

GUEST EDITOR INTRODUCTION: The Rise of JavaScript

The Rise of JavaScript

Only a few years ago, JavaScript (JS) was a programming
language disdained by many. Today, JS is very popular
and one of the fastest-growing programming languages. It
cannot be ignored, whether one develops for the web or

not. In fact, as we will argue here, JS is an excellent development language for a certain class of
scientific applications.

Brendan Eich invented JS in 1995 as a way to program one of the first popular web browsers,
Netscape Navigator. Over time, other browsers have adopted JS as a primary language to add
logic to webpages. The various implementations have since converged into a single, enhanced
standard.

Even if originally developed as an interpreted language, modern browsers are smart, and if they
observe that a certain JS function is called often, they compile it using a just-in-time (JIT) com-
piler. This makes JS a very fast language, almost as fast as C/C++ in some instances and usually
faster than Java (which isn’t related to JS, despite the name similarity). As a language designed
to run primarily in the browser, JS provides a standard API to process HTML and JSON; handle
network protocols; draw on a canvas; and interface with devices such as the computer's camera,
audio, GPS, gyroscope, and even the GPU. The latest version of JS is called ECMAScript 6, or
ES6 for short.

In 2009, Ryan Dahl invented node.js, an interpreter for running JS code server-side without the
need for a browser. Since then, there has been a proliferation of command-line tools based on JS.
Node.js includes a package manager called Node Package Manager (npm), which makes it easy
to download additional modules and manage dependencies. One example of such modules is Ba-
bel, which can compile modern ES6 to previous versions of JS for portability. Another example
is Browserify, which allows packaging of multiple JS files and their dependencies into a single
portable .js file for ease of distribution.

Another major step in the history of JS was the invention of asm.js in 2013. This intermediate
programming language allows C to compile into a portable and optimized subset of JS. Thanks
to asm.js, it is possible to run an entire virtual machine (VM) in the browser and run any operat-
ing system in it. For example, to run Linux, just visit jslinux.org. Today, many languages can be
compiled into JS, including Python.

If we have convinced you to try JS, there are a couple of features that you need to be aware of.
These features can be confusing to programmers with experience in other languages:

• Until 2015, JS did not have a "class" keyword. Despite that, JS was always an object-
oriented programming language with support for the basic functionalities of encapsula-
tion, inheritance, polymorphism, and abstraction. The so-called prototype interface al-
lows the creation of a prototype object from which other objects can be made. The
keyword "class" was added purely as syntactic sugar.

• An important feature is the execution model. In JS, the code always runs single
threaded, and it is impossible for two functions to run at the same time. That one thread
maintains a queue of asynchronous tasks to be executed. Every time a function is called,

Massimo DiPierro
DePaul University

9
Computing in Science & Engineering Copublished by the IEEE CS and the AIP

1521-9615/18/$33 ©2018 IEEEJanuary/February 2018

 COMPUTING IN SCIENCE & ENGINEERING

it is placed in the queue as a closure (together with a copy of the calling environment),
and functions in the queue are executed in the order in which they were called. Func-
tions can also be scheduled to run at a later time or after another function has run (prom-
ises).

In this special issue of CiSE, we focus on a small sample of libraries and tools written in JS that
might interest scientists and engineers. Our goal is, of course, not to be exhaustive nor repre-
sentative—given the huge and rapidly expanding field—but to spark the reader's curiosity and
show how certain tasks are remarkably easy in JS. In particular, we will cover the following
tasks:

• Compile C/C++ code to JS using Emscripten. In his article, Alon Zakai reviews the
performance of asm.js, WebAssembly, and Emscripten. He also demonstrates how to
use the latter to compile C++ code implementing the Ising model into JS code, without
having to read or write one line of JS.

• Perform symbolic math. Jos de Jong and Eric Mansfield provide a tutorial for math.js,
an extensible library for symbolic computations implemented in JS. Math.js comes with
a notepad that is like a lightweight version of the Mathematica Notebook or the Jupyter
Notebook, except that it runs completely in the user’s browser.

• Program the GPU. Fazli Sapuan, Matthew Saw, and Eugene Cheah contributed a tuto-
rial for gpu.js, a library that provides a programming interface to the GPU. Very much
like CUDA and OpenCL, in gpu.js, one develops a kernel program using JS that is com-
piled in real time and deployed to the multiple threads/cores of the GPU. Because this is
all done in JS within the browser, it allows for real GPU programming without the need
to install any third-party development tools.

• Experiment with a camera and machine vision. In my paper, I demonstrate how to
write code using JS ES6 to access the computer web camera, process the frames to de-
tect movement, and use the observed movements to control a simulated 3D robotic arm.
For the latter, one can use three.js, a powerful library that can take advantage of the
computer GPU to build and render complex 3D objects such as textures and lighting.

• Create complex interfaces. In the final paper, Ibrahim Tanyalcin, Carla Al Assaf, Ju-
lien Ferte, François Ancien, Taushif Khan, Guillaume Smits, Marianne Rooman, and
Wim Vranken provide an introduction to Mutaframe, an extensible framework for the
visualization of DNA sequences and mutations.

I hope you are convinced that JS is a serious, powerful, and fast language. And more im-
portantly, that JS is an indispensable language for building complex and modern interfaces (to
new and existing code) that can run in the user’s browser without the need to install third-party
tools. Too often, excellent scientific code is hidden behind arcane user interfaces and long chains
of dependencies. Making the code interactive and accessible on the web should be considered a
priority for scientists.

ABOUT THE AUTHOR
Massimo DiPierro is a professor in the School of Computing at DePaul University and co-
director of the MS program in computational finance. Contact him at massimo.dipi-
erro@depaul.edu.

10January/February 2018 www.computer.org/cise

