computed as:

ψ̂0 =
ψ̂∗
m

1 + αPM0(Θ̄α − 20)
. (37)

It has to be underlined that the just described procedure does
not require any information about the PMSM to identify but
requires to make hypothesis on the values of the coefficients,
β̃0 and α̃PM0. Once R̂0 and ψ̂0 are computed, for each OC
i (hereafter called main operating condition MOC), the DMA
finds an auxiliary operating condition (AOC) which minimizes
the estimation error of the stator resistance in MOC, i.e., R̂i.
As detailed in Algorithm 3, candidates AOCs coupled with
the considered MOC are those which ensure convergence,
i.e., r < εr, with εr < 1 as a threshold. In particular, εr
should be selected as a trade-off between the estimability and
the accuracy of the estimation. In fact, a small value of εr
could make impossible to find an AOC while a value of r
near to one would amplify the estimation error caused by
the measurement, as shown in Appendix B. Adopting this
approach, the estimation error is not limited, therefore it is
further capped rejecting estimations whose majorants (27) are
bigger than 25% of the initial stator resistance estimation
(29). The same procedure applies to the rotor flux linkage
estimation by substituting ε̃Rα , ε̃Rβ

, R̃α, R̃β with ε̃ψα , ε̃ψβ
,

ψ̃mα , ψ̃mβ
, and (27) with (28) in Algorithm 3. Once the AOC

is found, Algorithm 2 computes the actual estimations. The
complete procedure for the stator resistance and rotor flux
linkage estimation in each OC is in Algorithm 4.
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Algorithm 3 DMA for resistance estimations

Input: OC i, R̂0, ψ̂0, εr.
Output: OCs α, β.

1: Sets definition
Determine

X
′

β = {j ∈ {1, . . . , Ns} s.t.

r < εr and ε̃Rα <
R̃α
4

with α = i, β = j}

X
′

α = {j ∈ {1, . . . , Ns} s.t.

r < εr and ε̃Rβ
<
R̃β
4

with α = j, β = i}

where ε̃Rα , ε̃Rβ
are as in (27) and R̃α, R̃β are computed

using R̂0, ψ̂0.
2: if X ′

β ̸= ∅ then
Find j1 ∈ X ′

β corresponding to the minimum value of
ε̃Rα

, then set ε1 = ε̃Rα
, with α = i, β = j1.

else
Set ε1 = ∞

3: if X ′

α ̸= ∅ then
Find j2 ∈ X ′

α corresponding to the minimum value of
ε̃Rβ

, then set ε2 = ε̃Rβ
, with α = j2, β = i.

else
Set ε2 = ∞

4: if ε1 <∞ or ε2 <∞ then
if ε1 > ε2 then

Set α = j2, β = i
else

Set α = i, β = j1
return α, β.

else
Estimation rejected.

Algorithm 4 Resistance and rotor flux linkage estimation

Input: OC i.
Output: Estimated parameters in the OC i (R̂i, ψ̂mi

).
1: Resistance estimation

a. Run DMA for resistance estimation and obtain α, β.
b. Run Algorithm 2 and set R̂i = R̂∗.

2: Rotor flux linkage estimation
a. Run DMA for rotor flux linkage estimation and obtain
α, β.

b. Run Algorithm 2 and set ψ̂mi
= ψ̂∗

m.

IV. SIMULATION RESULTS

The proposed estimation method has been tested using
both experimental and simulation data considering a PMSM
drive whose main parameters are reported in Table I. The
values of the parameters reported in this table are obtained
using experimental procedures and measurement devices. In
particular, the inductances and rotor flux linkage are obtained
by means of the experimental procedure described in [20]. The
inductances can be considered constants as the machine does
not operate in saturated condition. Instead, the stator resistance

TABLE I: PMSM drive parameters

Parameter Value Unit
Rated power 4.2 kW
Rated speed 80 krpm

Rated Current 7 A
DC link voltage 540 V

Number of pole pairs 2
R0 0.6975 Ω
ψm0 26.82 mWb
Ld 1.251 mH
Lq 1.251 mH
α0 0.393 %/◦C

αPM0 −0.035 %/◦C
Drain-source on-state voltage Vds(on) 0.1 V

Freewheeling diode forward voltage Vd 2 V
Ts 25 µs

Active switches turn on time Ton 65 ns
Active switches turn off time Toff 300 ns

has been measured using an ohmmeter.
The simulations have been performed in Matlab/Simulink

environment replicating as much as possible the conditions of
the experimental tests, which are detailed in the next section.
Indeed, the resistance used in the PMSM model changes with
the operating condition according to the following law:

R = RAC |20(ω)[1 + α0(Θ− 20)], (38)

where RAC |20(ω) is a 1-D look-up containing the AC stator
resistance measurements at 20 ◦C, while the rotor flux linkage
changes as:

ψm = ψm0 (1 + αPM0(Θ− 20)) , (39)

with the values of ψ0 and αPM0 listed in Table I. Note that the
value of β0 that fits the experimental measurements RAC |20
is approximately equal to 3.52 · 10−7/Hz2 while, according to
(31), it is set β̃0 = 1.0 · 10−6/Hz2. The inverter distorted volt-
age is kept constant during the simulations (Vdead = 0.35V).

