
H A N D S O N BY ST E P H E N CAS S

16  |  MAR 2020  |  SPECTRUM.IEEE.ORG

H A N D S O N BY P E T E L E W I S

Hands On

ILLUSTRATIONS BY James Provost

SPECTRUM.IEEE.ORG  |  MAR 2020  |  17

I’VE BEEN MAKING ELEC-
tronics projects for 15 years, but
strong security was something I

always considered out of my reach. Conse-
quently, a fear of getting hacked limited the
types of projects I would pursue, especially
Internet-connected devices. But in May of
2019, I was handed the job of designing
a cryptographic product for my employer,
SparkFun. Among other things, SparkFun
designs and sells breakout boards that al-
low makers to easily incorporate the capabili-
ties offered by various integrated circuits into
their designs. Now SparkFun wanted a board
that would provide an easy on-ramp into the
world of hardware-based cryptography.

It had to be user-friendly and Arduino
compatible, which meant sifting through
the specs of a lot of cryptographic hard-
ware. What functions should our board of-
fer, and how should it implement them?
Ultimately, I chose to focus on ECC (ellipti-
cal curve cryptography) digital signatures.

D E PA RT M E N TS

CRYPTIC COPROCESSOR: The ATECC508A coprocessor board [A] is connected to the Pro RF [B]
in the remote [left], powered by a lithium polymer battery [C]. In the base station, the coprocessor and
Pro RF use the I2C bus to control a relay [D], which activates the garage door mechanism [not shown].

A

B

A

C D

B

MAKE A HACK-
PROOF GARAGE
DOOR OPENER
A NEW BREAKOUT
BOARD OFFERS
CRYPTOGRAPHIC
SECURITY

I’ll get into a quick explanation of what ECC
is in a moment, but the appeal of digital sig-
natures is that they have a great real-world
equivalent—handwritten signatures—which
makes them a good introduction to cryptog-
raphy. And signatures are very useful in the
world of embedded systems, especially for
those communicating over an insecure chan-
nel, like a radio link.

I had an immediate test application: As I
started my crypto research, I remembered

that my garage door remote control had
stopped working years ago. I had wanted
to replace the system with something of
my own design, but I was never confident I
could make something secure. But now my
research had an extra impetus.

Venturing into the world of cryptography
was pretty daunting, but with enough reading
I found my way to a few datasheets of chips
that use ECC-based crypto. ECC is similar to
the RSA encryption algorithm often used on

POST YOUR COMMENTS AT
spectrum.ieee.org/crytpo-mar2020

18  |  MAR 2020  |  SPECTRUM.IEEE.ORG

I housed my remote in a sturdy aluminum
case with a duck antenna and a single push
button. Internally, it consists of my initialized
crypto coprocessor board, a Pro RF, and a
rechargeable lithium polymer battery. The
normally open push button is wired between
the battery and the Pro RF, so the board is
off most of the time. Pressing the button for
three seconds gives the board enough time
to start up and complete the entire sequence
to open the garage.

The sequence plays out like this: After boot
up, the remote sends the string “$$$” to the
base station in the garage (consisting of
the other Pro RF and another ATECC508A
crypto board with a copy of my remote’s
public key). The base station creates a to-
ken of random data using its ATECC508A
and broadcasts it. The remote receives this
token and creates a signature by combining
the token with its private key, and transmits
the signature. The base verifies the signa-
ture using the remote’s public key. The secu-
rity comes from the fact that the only place
in the world that contains the unique private
key necessary to make a valid signature is in-
side the remote’s coprocessor. If all is good
(within a strict time window), then the base
opens the garage.

Next up, I plan to venture into areas that
I was previously uncomfortable with. Now
with this coprocessor in my bag of tricks, and
good security in my hands, I’m ready to take
on even the most concerning of IoT devices:
my front door lock. n

H A N D S O N BY P E T E L E W I S

1 3

2 4

OPEN SESAME: When the power button is
pressed, three “$” characters are transmitted to
the base station [1], which sends back a randomly
generated token [2]. The token is signed with a
private key and the signature is sent back to the base
station [3]. If the signature can be verified against the
token and public key, the door motor is activated [4].

the Internet—both use what’s called a trap-
door mathematical function, which is easy
to do but very hard to reverse. In RSA’s case,
the trapdoor function is the multiplication
of two large prime numbers. If you have just
the product of the numbers, it’s very hard to
factorize that back to its constituent primes,
but if you know one prime and the product,
it’s trivial to do division and recover the other
prime. With a trapdoor function in hand, you
can create a private key and a public key. Any-
thing encrypted with the public key can be
decrypted only with the private key, and vice
versa. In ECC’s case, the trapdoor function is
a hairy bit of math that exploits properties of
points along an elliptic curve described by a
formula of the form y² = x³ + ax + b. If you’re
willing to take on the math, ECC lets you use
shorter keys than RSA does, so it’s better for
embedded devices with limited power and
bandwidth budgets.

After quite some searching, and following
the advice of Josh Datko at Cryptronix, I came
to the ATECC508A chip. It can do ECC sig-
nature creation and verification and talks I2C,
the two-wire communications bus protocol
that is well suited for Arduino compatibility.
Time to order some samples!

The printed-circuit-board layout was fairly
straightforward, and I had prototypes in no

time. I plugged one in to my nearest Arduino,
and it popped up on the correct I2C address.
The hardware was verified. Now it was time
for the difficult stuff: software!

The biggest hurdle was configuration. The
ATECC508A has 126 configuration registers
and there are many dependencies. If you at-
tempt to change one thing, you often break
another. Plus, in order to ensure the system is
secure, once a configuration is chosen, it gets
irreversibly locked: You only get one chance
with these security ICs, so if you mess it up,
then your IC is useless. Working very slowly
and carefully, I nevertheless bricked several
ICs (proud to say I never hit double digits).
But I eventually found a suitable configura-
tion that allowed for ECC signatures and ver-
ification. Whew! Finally I could begin writing
examples for an Arduino library, demonstrat-
ing things like how to sign messages.

Now that the cryptographic coprocessor
was completed, it was time to focus on fix-
ing my garage door remote. The next big step
was to add wireless communication. I opt-
ed to use a pair of SparkFun Pro RFs. They
were nice to work with because they use an
SAMD21 microcontroller with an I2C buffer
large enough to handle the communications
needs of the crypto coprocessor, and they
have an onboard LoRa wireless transceiver,
the RFM95. I initialized a crypto coproces-
sor, which creates a permanent private key—
locked inside the coprocessor—and a public
key which I could download via the I2C con-
nection. (Step-by-step construction instruc-
tions and a bill of materials are available from
the SparkFun site.)

