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Abstract—The optimal design of interior permanent magnet
synchronous motors requires a long time because finite element
analysis (FEA) is performed repeatedly. To solve this problem,
many researchers have used artificial intelligence to construct a
prediction model that can replace FEA. However, because the train-
ing data are generated by FEA, it takes a very long time to obtain a
sufficient amount of data, making it impossible to train a large-scale
prediction model. Here, we propose a method for generating a large
amount of data from a small number of FEA results using machine
learning. An automatic design system with a deep generative model
and a convolutional neural network is then constructed. With its
sufficient data, the proposed system can handle three topologies and
three motor parameters in a wide range of current vector regions.
The proposed system was applied to multi-objective optimization
design, with the optimization completed in 13–15 seconds.

Index Terms—Convolutional neural network, design
optimization, generative adversarial network, permanent magnet
motor, semisupervised learning.

I. INTRODUCTION

INTERIOR permanent magnet synchronous motors
(IPMSMs) are widely adopted in electric vehicles and

industrial robots because of their high output, efficiency,
and reliability [1], [2], [3]. However, a major problem with
IPMSMs is their long optimization period, which is caused
by the high degree of freedom in their design and the use of
finite element analysis (FEA). Many researchers are trying to
solve this problem using optimization methods; some proposed
automatic design with efficient optimization methods against
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a high degree of freedom [4], [5], [6], [7], [8] while others
proposed optimization methods with surrogate models to
replace time-consuming FEA [9], [10], [11], [12], [13].

Because an IPMSM rotor can be designed with a large number
of geometries due to the embedded permanent magnet (PM),
various design alternatives thus need to be considered during
optimization. Bonthu et al. [4] minimized torque ripple and
cogging torque by optimizing the notch shape of the rotor surface
of the permanent magnet assisted synchronous reluctance motor.
Islam et al. [5] optimized two rotor design parameters at multiple
output points of an IPMSM using the response surface method.
Zheng et al. [6] performed multi-objective optimization of an
IPMSM with rare-earth PMs and ferrite PMs using the response
surface method. These size optimizations with computer-aided
design (CAD) were effective for optimizing the shape for a given
topology. However, it is difficult to deal with multiple topologies
because the geometries depend on the initial shape. To solve
this problem, many studies have proposed rotor design based on
topology optimization. Ishikawa et al. [7] minimized PM volume
using multi-material topology optimization for an asymmetric
IPMSM rotor. Sato et al. [8] applied multi-material topology
optimization to an IPMSM rotor using a normalized Gaus-
sian network. Although these methods produce completely new
topologies, some topologies cannot be manufactured and a very
large number of candidate solutions must be considered in the
optimization due to the huge design space. There is thus a need
for a method for generating manufacturable design alternatives
with multiple topologies in a small design variable space. There-
fore, this study uses a generative adversarial network (GAN) to
solve this problem. A GAN is a deep generative model that uses
two deep neural networks proposed by Goodfellow et al. [14].
The GAN has the advantage of dimensionality reduction from
multidimensional images to a small latent variable space, and
it can integrally represent design alternatives for various motor
topologies.

FEA, a numerical modeling method, is generally used to
calculate the characteristics of an IPMSM. FEA can be used
to obtain very accurate operating characteristics of IPMSMs,
but it is time-consuming. Many researchers have thus inves-
tigated the construction of prediction models using artificial
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intelligence (AI) to reduce analysis time while maintaining
the accuracy of FEA. Dhulipati et al. [9] used support vector
regression (SVR) to train a prediction model for a six-phase
IPMSM. Hao et al. [10] trained a model to learn the relationship
between the design parameters and torque ripple of an IPMSM
using radial basis function networks, and used the model for
optimization. Pan et al. [11] used XGBoost to learn the rela-
tionship between the torque characteristics and the structural
parameters of permanent magnet arc motors, and used the
model for optimization. These conventional machine-learning-
based approaches are mainly used for size optimization. On
the other hand, some studies use deep learning for topology
optimization. Barmada et al. [12] used a convolutional neural
network (CNN) to learn the relationship between the shape and
torque characteristics of synchronous reluctance motors, and
used the CNN for optimization. Asanuma et al. [13] trained a
model to learn the relationship between the topology near the
rotor surface and the torque characteristics of an IPMSM using
transfer learning with CNNs. The CNN has the advantage of
achieving highly accurate predictions from complex topological
information by feature extraction, making them suitable for pre-
dicting the characteristics of design alternatives generated by a
GAN.