To validate the proposed method, a set of twenty OCs
is considered, each one with 5000 samples and constant
temperature, which are shown in Table II. It has to be noted
that the high temperature and frequency variations among
the collected OCs make particularly difficult the problem of
accurately estimating the PMSM parameters.

Fig. 3 illustrates the dynamics of the AdNNs during the
estimations of q-axis inductance, stator resistance, and rotor
flux linkage in the OC 6. The x-axes of the figures report the
number of samples processed by the AdNNs. For instance,
in Fig. 3(d), 100 samples are shown which correspond to
a time window of 2.5ms, according to the sampling time
in Table I. Such a time window does not coincide with
the computational time as the proposed algorithm has been
implemented in an offline fashion. In Fig. 3 (a) and (c), two
cases are shown with AOC set equal to OC 2 (r = 0.2)
and OC 5 (r = 0.5), respectively. Note how the convergence
speed is influenced by the value of r and how the AOCs
impact the estimation accuracy. Instead, Fig. 3 (b) shows the
non convergence of the estimation when selecting a couple of
OCs which do not satisfy the condition (22). Finally, Fig. 3(d)
shows the inductance estimation dynamics with two different
learning rate values corresponding to λ = 0.95 and λ = 0.5.
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TABLE II: Collected OCs

OC īq
[A]

Ω̄
[krpm]

Θ̄
[◦C] OC īq

[A]
Ω̄

[krpm]
Θ̄
[◦C]

1 3.5 6 33 11 10.5 18 75
2 7 6 46 12 14 18 115
3 10.5 6 70 13 3.5 24 39
4 14 6 112 14 7 24 51
5 3.5 12 36 15 10.5 24 74
6 7 12 49 16 14 24 113
7 10.5 12 73 17 3.5 30 43
8 14 12 114 18 7 30 55
9 3.5 18 39 19 10.5 30 78

10 7 18 52 20 14 30 119
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Fig. 3: Estimation dynamics related to OC 6: (a) stator
resistance (r < 1), (b) stator resistance (r > 1), (c) rotor
flux linkage r < 1, and (d) q-axis inductance.

It is evident that few samples are required to obtain the
convergence when small values of λ are chosen.

A. Effect of the inverter nonlinearity compensation
Fig. 4 shows the comparison between the voltage ref-

erences, the compensated voltages (ũdq), the compensated
voltages with the compensation of the VSI nonlinearity (ũdq+
DdqṼdead), and the actual voltages applied to the PMSM in
three different OCs. As expected, these figures show that the
errors between the actual voltages and the voltage references
increase with the speed. In particular, the results reveal that
the main cause of the voltage distortion is the actuation delay,
which affects the dq-axis voltages. In fact, the error between
u∗d and ũd can exceed 35 V while the error between u∗q and
ũq can overcome 8 V. It can also be inferred that the voltage
distortion caused by the VSI nonlinearity affects only the q-
axis voltage. All these errors can be substantially reduced
thanks to the proposed actuation delay and VSI nonlinearity
compensation.

B. Inductance and distorted voltage term estimations
In Table III, the results of the estimation of the q-axis

inductance and distorted voltage in all the collected OCs
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Fig. 4: d-axis voltages in OC 4 (a), 11 (c), 18 (e) and q-axis
voltages in OC 4 (b), 11 (d), 18 (f).

are reported. Thanks to the actuation delay compensation, a
high accuracy of the estimation of the q-axis inductance is
achieved with an average absolute error of 0.64%. The same
table also lists the actual estimation error achieved without
compensating (last column) the actuation delay. It is clear that
the compensation of the latter is fundamental in obtaining an
accurate estimation.

Regarding the distorted voltage estimation, satisfactory re-
sults have been obtained although the estimation accuracy gets
worse with the increase of the motor speed (lowest speeds OCs
1-4, highest speeds OCs 17-20). In fact, since the sample time
is fixed, the speed increase causes the reduction of samples in a
period of Ddi(k)V̂deadi which in turn affects the effectiveness
of the optimization (8).

