
14 | SEP 2019 | SPECTRUM.IEEE.ORG

E
R

IC
A

 S
N

Y
D

E
R

 (3
)

R
ES

O
U

R
C

ES
_H

A
N

D
S

 O
N

ILLUMINATING MUSICAL CODE
PROGRAM AN ELECTRONIC MUSIC
PERFORMANCE IN REAL TIME

IVE CODING IS A TYPE OF PERFORMANCE ART IN WHICH
the performer creates music by programming and reprogram-
ming a synthesizer as the composition plays. The synthesizer code

is typically projected onto walls or screens for the audience to inspect as they
listen to the unfolding sound. Live coding events are sometimes known as
 algoraves, and at these events it’s common to see visualizations of the evolv-
ing music projected alongside the code. Often, these visualizations are created
by a second performer manipulating graphics software in tandem with the
live coder. • After attending a few algoraves in New York City (musically, the re-
sults tend to fall along a spectrum from ambient soundscapes to pounding elec-
tronic dance music, with a few detours into more experimental domains), I decided
to look a little closer at the software the performers were using. I wanted to see if
I could come up with my own hardware spin on creating visualizations. While I’m
not yet ready to take to the stage, the results have been fun. I’d recommend that any
reader interested in music or sound art should try live coding, even if they have no
experience playing any traditional musical instrument. • The most popular soft-
ware for live coding appears to be Sonic Pi. This is an open source project originally

L

created by Sam Aaron for the Raspberry Pi,
although it is also available for Windows and
macOS. Sonic Pi’s basic interface is a text edi-
tor. Apart from some performance-specific
buttons, such as for starting and stopping a
piece of music, it looks pretty much like any
integrated development environment (IDE),
in this case for a version of the Ruby language.
Like Python, Ruby is an interpreted language
that can run interactively. The Ruby-powered
Sonic Pi IDE provides a friendly front end to
the powerful SuperCollider sound-synthesis
engine, which has been used for over two de-
cades as the basis of many electronic music
and acoustic research projects.

You could create a piece of music by typing
a complete list of notes into the IDE, select-
ing a software-defined musical instrument
plus any desired effects, such as reverb, and
just having Sonic Pi play the tones. But this
would eliminate the fun at the heart of live
coding, which is a collaboration between
the performer and the computer, in which
the performer continually shapes algorithms

SPECTRUM.IEEE.ORG | SEP 2019 | 15

even years ago, Eben Upton
created the first Raspberry Pi. As
Upton told IEEE Spectrum in our

March 2015 cover story, the Pi was inspired in
part by his childhood experiments with a BBC
Micro home computer: He wanted modern
kids to have a simple machine that allowed for
similar experimentation. Since then, the Pi has
exploded in popularity, and the fourth major
revision of the Pi was released in June. Upton
talked with Spectrum senior editor Stephen
Cass about the Pi 4’s design, its growing com-
mercial use, and what might be next.

Stephen Cass: How has the Pi’s user
base evolved?

Eben Upton: Our first year, our volume was
almost entirely bought by hobbyists. But you
have a lot of hobbyists who are also profes-
sional design engineers, and when their boss
asked them to do something, often they used
a Pi. So now you have people who are building
industrial products around the Pi to resell. And
then you have what we call, for want of a better
word, DIY industrial, which is “I own a factory
and I need control computers.” And where I
might have historically gone and bought an
embedded PC, I’ll buy a Pi. Last year we sold
6 million units and [we think as much as] half
of those went to some kind of commercial use.

but leaves the work of actually determin-
ing what note to play next up to those
 algorithms. Sonic Pi takes care of keeping
everything in sync so that the music never
misses a beat.

The most recent major version of Sonic
Pi introduced the ability to send and re-
ceive MIDI messages. MIDI is the venerable
standard used to communicate between
computers and electronic instruments. In
MIDI, notes are represented by a number
from 0 to 127, with notes 21 to 108 cov-
ering the range of a grand piano. Originally,
MIDI required a dedicated hardware inter-
face, but today it’s quite common to see
MIDI being run over USB connections.

The addition of MIDI allowed me to press-
gang some hardware to visualize the mu-
sic produced on the fly by Sonic Pi. A while
back, I had arranged 160 programmable
WS2812B RGB LEDs in five tiers, so that
they act like a 32- by 5-pixel color display.
I built the display on a hexagonal wooden
frame and mounted it in an empty “hat box”
container once used to store removable disk
packs. Not only does this upcycling allow me
to justify hanging onto a bulky souvenir of a
bygone technology, but the roomy inside of
the box allows me to hide the frame and sup-
porting electronics, in this case an Arduino
Leonardo microcontroller. The Leonardo
perfectly mimics USB devices, and I’ve
used it before to make a custom controller
for a spaceflight simulator. To drive so many
LEDs, I added a 10-ampere power sup-
ply, with the power and USB cables running
through a small hole I cut in the box’s base.

I’d already used the Arduino MIDI library,
which supports MIDI over a USB, at a music

hackathon where I’d converted my hat-box
display into a simple light organ. I could
play a MIDI file from a computer and have
the display change color according to the
note. But my color mapping between note
values and LED colors was quick and dirty
to say the least: The same color was evoked
by different notes.

For my Sonic Pi visualizer, I programmed
the Leonardo using the FastLED library
for both performance reasons and be-
cause of its support for the HSV (hue,
saturation, value) color model. Mapping
a value—such as a MIDI note—to a triplet
of conventional RGB values is not straight-
forward, especially if you want all the notes
to look equally bright. In contrast, with the
HSV model, it’s trivial to map a note to the
hue byte while keeping the saturation and
value bytes fixed.

Connecting the hat-box visualizer to the
Sonic Pi software was an unremarkable if
fiddly voyage through the various MIDI set-
tings on my laptop. Sending a note to be
 visualized does require some changes to
my Sonic Pi live code, however: As each
note is generated algorithmically, I capture
it using an intermediate variable rather than
playing it immediately in a sound- synthesis
instruction as I normally would. I use the
 intermediate variable to send the note to
the hat-box display, via the “midi_note_on”
command, in addition to playing the note
audibly. This allows me to program the visu-
alizer as I program the sound code.

My next step will be to program the hat
box to respond to a set of custom MIDI
control commands, which will allow me to
alter how notes are mapped to hue values,
or even select different visualization styles,
on the fly. Then you might actually find me
taking to the stage. —STEPHEN CASS

↗ POST YOUR COMMENTS at https://spectrum.ieee.org/
sonic0919

RESOURCES_Q&A

HOW THE
RASPBERRY PI
INFILTRATED
INDUSTRY
THE $35
COMPUTER’S
CREATOR
EXPLAINS WHAT
DROVE THE
LATEST REVISION

S

THE GREAT PRETENDER: An Arduino
Leonardo [above] acts as a USB device
mimicking a MIDI-enabled electronic
instrument. It converts received notes into
colors displayed on a strip of LEDs [right].