These conventional AI-based modeling methods achieve high
accuracy but take into account only specific geometries or one
current vector condition, making them unsuitable for various
applications. The small scale of these modeling techniques is
due to the difficulty in obtaining sufficient data. For example,
when training a prediction model to replace FEA, the training
data are generally generated by FEA. Assuming that the FEA for
generating training data takes 12.4 minutes to analyze the speed-
torque characteristics of an IPMSM [15], an FEA of 100000
datasets would take more than two years.

This research solves the problem of obtaining sufficient data
and aims to construct a general-purpose IPMSM design system
that applies deep learning models to design and modeling.
Fig. 1 shows an overview of the present study. First, for data
acquisition, we use semi-supervised learning where the training
data are generated using machine learning. In [15], the authors
proposed a method for training a prediction model that can
accurately predict the speed-torque characteristics of double-
layered IPMSMs from a small number of design parameters
and FEA results using machine learning. This prediction model
can be used to calculate the operating characteristics of various
double-layered IPMSMs from their design parameters to gen-
erate a large dataset in a short time. Thus, by constructing a
machine learning model that is limited to a certain typical rotor
shape from a small dataset, and applying the data generation
process to various shapes, we can quickly obtain sufficient
data.

Using the generated data, an automatic rotor core design
system based on the GAN and the CNN is constructed. The
two trained deep learning models are then used for multi-
objective optimization design. It is shown that the design time
is significantly reduced. The contributions of this paper can be
summarized as follows.

Fig. 1. Overview of this study. d◦i is the design parameters for each rotor
shape. Blue arrows represent the prediction flow used to generate the training
data described in Section II. Red arrows represent the data flow of the proposed
rotor core design system described in Section III.

Fig. 2. Single-pole conventional rotor shapes. (a) 2D, (b) V, and (c) Nabla.

a) A quick training data generation method for large-scale
deep learning is proposed.

b) A deep generative model that integrally represents differ-
ent topologies in the latent space is applied.

c) A prediction model of FEA that can be applied in a wide
range of current vector regions is presented.

d) An automatic design system for IPMSMs that enables
quick design is proposed.

The rest of this paper is organized as follows. Section II
describes the proposed method for quickly generating training
data. Section III describes deep learning based on the generated
dataset. Section IV shows the results of torque maximization and
PM volume minimization using the proposed automatic design
system. Section V summarizes the results.

II. OBTAINING TRAINING DATA

Semi-supervised learning with machine learning is used to
quickly generate a sufficient amount of data for training the
deep learning models. In this section, we describe the process
of generating training data.

The target of this study is an IPMSM with 8 poles and
48 slots of distributed winding stators. Fig. 2 shows the rotor
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topologies of 2D-, V-, and Nabla-structure IPMSMs [2], [16].
In this study, we generate data based on these three types of
topologies. The permanent magnet is NMX-S49CH, and the
iron core is 10JNEX900. See [2] for detailed information on the
stator geometry, body size, and other parameters.

First, the relationship between rotor shape and speed-torque
characteristics is learned using the method proposed in [15].
For the prediction model in [15], the input variables are the
design parameters, such as the PM thickness, and current con-
ditions. Although the objective is to predict the speed-torque
characteristics, the prediction models do not directly predict
the speed-torque characteristics; instead, we set three motor
parameters (PM flux linkage Ψa and d- and q-axis inductances
Ld, Lq) as the prediction targets to improve accuracy. The average
torque T and the limit speed Nlim are obtained from the predicted
motor parameters as follows.

T = Pn (Ψaiq + (Lq − Ld) idiq) , (1)

Nlim =
Vom√

(Ψa + Ldid)
2 + (Lqiq)

2
, (2)

where Pn is the number of pole pairs, id and iq are the d- and
q-axis current, respectively, and Vom is the maximum induced
voltage.