C. Resistance and rotor flux linkage estimations

Fig. 5 reports the results of the estimation of ψm and
R using Algorithm 4 and considering several scenarios with
different number of available OCs. For each scenario s, Ns
different tests are performed by randomly choosing ks OCs
among X , with ks = 1, 2, ..., 6. Note that, as the whole dataset
contains 20 OCs, the number of combinations of OCs without
repetition when ks OCs are available is given by:

Ncombs =
20!

ks!(20− ks)!
. (40)
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TABLE III: Inductance and distorted voltage term estimations

OC Lq

[mH]
L̂q

[mH]
Actual error

[%]
Vdead

[V]
V̂dead

[V]

Actual
error n.c.

[%]
1 1.251 1.251 <0.01 -0.350 -0.319 25.78
2 1.251 1.251 0.03 -0.350 -0.317 11.53
3 1.251 1.254 0.20 -0.350 -0.413 6.47
4 1.251 1.255 0.28 -0.350 -0.462 3.62
5 1.251 1.264 1.00 -0.350 -0.360 53.95
6 1.251 1.254 0.28 -0.350 -0.357 25.75
7 1.251 1.252 0.07 -0.350 -0.325 16.20
8 1.251 1.251 0.03 -0.350 -0.449 11.01
9 1.251 1.272 1.65 -0.350 -0.318 82.97
10 1.251 1.258 0.59 -0.350 -0.343 40.11
11 1.251 1.253 0.19 -0.350 -0.348 25.83
12 1.251 1.252 0.05 -0.350 -0.372 18.24
13 1.251 1.278 2.18 -0.350 -0.234 112.36
14 1.251 1.262 0.91 -0.350 -0.304 54.59
15 1.251 1.256 0.38 -0.350 -0.163 35.58
16 1.251 1.254 0.22 -0.350 -0.310 25.50
17 1.251 1.285 2.76 -0.350 -0.162 141.73
18 1.251 1.265 1.13 -0.350 -0.171 69.19
19 1.251 1.258 0.53 -0.350 -0.240 45.23
20 1.251 1.254 0.24 -0.350 -0.218 32.78

In this study, it is set Ns = Ncombs . In particular, to assess
how the estimation accuracy is affected by the supposed
coefficients, β̃0 and α̃PM0, two different cases are analyzed:
in the first one the coefficients are defined according to
the criteria in Section III-C, i.e., β̃0 = 1.0 · 10−6/Hz2 and
α̃PM0 = −0.1%/◦C; in the second case the parameters are
β̃0 = 1.5 · 10−6/Hz2 and α̃PM0 = −0.05%/◦C.

In this study, two performance parameters are considered:
the mean absolute percentage error (MAPE) and the number
of accepted estimations, both averaged over the Ns trials. Fig.
5(a) reports the MAPE for the estimations of ψm and R.
Note that, although case study is affected by high parameter
variations, the estimation accuracy of ψm is very high in both
cases. Also, the estimation accuracy of R is high even if it
is significantly lower compared to the estimated ψm. This is
mainly due to the fact that the stator resistance is more affected
by the OCs variations (both temperature and frequency). Fig.
5(b) shows that most of the estimations of ψm have been
accepted OCs while several estimations of R are rejected. In
other words, not for every OC has been possible to match an
auxiliary OC satisfying all the requirements in Algorithm 3.
It is worth highlighting that, when only 2 OCs are available,
an average of 0.67 and 0.32 estimations of ψm and R are
accepted in the first case, while an average of 0.70 and 0.22 are
accepted in the second case. This means that when only 2 OCs
are available, the estimation of R is rejected more than 50% of
the cases. Overall, the figure shows that the obtained results
are not significantly affected by the values of the supposed
coefficients.

Table IV reports the computational times required to per-
form 1000 estimations of ψm and R with ks = 1, 2, ..., 6 using
a MATLAB implementation of the proposed algorithm on pc
equipped with an Intel Xeon CPU E5-1620 v2 @3.50GHz
processor and a 16Gb RAM. The reported computational times
include the time required to perform the initial estimations
according to (32), (33), (35), and (36), the time required
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Fig. 5: Estimation of ψm and R in different scenarios: (a)
MAPE of the estimation results, (b) average number of ac-
cepted estimations compared with the number of available
OCs.

to select the AOCs according to Algorithm 3, and the time
required by the coupled AdNNs to satisfy the stop condition
(11). Note that, the time required for the estimation of R
is slightly lower due to a higher rate of rejection of the
estimations.

