
H A N D S O N BY ST E P H E N CAS S

14  |  JUL 2020  |  SPECTRUM.IEEE.ORG

H A N D S O N BY ST E P H E N CAS S

Hands On

ILLUSTRATIONS BY James Provost

SPECTRUM.IEEE.ORG  |  JUL 2020  |  15

When opportunity knocks,
open the door: No one has tak-
en heed of the adage like Nvidia,

which has transformed itself from a com-
pany focused on catering to the needs
of video gamers to one at the heart of the
artificial-intelligence revolution. In 2001, no
one predicted that the same processor archi-
tecture developed to draw realistic explosions
in 3D would be just the thing to power a re-
naissance in deep learning. But when Nvidia
realized that academics were gobbling up its
graphics cards, it responded, supporting re-
searchers with the launch of the CUDA paral-
lel computing software framework in 2006.

Since then, Nvidia has been a big player
in the world of high-end embedded AI ap-
plications, where teams of highly trained
(and paid) engineers have used its hard-
ware for things like autonomous vehicles.
Now the company claims to be making it
easy for even hobbyists to use embedded
machine learning, with its US $100 Jetson
Nano dev kit, which was originally launched

D E PA RT M E N TS

NVIDIA MAKES IT
EASY TO EMBED AI
THE JETSON
NANO PACKS A
LOT OF MACHINE-
LEARNING POWER
INTO DIY PROJECTS

in early 2019 and rereleased this March with
several upgrades. So, I set out to see just how
easy it was: Could I, for example, quickly and
cheaply make a camera that could recognize
and track chosen objects?

Embedded machine learning is evolving
rapidly. In April 2019, Hands On looked at
Google’s Coral Dev AI board which incorpo-
rates the company’s Edge tensor processing
unit (TPU), and in July 2019, IEEE Spectrum

featured Adafruit’s software library, which
lets even a handheld game device do simple
speech recognition. The Jetson Nano is closer
to the Coral Dev board: With its 128 parallel
processing cores, like the Coral, it’s powerful
enough to handle a real-time video feed, and
both have Raspberry Pi–style 40-pin GPIO
connectors for driving external hardware.

But the Coral Dev board is designed to
provide the minimal amount of support

AI ENGINE: The Jetson Nano is the cheapest of a number of AI development kits made by Nvidia.
Like many AI development boards it has hefty power requirements, so users are encouraged to buy
an external power adapter that can supply at least 4 amperes. Lots of power in necessarily means
lots of heat out, so the kit is dominated by a large heat sink which has screw holes for adding a fan if
desired. The Nano has lots of input/output options for displays, USB peripherals, camera modules,
and a Raspberry Pi–compatible 40-pin general purpose input/output header.

16  |  JUL 2020  |  SPECTRUM.IEEE.ORG

it’s because things haven’t been updated for
the new board; other times it’s simple mis-
takes, such as a sample script used for test-
ing the output of the GPIO header that tries
to import the original Rpi.GPIO library rather
than the Jetson.GPIO library.

But soon I was up and running with the well-
known ResNet-18 pretrained neural network,
which can classify 1,000 objects. Through a
provided notebook it is easy to modify the last
layer of the network so that it recognizes just
two things—say, thumbs-up and thumbs-
down gestures—using images directly cap-
tured from the USB camera, and then retrain
the network for gesture recognition.

Then I tried something a little more am-
bitious. Following along with Nvidia’s sug-
gested “Hello AI World” tutorial, I was soon
running a 10-line Python script directly on
the Nano’s desktop that did real-time rec-
ognition with the ResNET-18 network. With
a little bit of tweaking, I was able to extract
the ID and center coordinates of every object
recognized. A little more modification and
the script toggled four GPIO pins to indicate
if a particular type of object—say a bottle, or
person—was above, below, left of, or right of
center in the camera’s view.

I hooked up an Arduino Uno with a mo-
tor shield to drive the two servos in a $19
pan/tilt head that I bought from Adafruit. I
mounted my USB camera on the pan/tilt
head and wired the Arduino to monitor the
Nano’s GPIO pins. When the Nano senses an
off-center object and turns on the appropri-
ate GPIO pin, the Arduino nudges the pan/
tilt head in the direction that should bring the
object toward the center of its field of view.

I was genuinely surprised how quickly I
was able to go from opening the Nano’s box
to a working autonomous tracking camera
(not counting the time I spent waiting for vari-
ous supporting bits and pieces to arrive in the
mail while isolated from my usual workbench
at the Spectrum office!). And there are plenty
of avenues for further expansion and experi-
mentation. If you’re looking to merge physical
computing with AI, the Jetson Nano is a ter-
rific place to start. —STEPHEN CASS

H A N D S O N BY ST E P H E N CAS S

needed to prototype embedded applications.
Its Edge TPU is on a removable module that
can be plugged directly into target hardware
as development progresses. The Coral car-
rier board that the processor module sits on
has only one large USB port and is generally
intended to be operated over a remote con-
nection via a USB-C or Ethernet connector
rather than being plugged in to a keyboard
and screen directly.

The Jetson Nano has a similar module-and-
carrier board approach, but its carrier board
has a lot more going for stand-alone experi-
mentation. It has four USB 3.0 ports for pe-
ripherals, HDMI and DisplayPort connectors,
a Micro-USB port to supply power or allow
remote operation, an Ethernet port, two rib-
bon connectors for attaching Raspberry Pi–
compatible camera modules, and a barrel
jack socket for providing the additional power
needed for intensive computations. (I appre-
ciated this last touch, because the Coral Dev
board uses two USB-C ports side by side, one
for power and the other for data, and I was al-
ways confusing the two.)

Nvidia’s “Getting Started” instructions
stepped me through downloading a custom-
ized version of the Ubuntu operating system
designed for the Nano. This includes things
like a Nano version of the established Rasp-
berry Pi Rpi.GPIO library for accessing the
GPIO header from Python scripts.

Then, as per the instructions, I began the
free “Welcome to Getting Started With AI on
Jetson Nano!” course. This includes an intro-
ductory primer on neural networks, followed
by details on how to use the Nano in remote
mode. In this mode, the Nano runs a local
Web server that hosts a Jupyter notebook,
the tool of choice for many researchers be-
cause it allows explanatory text and images
to be intermingled with Python code.

Unfortunately, I couldn’t connect to the
Nano’s server: After some poking around
online, it turns out that the Ubuntu version
required for the “Welcome…” course is dif-
ferent from the version linked in the “Getting
Started” instructions. There are actually a
few places where Nvidia’s generally excel-
lent documentation, videos, and other tutori-
als have this kind of rough edge: Sometimes

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512 /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc1000

224 x 224 px
image

POST YOUR COMMENTS AT
spectrum.ieee.org/jetson-jul2020

MULTILAYERED ANALYSIS: The software suite
provided by Nvidia makes it easy to download many
popular pretrained neural-network architectures
that are suited for different tasks, such as identifying
pedestrians or household objects. The ResNet-18
network pictured above can identify 1,000 such
objects. You can make the network identify
new, similar, objects by reconfiguring the final
classification layer, which attaches labels to objects,
and partially retraining the network.