The FEA conditions for the training data for the prediction
models were generated according to (3).⎧⎪⎨

⎪⎩
di ∼ U(dlwr, dupr),

Ia ∼ 140
√

3U(0, 1)(A),

β ∼ U(0, 90)(◦),
(3)

where U(a, b) is a random variable with a uniform distribution
on an open interval (a, b), di is the i-th design parameter,
and dlwr and dupr are its lower and upper bound, respectively.
The numbers of design parameters are 11, 5, and 8 for 2D, V,
and Nabla, respectively. The relationship between the armature
current Ia, the current phase angle β and id, iq are as follows.{

id = −Ia sinβ

iq = Ia cosβ
(4)

The shapes were generated by CAD based on the randomly
generated design parameters, and FEA was performed under the
randomly generated current conditions to generate the training
data for prediction models. The objective of the prediction
models is to accurately learn the function f in the following
equation. See [15] for more details.

Ψa, Ld, Lq = f (id, iq, d1, d2, . . .) (5)

The prediction models described above are constructed for the
three topologies. Table I shows the machine learning methods
used to predict the characteristics for each topology, where GPR
is Gaussian process regression. The values in parentheses are
the coefficients of determination r2 for the test data. For the
training data, we used a total of 26209 randomly generated
shapes (2D: 8256; V: 7927; Nabla: 10026), all of which were
analyzed under random current vector conditions. The software
JMAG-Designer 19.1 was used for the FEA. The prediction

TABLE I
MACHINE LEARNING METHODS AND COEFFICIENTS OF DETERMINATION FOR

TEST DATA USED FOR DATA GENERATION

TABLE II
NUMBER OF DATASETS USED FOR TRAINING

accuracies for Nabla were the lowest among the three topologies,
despite the largest number of training data. A detailed discussion
of the differences in prediction accuracy between topologies
is beyond the focus of this study and will be the subject of
future research, but the effects of the imbalance in prediction
accuracy for each topology and each parameter are described in
Section IV.

The trained prediction models and the randomly generated
conditions according to (3) were then substituted into (5) to
generate shape and motor parameter pairs for 55000 shapes for
each topology, for a total of 165000 shapes. Table II summarizes
the number of datasets used for training in each phase. The
reason for generating 55000 shapes is to stabilize the images
generated by the GAN explained in Section III-B. Because the
motor parameters change nonlinearly due to the effect of mag-
netic saturation, we predicted the change in motor parameters
versus the current vector condition for each shape. Because the
maximum armature current of the IPMSM used in this research
is 232 A, the characteristic data generated by the prediction are
the discrete PM flux linkage with an armature current ranging
from 5 to 235 A in 5-A increments and the discrete d- and q-axis
current versus d- and q-axis inductance characteristics with d-
and q-axis currents ranging from 5 to 235 A in 10-A increments.
Here, the PM flux linkage is assumed to be independent of the
current phase [15].

The data augmentation method described above predicted the
characteristics for 623 current vector conditions for each shape,
meaning that the FEA results for 102795000 conditions (165000
shapes × 623 conditions/shape) were predicted from FEA re-
sults for only 24000 conditions. The prediction of 102795000
data points was completed in a total of 3.6 hours, thus concluding
that sufficient data were obtained in a practical amount of time.
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Fig. 3. Material representation of rotor shape.

III. AUTOMATIC DESIGN SYSTEM

Using the dataset created in Section II, we trained the deep
learning models for the automatic rotor shape design system. The
automatic design system consists of two types of deep learning
model, one for design and the other for characteristic prediction.
This section describes the training methods and the results for
these two deep learning models.

A. Material Representation for Rotor Core

First, we describe the numerical representation of the motor
shape. There are two types of numerical representation of motor
shapes, namely that used in [15] (see Section II) that specifies
the design parameters of the shape, denoted as the parameter
representation, and that used in topology optimization that spec-
ifies the material at each coordinate, denoted as the material
representation. The parameter representation can represent only
one topology depending on the reference shape and is unsuitable
for a system that handles multiple topologies in an integrated
manner. For example, the design parameters used for the 2D, V,
and Nabla structures are 11-, 5-, and 8-dimensional, respectively,
making it difficult to handle different topologies with a given
parameter representation. Therefore, in the proposed automatic
design system, the motor shape is represented numerically by
the material representation.