TABLE IV: Computational times

ks ψm R
2 85 s 85 s
3 100 s 93 s
4 100 s 97 s
5 110 s 97 s
6 120 s 103 s

Instead, Table V and Table VI summarize the results
obtained considering the full set of the OCs. The initial
estimations needed to compute the majorants of the systematic
errors obtained with procedure outlined in Section III-E are
R̃0 = 0.56Ω and ψ̂0 = 28.08 mWb. The tables list both the
systematic errors and the error majorants computed using (24),
(26) and (27), (28), respectively.

As first consideration, it is worth noticing that, for both
resistance and rotor flux linkage, the systematic errors are very
similar to the actual errors, except for small variations mainly
due to measurement errors. This in an important achievement
that proves the validity of the convergence and error analysis.
The stator resistance has been estimated only for ten OCs
while the rotor flux linkage estimations have been performed
in all the available OCs. In addition, the estimation errors of
the stator resistance are greater than the estimation errors of

TABLE V: Stator resistance estimation

MOC AOC R
[Ω]

R̂
[Ω]

Actual
error
[%]

Systematic
error
[%]

Error
majorant

[%]

Actual
error n.c.

[%]
1 13 0.7416 0.6428 -13.32 -12.28 21.43 -1.48
2 17 0.7771 0.7551 -2.84 -3.10 6.75 -4.91
3 15 0.8448 0.7681 -9.08 -9.39 11.89 18.00
4 16 0.9630 0.8888 -7.70 -8.48 9.65 18.01
5 2 0.7871 0.8022 1.92 1.18 16.06 -0.74
6 17 0.8254 0.7899 -4.30 -3.68 16.47 -26.56
9 2 0.8584 0.7807 -9.05 -9.63 21.36 -9.72
10 3 0.8996 0.8579 -4.63 -4.87 22.54 2.00
11 4 0.9748 1.008 3.42 2.61 21.17 13.27
13 4 0.9447 1.035 9.56 8.99 23.97 5.03
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the rotor flux linkage. In fact, the mean absolute errors are
6.6% and 1.5%, respectively.

The rightmost column of Table V and Table VI report the
estimation errors of both resistance and rotor flux linkage when
the actuation delay is not compensated. Comparing these errors
(with and without compensation) it can be inferred that the
actuation delay compensation leads, on average, to a better
estimation of both parameters.

V. EXPERIMENTAL RESULTS

In this section, the proposed estimation procedure has been
applied using the experimental data of a high speed PMSM
whose main specifications are reported in Table I. A view of
the main components of the instrumented test rig where the
PMSM has been tested is reported in Fig. 6. The PMSM is
loaded by another motor through a gearbox (ratio 1:5.975)
and a torque meter. A custom designed SiC three-phase full-
bridge converter has been adopted for the machine supply [29],
while the control logic has been implemented on a Xilinx
Zynq7020 SoC [30]. The measurements/data collected during
the efficiency characterization of this machine (all listed in
Table II) have been used to validate the proposed estimation
method. In this case, each OC contains 10000 samples. Let’s
underline that the employed data have been obtained via
experimental tests not aimed at the parameter estimation. Fig.
7 shows the main variables acquired during an operating
condition at 30 krpm and rated current.

A. Inductance and distorted voltage term estimations

Fig. 8 shows the dynamic of the estimated q-axis inductance
in OC 5 with λ = 0.95. The estimation rapidly converges
to the measured value with a dynamic very similar to the
simulation case. Table VII shows the results of the q-axis
stator inductance and distorted voltage estimation. As in the
simulation study, a good accuracy of the estimations of the q-
axis inductance is achieved, with an average error of 0.93%.

TABLE VI: Rotor flux linkage estimation

MOC AOC ψm

[mWb]
ψ̂m

[mWb]

Actual
error
[%]

Systematic
error
[%]

Error
majorant

[%]

Actual
error n.c.

[%]
1 13 26.74 26.35 -1.45 -0.94 1.38 0.14
2 17 26.62 26.35 -1.03 -0.50 0.92 0.10
3 15 26.40 25.62 -2.96 -2.51 2.72 6.55
4 16 26.00 24.90 -3.90 -3.50 3.50 9.83
5 2 26.72 26.61 -0.40 2.08 0.57 0.63
6 17 26.59 26.37 -0.86 -0.32 1.24 -0.06
7 18 26.37 26.14 -0.89 -0.34 3.40 4.53
8 19 25.98 25.90 -0.30 0.23 6.79 10.30
9 2 26.90 26.49 -0.75 0.93 0.55 0.60

10 3 26.57 26.37 -0.77 1.17 1.24 3.37
11 4 26.35 26.32 -0.11 0.27 1.94 7.03
12 4 25.97 25.08 -3.44 -3.08 3.73 7.98
13 4 26.69 26.62 -0.26 0.22 0.49 1.00
14 4 26.57 26.48 -0.35 0.16 1.12 4.37
15 4 26.36 26.07 -1.12 -0.70 1.98 7.67
16 4 25.99 24.99 -3.86 -3.45 3.38 9.87
17 4 26.66 26.49 -0.61 -0.09 0.52 0.46
18 4 26.54 26.28 -0.97 -0.46 1.17 4.35
19 4 26.33 25.79 -2.02 -1.55 2.03 8.14
20 4 25.94 24.72 -4.72 -4.31 3.71 11.13

Fig. 6: Experimental setup layout.
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Fig. 7: Experimental data related to OC 18 used for the
parameter estimation: dq currents, dq reference voltage, rotor
position and speed.

For some OCs, the estimation errors may be slightly higher
due to measurement errors or additional phenomena neglected
in the PMSM model. Note that, even if the case study is
not affected by inductance variations, the proposed algorithm
can effectively track the inductance of motors affected by
saturation effects since only an OCs is needed to estimate
Lq . It can also be noted that the estimated distorted voltage
generally increases in the OCs with high values of the q-
axis current. This is justified by the increment of the voltage
drops on the active switch and freewheeling diode with the
temperature, which in turn depends on the amplitude of the
currents.

B. Resistance and rotor flux linkage estimations

This subsection reports the experimental results on the
estimation of R and ψm. To further assess the merits of
the proposed method, a comparative analysis with other ap-
proaches from the literature is also presented. Since the pro-
posed method has been designed to operate in scenarios where
signal injections, dedicated tests and additional measurement
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Fig. 8: Inductance estimation dynamic in OC 5.

TABLE VII: Stator inductance and distorted voltage term
experimental estimations

OC Lq

[mH]
L̂q

[mH]
Actual error

[%]
V̂dead

[V]
1 1.251 1.253 0.18 -0.119
2 1.251 1.235 -1.27 -0.409
3 1.251 1.268 1.34 -0.575
4 1.251 1.234 -1.35 -0.644
5 1.251 1.262 0.91 -0.054
6 1.251 1.224 -2.18 -0.263
7 1.251 1.234 -1.37 -0.640
8 1.251 1.257 0.45 -0.351
9 1.251 1.262 0.87 -0.304

10 1.251 1.232 -1.56 -0.461
11 1.251 1.264 1.02 -0.308
12 1.251 1.254 0.27 -0.283
13 1.251 1.236 -1.18 -0.194
14 1.251 1.239 -0.95 -0.196
15 1.251 1.250 -0.04 -0.451
16 1.251 1.256 0.42 -0.853
17 1.251 1.235 -1.3 -0.324
18 1.251 1.254 0.24 -0.234
19 1.251 1.242 -0.76 -0.583
20 1.251 1.239 -0.94 -1.006

devices are not allowed, two alternative solutions suitable in
these scenarios are considered. The first one is based on a
largely adopted strategy where a parameter is set to its nominal
value or offline measure and the other one is estimated using
just a single OC [5], [9], [12], [15]. This method will hereafter
be referred to as the fixed parameter (FP) method. When R
is fixed to its DC nominal value or offline measure R0, the
estimation of ψm in a generic OC α can be obtained by using
ADNN1 while substituting R0(1 + α(Θ̄i − 20) in place of
R̂∗(j−1)

in (9). It should be noted that the changing DC stator
resistance value with temperature is considered in this manner.
In the same way, when ψm is fixed to its nominal value ψm0,
R is identified by means of AdNN2 while substituting ψ̂∗(j)

m

with ψm0 in (10). Since the data from a single OC are needed
to estimate the parameters, it is obvious that the accuracy of
this method does not depend on the number of available OCs.

The other approach adopts a more detailed PMSM model
which takes into account the dependency of the parameters
on the OCs, as in [21] and [23]. In these works, the PMSM
inductances are expressed by polynomial functions of the
dq-axis currents by means of additional coefficients to be
estimated. In particular, the least squares (LS) method is used
to estimate the parameters exploiting simultaneously mea-
surements collected during multiple steady-state operations.
According to this approach, in the present study (29) and (30)
are included into (2) to express the dependency of R and ψm

on the OCs. Thus, the following model is obtained considering
the measurements at the end of each OC:

ū′qα = īqαRα(Θ̄α, ω̄α) + ω̄αψm0 + ω̄α(Θ̄α − 20)α′
PM0, (41)

with ū′qα = ¯̃uqα + D̄qα V̂deadα , α′
PM0 = ψm0αPM0, and

Rα(Θ̄α, ω̄α) = RDC0

(
1 + α0(Θ̄α − 20)

)(
1 + β0

( ω̄α
2π

)2
)
.