Fig. 3 shows the material representation method used in the
proposed system. An electromagnetic steel sheet, a PM, or air
is specified for each pole coordinate of the rotor, and the three
materials are assigned to the RGB (red, green, blue) values of
the image as one-hot vectors, respectively, to represent the rotor
shape in the image, as shown in the right image in Fig. 3. Because
the shape considered in this study is d-axis symmetric and there
is no magnet or air layer near the shaft, only half of the geometry
in the circumferential direction and 60% of the geometry in the
radial direction are converted into images. The magnetization
direction (angle) of the PM is represented by the difference in
the brightness of the blue color by inputting the normalized value
of the angle information dPM, which is calculated as follows:

dPM =
θPM + 90

180
, (6)

where θPM ∈ [−90◦, 90◦] is the angle of the magnetization
direction of each PM. In the actual image generation process
for the material representation, the material information at each
coordinate was extracted and converted into an image for the
rotor shape whose dimensions were parametrically generated

Fig. 4. Parameters-FID characteristics. dz is the dimension of the latent
variable. The batch size was 10, and the number of training steps was 200000.

Fig. 5. Example of results generated by lightweight GAN. The dimension of
the latent variable was 256.

by CAD in JMAG-Designer. Note that due to the coordinate
transformation, the straight part of the rotor shape becomes a
gentle curve in the image.

B. Training of Generative Adversarial Network

This study uses lightweight GAN [17] to generate materially
represented rotor images. The training data for the lightweight
GAN is the converted 165000 images from the shapes paramet-
rically generated in Section II. The image was a 3 × 256 × 256
tensor.

To determine the parameters of GAN, this study uses Fréchet
Inception Distance (FID) [18]. FID measures the overall se-
mantic realism of the synthesized images. We let GAN ran-
domly generate 50000 images and computed FID between the
generated images and the whole training dataset. Fig. 4 shows
the number of parameters of the models and the calculated
FID in the different latent variable dimensions. To reduce the
FID, the dimension of the latent variable needs to be increased,
but the computational cost also increases with the number of
parameters. Thus, the dimension of the latent variable was set
to 28 = 256.
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Fig. 6. Architecture of multi-task CNN. (a) Residual block and (b) overall network. Orange boxes represent feature maps, where the number of channels is
shown. Blue boxes mean residual blocks shown in (a), and if "downsample" is written, a convolutional layer that has 1x1 filters and a stride of 2 is added to the
shortcut connection. Red boxes mean the fully connected layers.

Fig. 5 shows an example of a shape generated by lightweight
GAN. The output images of the GAN clearly show the three
types of rotor shape. All of these images were sampled from
the same latent variable space, indicating that the use of GAN
allows us to handle a wide variety of shapes in a unified manner.
In addition, the huge design space can be reduced to 256 dimen-
sions of the latent variable space and undesignable shapes can
be eliminated.

C. Training of Convolutional Neural Network

This study uses CNN to predict the motor characteristics
from rotor images generated by the GAN. Fig. 6 shows the
architecture of the CNN used in this study. The regression
CNN is built based on ResNet-18 [19]. It is a multi-task
learning architecture that simultaneously predicts three mo-
tor parameters f or a single shape. Because each motor pa-
rameter is nonlinear with respect to the current vector, the
characteristic data generated in Section II were approximated
by polynomial equations using the least-squares method. The
coefficients of the approximation equation were used as the
prediction target. The approximation equations are shown
below.

Ψa = wΨa
0 + wΨa

1 Ia + wΨa
2 I2a + wΨa

3 I3a , (7)

Ld = wLd
0 + wLd

1 id + wLd
2 iq + wLd

3 i2d + wLd
4 idiq + wLd

5 i2q

+ wLd
6 i3d + wLd

7 i2diq + wLd
8 idi

2
q + wLd

9 i3q, (8)

Lq = w
Lq

0 + w
Lq

1 id + w
Lq

2 iq + w
Lq

3 i2d + w
Lq

4 idiq + w
Lq

5 i2q

+ w
Lq

6 i3d + w
Lq

7 i2diq + w
Lq

8 idi
2
q + w

Lq

9 i3q

+ w
Lq

10 i
4
d + w

Lq

11 i
3
diq + w

Lq

12 i
2
di

2
q + w

Lq

13 idi
3
q + w

Lq

14 i
4
q,

(9)

where wp
i (p ∈ {Ψa, Ld, Lq}) is the coefficient, and Ia is calcu-

lated as follows:

Ia =
√

i2d + i2q. (10)

As shown in Fig. 6, the number of output nodes in fully
connected layers was determined according to the number of
coefficients in (4)–(6).

The true values of the coefficients of each motor parameter
for 16500 shapes were calculated to minimize the squared errors
from the motor parameters in each of the 623 conditions for
each shape generated in Section II. From the normalized 165000
datasets (combinations of shapes and approximation equation
coefficients), 120000 were used as training data, 30000 were
used as validation data, and 15000 were used as test data for
training. Adam was used for optimization, the weight decay was
0.0001, the learning rate was 0.001, and the mini-batch size was
16. The loss function LCNN is defined as follows.

LCNN =
∑

p∈{Ψa,Ld,Lq}
kpMSE (ŵp,wp), (11)

wherekp is the coefficient for balancing losses, MSE is a function
that returns the mean squared error, wp is the true value of the
weight vector for each parameter, and ŵp is the CNN prediction
of wp. In this study, we set the coefficient (kΨa , kLd , kLq ) =
(3, 2, 1).

Fig. 7 shows the prediction accuracy of the trained multi-
task CNN on the test data, and Fig. 8 shows the training and
validation errors. Note that this prediction accuracy is not for
the FEA results, but for the data generated by machine learning.
First, the validation error was almost the same as the training
error, concluding in no tendency to overfit. A comparison of the
prediction results indicates that the accuracy was high except for
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Fig. 7. Prediction results for test data, where r2 is the coefficient of determination. Results for (a) PM flux linkage, (b) d-axis inductance, and (c) q-axis inductance.

TABLE III
COMPARISON OF PREDICTION ERRORS AND MODEL PARAMETERS FOR DIFFERENT CNNS (MEAN ± STD FOR 10 TRAINING RUNS; STD: STANDARD DEVIATION)

Fig. 8. Training and validation errors. Dashed curves denote training error,
and bold curves denote validation error.

the PM flux linkage and d-axis inductance in the Nabla structure.
The low prediction accuracy of these two characteristics is due
to the prediction error generated during data generation because
their prediction accuracy in Table I is also low. Because a perfect
prediction of the data with errors implies a deviation from the
true data by FEA, this result in Fig. 7 is reasonable. Prediction
accuracy for FEA is discussed in Section IV.

To demonstrate the high performance of the proposed CNN,
we compare its performance with other conventional CNNs,
ResNet-34 [19], ResNet-50 [19], VGG-11 [20] with batch nor-
malization, and AlexNet [21]. Table III compares the prediction
results and the model parameters for 10 training runs, where
only the networks on the input side from the 1000-dimensional
fully connected layer were changed while keeping the multi-task
architecture in Fig. 6 fixed. All the training parameters were the
same. The proposed CNN based on ResNet-18 and the CNN
based on ResNet-34 had nearly equal validation errors for all
motor parameters and had lower prediction errors than the other
CNNs. In addition, the proposed model has fewer parameters
and then requires less training time. Therefore, the proposed
architecture is superior in both performance and computational
cost.

Then, to verify the effectiveness of the proposed CNN’s
multi-task architecture, we compare the prediction accuracy of
the CNNs when trained with different loss coefficients. Table IV
compares their prediction results for 10 training runs, where
one-hot vectors mean that the learning is not multitasking.
Comparison results show that the multi-task architecture reduces
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TABLE IV
COMPARISON OF PREDICTION ERRORS AND MODEL PARAMETERS FOR DIFFERENT LOSS COEFFICIENTS (MEAN ± STD FOR 10 TRAINING RUNS)

Fig. 9. Overall configuration of automatic design system. The blue part is used for shape optimization, and the red part is used for optimal current vector search
for a given shape.

the verification errors for all motor parameters due to the sup-
pression effect of overfitting. Furthermore, the setting with a
larger weight of errors in Ψa and Ld efficiently reduced the
verification error, although a slightly larger verification error in
Lq.