This model can be rewritten in the following form:

ū′qα = ī′qαRDC0
+ ī′qα ω̄

′2
α β

′
0 + ω̄αψm0 + ω̄α(Θ̄α − 20)α′

PM0,
(42)

where ī′qα = (1 + α0(Θ̄α − 20))̄iqα , ω̄
′

α = ω̄α/2π and
β′
0 = RDC0

β0. This model has 4 unknown parameters to
be estimated (RDC0

, β′
0, ψm0, α′

PM0) and is linear on these
parameters. Therefore the classic linear LS method can be
adopted for the parameter identification as in [21] and [23].
Finally, the estimations of R and ψm can be obtained using
(29) and (30) by substituting the results provided by the LS.

Fig. 9 shows the estimation dynamics of R and ψm related
to OC 5 with OC 2 as AOC (r = 0.25). The estimations are
compared with the measured rotor flux linkage and AC stator
resistance. Note that the estimation accuracy is high in both
cases.

Instead, Fig. 10 shows the results obtained with the pro-
posed method considering two scenarios with 2 and 5 available
OCs, respectively. In both cases, the available OCs are ran-
domly chosen among the full dataset in Table II and a number
of trials determined by using (40) is evaluated. Considering
that only experimental evaluations of ψm and R at room
temperature are available, to correctly assess the achieved
estimations, this figure shows the results achieved considering
only a portion of MOCs, i.e. the OCs at temperature lower than
50 ◦C (see Table II). In particular, a temperature correction of
the measured AC resistance according to (38) is performed.
Note that this temperature correction can be considered reli-
able only at low speed and temperature [31]. Therefore, for
the estimation of the stator resistance, only OCs 1, 2, 5, 6 and
9 are analyzed.

The figure shows the average values of the estimations
obtained in the two scenarios compared with the ones obtained
with the FP method. The estimations of ψm obtained with the
proposed method are very similar in the two cases and higly
accurate. Instead, in most of the OCs, the accuracy of the FP
method is lower since this approach does not account for the
variation of the stator resistance with motor speed. The average
estimations of R provided by the proposed method are also
accurate and can strictly follow the resistance variations with
motor speed. In this case, the estimations in the OC 1 are
rejected and are not shown in the figure. Furthermore, it has
to be highlighted that, in this case, the estimation accuracy
slightly improves in the scenario with 5 OCs. This proves that
the DMA is able to improve the estimation accuracy when
more OCs are available by selecting AOCs that minimize the
error majorants. Even in this case the accuracy of the FP
method is lower since this approach does not consider the
variation of the rotor flux linkage with the temperature.
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Fig. 11 reports the average performances obtained with the
proposed and the LS method on the reduced subset considered
in the previous figure and in scenarios with different number
of available OCs, as in Fig. 5. Note that the LS method fails
when less than 5 OCs are available while the proposed method
ensures good performances. The analysis shows that the LS
method can overcome the proposed method only in scenarios
with a large number of available OCs. This comparison
demonstrates that the proposed method is more suitable in
contexts where dedicated tests cannot be performed to collect
data from different OCs of the motor.

Finally, Table VIII summarizes the results of the stator
resistance and rotor flux linkage estimation considering the
full set of the OCs. In this case, the obtained initial estimations
needed for the calculation of the majorants of the systematic
errors are R̂0 = 0.40Ω and ψ̂0 = 28.38mWb. As it can
be seen, the stator resistance estimations have been rejected
in 14 OCs while the rotor flux linkage estimation has been
performed in all the available OCs. This difference between
the output of the DMA in the simulation and experimental
case is due to the different values of the initial estimations
(R̂0, ψ̂0), which affects the error majorants. Albeit the different
initial estimations between the simulation and the experimental
verification, for a given MOC the same AOC has been chosen
by the DMA for the stator resistance estimations. Regarding
the rotor flux linkage estimation, low values of the error
majorants have been achieved. Moreover, the values of the
estimations are similar to the measured value at 20◦C provided
in Table I thus confirming the effectiveness of the proposed
method.
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Fig. 9: Stator resistance and rotor flux linkage estimations
dynamic related to OC 5.

VI. CONCLUSION

This work showed that it is possible to estimate the param-
eters of an isotropic permanent magnet synchronous machine
exploiting regular measurements collected from in-service
standard drives. Indeed, no additional sensor, signal injection,
information on nominal values or dedicated test are required
to carry out the estimations. The only requirement is the avail-
ability of measurements of multiple operating conditions. The
lack of voltage measurements is treated by considering both
inverter non-linearity and actuation delays. This feature allows
the application of the proposed approach also at medium and
high speed operation. An Adaline Neural Network (AdNN)
estimates the q-axis inductance while the distorted voltage
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Fig. 10: Estimations of ψm and R with 2 and 5 OCs compared
with the FP method. The black circles denote measured values.
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Fig. 11: Estimations of ψm and R in different scenarios with
the proposed and the LS method.