IV. OPTIMIZATION DESIGN

The combination of the deep generative model and the char-
acteristic prediction model in Section III leads to an automatic
design system, as shown in Fig. 9. This section demonstrates
the usefulness of the system by performing a multi-objective
optimization design in the 256-dimensional latent variable space
of the generative model.

A. Problem

In this study, the design goals are to minimize the volume of
the PMs and maximize the maximum torque under the torque
constraint. The problem setup is as follows:

min w1
V PM

V PM
init

− w2

TMax
pred

TMax
init

,

s.t. gi : T
(i)
pred ≥ αT (i)

req (i = 1, 2, . . . , n) , (12)

where VPM is the volume of a PM for each candidate solution
and TMax

pred is the predicted maximum torque for each candidate
solution. These parameters are normalized by the initial values
V PM
init and TMax

init , respectively. The volume of the PM was
defined as a percentage of the image area. w1 and w2 are weight
coefficients. (w1, w2) = (1, 1) in this setup. The constraint

condition gi is a torque constraint for n required operating points
{(N (i)

req, T
(i)
req)}ni=1, which is multiplied by a coefficientα= 1.03

to consider the prediction error. The torque prediction results are
given as the results of maximum power control at the required
speed as follows:

T
(i)
pred = max

Ia∈(0,Iam],β∈(0,90)
TCNN (Ia, β) ,

s.t. NCNN (Ia, β) ≥ N (i)
req, (13)

where Iam is the maximum armature current, and TCNN and
NCNN are the torque and limit speed calculated by substituting
the motor parameters predicted by the CNN into (1) and (2),
respectively. The solution for maximum power control was
obtained by a brute-force search.

NSGA-II [22] was used as the optimization algorithm, and
the framework pymoo was used for the implementation [23].
The population size was set to 100 and the number of offspring
was set to 10. Latin hypercube sampling was used for sampling
the initial population, the tournament method was used for
selection, simulated binary crossover was used for crossover,
and polynomial mutation was used for mutation. The termination
condition was set to 100 generations.

B. Optimization Results

To verify the robustness of the proposed system, this study
performed optimization under three conditions. Table V shows
the settings for the three conditions and Figs. 10 and 11 show
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Fig. 10. Characteristics of all populations and the last population for optimization design under (a) Condition 1, (b) Condition 2, and (c) Condition 3.

Fig. 11. Characteristics of all populations with topology information for optimization design under (a) Condition 1, (b) Condition 2, and (c) Condition 3.

TABLE V
OPTIMIZATION CONDITIONS

the characteristics of all the populations generated in the opti-
mization process under each condition. The maximum armature
voltage was set to 507 V.

In Condition 1, the maximum armature current was set to
232 A, and the optimization was performed at two required
operating points, (3000 min−1, 197 Nm) and (11000 min−1, 40
Nm), which were determined based on the reference motor in [2].
The solution population transitioned to satisfy the constraints;
all the individuals in the final population satisfied the constraints.
The Nabla structure most easily produced the maximum torque.
Almost all of the Pareto solutions are the Nabla structure under
severe torque requirements.

In Condition 2, the maximum armature current was fixed at
232 A and the torque constraint was relaxed from that in Con-
dition 1. Optimization was performed at two required operating
points, (3000 min−1, 170 Nm) and (11000 min−1, 40 Nm). In
Condition 2, many candidate solutions for all three topologies
satisfy the relaxed torque constraint. The V structure reduced
the volume of PMs the most while maintaining high torque. The
2D structure, which was designed for high efficiency [2], does
not appear in the Pareto solution for Condition 2.