TABLE VIII: Stator resistance and rotor flux linkage experi-
mental estimations

MOC AOC ψ̂m

[mWb]

Error
majorant

[%]
AOC R̂

[Ω]

Error
majorant

[%]
1 13 26.57 1.21 n.a. n.a. n.a.
2 17 26.13 0.78 17 0.7678 8.12
3 15 25.59 2.09 15 0.7281 12.93
4 16 25.24 2.54 16 0.9430 9.89
5 2 26.44 0.51 2 0.8231 20.04
6 17 26.17 1.14 17 0.8270 21.26
7 18 26.01 3.19 n.a. n.a. n.a.
8 19 26.20 6.52 n.a. n.a. n.a.
9 2 26.44 0.44 2 0.8227 23.76

10 3 26.48 1.04 n.a. n.a. n.a.
11 4 26.30 1.76 n.a. n.a. n.a.
12 4 25.18 2.71 n.a. n.a. n.a.
13 2 26.71 0.43 n.a. n.a. n.a.
14 3 26.06 1.00 n.a. n.a. n.a.
15 4 26.23 1.68 n.a. n.a. n.a.
16 4 25.24 2.41 n.a. n.a. n.a.
17 2 26.13 0.41 n.a. n.a. n.a.
18 3 25.98 0.97 n.a. n.a. n.a.
19 4 26.05 1.64 n.a. n.a. n.a.
20 4 24.72 2.69 n.a. n.a. n.a.

term of the inverter is estimated via optimization. Then, the
stator resistance and the rotor flux linkage are identified using
two coupled AdNNs. The rank-deficiency issue is solved
by using two different operating conditions. The criteria of

This article has been accepted for publication in IEEE Transactions on Energy Conversion. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TEC.2023.3295844

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13

selecting the two operating conditions minimizing the esti-
mation errors have been rigorously proved. Both simulation
and experimental validations showed a high accuracy of the
rotor flux linkage and q-axis inductance estimations with mean
absolute errors lower than 2%. Satisfactory results have been
also achieved in the identification of the stator resistance,
which is the most difficult parameter to estimate due to its high
dependency on the motor temperature and frequency. Finally,
the comparison with alternative methods from the literature
demonstrates the superiority of the proposed one in contexts
where additional sensors, ad hoc tests and signal injections are
impracticable.
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APPENDIX A
ADNN FOR PARAMETER ESTIMATION

Fig. 12 shows a basic AdNN with one neuron, where I is
the input, Ô and O are the estimated and measured output,
W is the weight, and B is the bias. The estimated output is
computed as follows:

Ô(k) = I(k)W (k − 1) +B(k). (A.1)

At each step, the weight is updated to minimize the output
error according to the following update law:

W (k) =W (k − 1)− ηI(k)(O(k)− Ô(k)), (A.2)

where η is the learning rate. By substituting (A.1) in (A.2),
the following first-order difference equation is obtained:

W (k)=W (k−1)(1 + ηI2(k))−ηI(k)(O(k)−B(k)), (A.3)

whose solution is:

W (k) = c(−1− ηI2(k))k +
O(k)−B(k)

I(k)
, (A.4)

where c is real constant. The solution is asymptotically stable
if η is chosen according to:

| − 1− ηI2(k)| = λ, λ < 1, (A.5)

where λ is the chosen eigenvalue. Note that the solution
convergence speed increases as λ approaches zero.

APPENDIX B
INFLUENCE OF THE MEASUREMENT ERRORS

This appendix reports the analysis of the influence of
measurement errors on the parameter estimation accuracy
considering compensated voltage errors (εud, εuq), q-axis
current error (εiq), rotor speed error (εω), and rotor position
offset error (εθ).

Fig. 12: AdNN.

The model of the PMSM accounting for εud, εuq , εiq , and
εω can be expressed as follows:

ũd = −Lq(ω + εω)(iq + εiq)−DdVdead + εud, (B.1a)
ũq = R(iq + εiq) + ψm(ω + εω)−DqVdead + εuq. (B.1b)

Let us consider (7). It can be shown that, if the learning
rate is correctly chosen, the steady state value of L̂wqi has the
following expression:

L̂wqi(∞) = −
¯̃ui
ω̄iīqi

, (B.2)

where the generic variable x̄i stands for xi (Ni). By sub-
stituting (B.1a) in (B.2), the steady-state estimation can be
expressed as follows:

L̂wqi(∞)=Lqi +
Lqiεiqεω
ω̄iīqi

+
Lqiεiq
īqi

+
Lqiεω
ω̄

− εud
ω̄īqi

, (B.3)

in which the term related to DdVdead has been neglected. Note
that the estimation errors caused by measurement errors are
reduced with the increase of both speed and current.

By substituting (B.1b) in (13) and by repeating the same
procedure for the stator resistance, the followings are obtained:

ψ̂∗(j)

m =
Rα(̄iqα + εiqα ) + ψmα

(ω̄α + εωα
)

ω̄α

+
εuqα

− R̂∗(j−1)

īqα
ω̄α

,

(B.4)

R̂∗(j−1)

=
Rβ (̄iqβ + εiqβ ) + ψmβ

(ω̄β + εωβ
)

īqβ

+
εuqβ

− ψ̂∗(j−1)

ω̄β

īqβ
.

(B.5)

By substituting (B.5) in (B.4), the following expression of the
estimated rotor flux linkage is achieved:

ψ̂∗(∞)

m = ψmα
+ εψmα

+ εψM
. (B.6)

εψM
is the estimation error related to the measurement errors:

εψM
=
ψmα

εωα
− ψmβ

εωβ
īqα /̄iqβ

ω̄α(1− r)
+

+
(Rαεiqα −Rβεiqβ īqα /̄iqβ ) + (εuqα

− εuqβ
īqα /̄iqβ )

ω̄α(1− r)
.

(B.7)
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By repeating the same procedure for the stator resistance, the
following expression is achieved:

R̂∗(∞)

= Rα + εRα + εRM
. (B.8)

εRM
is the estimation error related to the measurement errors:

εRM
=
ψmβ

εωβ
− ψmα

εωα
ω̄β/ω̄α

īqβ (1− r)
+

+
(Rβεiqβ −Rαεiqα ω̄β/ω̄α) + (εuqβ

− εuqα
ω̄β/ω̄α)

īqβ (1− r)
.

(B.9)

Analysing (B.7) and (B.9), it can be inferred that the value of r
has a great influence on the amplification of the estimation er-
rors related to the measurement. Therefore, it is recommended
to avoid estimations with 0.5 < r < 1.

The PMSM model accounting for εθ is the following [17]:

ũd = −Lqωiq − ψmωsin(εθ)−DdVdead, (B.10a)
ũq = Riq + ψmωcos(εθ)−DqVdead. (B.10b)

By substituting (B.10a) in (B.2) and by neglecting the term
DdVdead, the steady-state q-axis inductance estimation can be
expressed as follows:

L̂wqi(∞) = Lqi + εLθ
= Lqi +

ψmisin(εθ)
īqi

. (B.11)

As it can be seen, the estimation error εLθ
increases as

εθ increases, while decreases as the iq and the temperature
increase. In fact, ψm decreases with the increase of the
temperature.

By substituting (B.10b) in (13) and by repeating the same
procedure for the stator resistance, the followings are obtained:

ψ̂∗(j)

m =
Rαīqα + ψmα

ω̄αcos(εθ)− R̂∗(j−1)

īqα
ω̄α

, (B.12)

R̂∗(j−1)

=
Rβ īqβ + ψmβ

ω̄βcos(εθ)− ψ̂∗(j−1)

m ω̄β

īqβ
. (B.13)

By substituting (B.13) in (B.12), if r < 1, the following
steady-state expression of the estimated rotor flux linkage is
achieved:

ψ̂∗(∞)

m = ψmα + ε
′

ψmα
+ εψθ

, (B.14)

where

ε
′

ψmα
=

(ψmα
− ψmβ

)r

1− r
cos(εθ) +

(Rα −Rβ)
īqβ
ω̄α

1− r
, (B.15)

εψθ
= −ψmα

(1− cos(εθ)). (B.16)

Note that the first component of ε
′

ψmα
is favorably affected

by εθ while εψθ
increases with the increase of εθ. It is worth

underlying that εψθ
cannot be mitigated by a proper selection

of the OCs. Therefore, the consideration of the offset position
error for the computation of the majorants of the systematic
error does not affect the selection of the AOCs by the DMA.

With the same procedure, the estimated stator resistance has
the following expression;

R̂∗(∞)

= Rα + ε
′

Rα
. (B.17)

where

ε
′

Rα
=
Rβ −Rα
1− r

+
(ψmβ

− ψmα)
ω̄β

īqβ

1− r
cos(εθ). (B.18)

Even in this case, the second component of ε
′

Rα
is favorably

affected by εθ but there is no error component equivalent to
εψθ

.
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