TABLE VI
COMPARISON OF OPTIMIZATION ALGORITHM (MEAN ± STD FOR 10 RUNS)

In Condition 3, the armature current limit was reduced from
232 to 104 A and the two required operating points were set
to (1000 min−1, 100 Nm) and (9000 min−1, 30 Nm). In this
condition, the maximum torque requirement was reduced, but
the current limit was also reduced, resulting in a tighter torque re-
quirement. In addition, as in Condition 1, many Nabla structures
were selected to easily obtain the torque. Thus, the optimization
design of the proposed system can be performed under various
current limits.

To verify the optimality of the obtained solutions, we per-
formed comparative experiments with different multi-objective
optimization algorithms, RNSGA-II [24], NSGA-III [25],
UNSGA-III [26], and RNSGA-III [27]. Table VI compares the
minimum fitness of the last population for each optimization,
where the reference points for RNSGA-II and RNSGA-III were
set to (0.82, -1.17) and (0.68, -1.07), and the reference directions
for NSGA-III and UNSGA-III were set in 8 segments based on
Das-Dennis method. The other basic optimization parameters
were common. The comparison results showed that NSGA-II
used is superior to the other multi-objective optimization meth-
ods in this problem set.

FEA was conducted by selecting three candidate solutions
for each condition from the Pareto solutions. Fig. 12 shows the
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Fig. 12. Prediction by proposed method and FEA results for speed-torque characteristics of Pareto solutions, where blue points are required operating points.
(a)–(i) Solutions A-I defined in Fig. 9.

Fig. 13. Optimization time for (a) Condition 1, (b) Condition 2, and (c) Condition 3.

prediction results and the FEA results for the speed-torque char-
acteristics of the selected candidate solutions, where solutions
A-I correspond to the solutions in Fig. 10 and the blue points
represent the required operating points for each condition.

The shape images of the Pareto solutions are all clear and
designable, confirming the effectiveness of the trained GAN. A
comparison of the FEA results with the CNN prediction results
indicates that the prediction accuracy of the speed-torque charac-
teristics is very high for all candidate solutions. The FEA results
for all Pareto solutions satisfy the required operating point,
which means that the prediction error is less than 3%. These
results imply that the poor prediction accuracy for the Nabla
structure in Table I was improved by the CNN. In other words,
the CNN recognized and eliminated as noise the insensitive error
and standard error generated in the process of data generation by
SVR and GPR, respectively. This shows that the proposed data
generation method can tolerate a certain degree of inaccuracy in
a machine learning method.

Finally, we discuss the optimization time. Fig. 13 shows
a histogram of the design time for 100 optimization designs
under each condition. For the calculations, a computer with an
Intel Core i7-9700K CPU, 32.0 GB of RAM, and an NVIDIA
GeForce RTX 2070 SUPER (8 GB) GPU was used. The pro-
posed system can design a shape that satisfies the requirements
in 13-15 seconds, effectively reducing the optimization time
compared to that for the conventional optimization calculation
for the same scale (generally several days to several weeks).

V. CONCLUSION

This paper proposed a deep learning technique for optimizing
IPMSM rotors. The results can be summarized as follows.

a) We proposed a method for quickly generating a large
amount of FEA data for training large-scale deep learning
models using machine learning specific to each topology.
This method generated 102795000 training data from
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26209 FEA results. Also, the proposed data generation
method could tolerate a certain degree of inaccuracy in a
machine learning method.

b) The proposed generative model can be used to design rotor
topologies for three IPMSMs with high precision and can
represent different topologies in a unified 256-dimensional
latent variable space.

c) We proposed a prediction model that can quickly and
accurately predict motor parameters in a wide range of
current vectors with various geometries.

d) We proposed an automatic rotor design system for
IPMSMs using two deep learning models. The proposed
system can be used for various required operating points
and current ranges. The time required for design optimiza-
tion was only 13-15 seconds.

Once the proposed automatic design system is trained,
the design optimization under various conditions can be per-
formed many times in a short time, leading to a significant
reduction in the design and development time of IPMSMs.
In the future, we will study the characteristics not cov-
ered in this paper, such as loss and vibration. Additionally,
other magnetic materials and rotor topologies will be exam-
ined to expand the scope of the proposed automatic design
system.

The dataset generated in Section II is available at IEEE Dat-
aPort [28] and the Python implementation of the characteristics
prediction models is available at GitHub [29].
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