
4 Computing in Science & Engineering 1521-9615/16/$33.00 © 2016 IEEE Copublished by the IEEE CS and the AIP July/August 2016

From the editors

by Jim X. Chen
George Mason University

The Evolution of Computing: AlphaGo

G
oogle’s AlphaGo program made headlines recently when it played a game
of Go with a top human player and won. We’re conditioned to like chal-
lenges until we face a formidable opponent, but what happens when we face
a computer?

I learned to play Go when I was in elementary school. It’s the simplest board game
concept, yet it’s the most difficult to play. I quickly gave up because it can take hours
to finish just one game, and it takes seemingly forever to improve your skills. It’s worth
learning the game, but I wouldn’t recommend it to all youngsters.

Figure 1 shows the Go board—on the 19 × 19 array, two players (black and
white) take turns placing a stone of their own color on an empty grid point.
Adjacent stones of the same color along the vertical and horizontal grid lines
form an area. When an area is surrounded by an opponent’s stones, it’s “alive” if
it has at least one empty point inside the area; otherwise, the stones in the area
are captured and removed from the board. However, if the surrounded area has
only one empty point left, it’s captured because an opponent can place a stone
in that point and solidly surround it. Therefore, an area is only really alive if it
has two separate empty points inside—for example, as Figure 2 shows, if black

Figure 1. A Go board. On the 19 × 19 array, two players take turns placing a stone of their own color on
an empty grid point.

July/August 2016 5

places a piece at X on a border or corner, then its area is alive. If white places
a piece at X, the black stones will eventually be removed. The players count
points in their own live areas to decide who won or lost. That’s it—simple! But
rather frustratingly, it’s difficult to see where to place a stone to gain a territorial
advantage.

 When I started my MS in computer science back in 1983, I looked at the game
again in an artificial intelligence course. Roughly speaking, the person who starts a
match has 19 × 19 possible empty points to place his or her stone, leaving 19 × 19 – 1
empty points for his or her opponent’s next move. This goes on to searching (19 × 19)! =
361! possible combinations for the best results. Compared to other games, the Go board
has many more options—for example, a chess board has only (8 × 8)! = 64! possible
combinations. Furthermore, a chess piece’s move is confined to its next step, as the king

Figure 3. Microprocessor data over time. The number of transistors, integer performance,
CPU frequency, power consumption, and number of cores has shifted—in some cases,
dramatically. Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham,
K. Olukotun, L. Hammond, and C. Batten Dotted line extrapolations by C. Moore.

107

106

105

104

103

102

101

100

1975 1980 1985 1990 1995 2000 2005 2010 2015

No. cores

Typical power (Watts)

Frequency (MHz)

Single-thread
performance
(SpecINT)

Transistors (thousands)

Figure 2. A critical point. If black places a piece at X, its area is alive. If white places a piece at
X, black stones will eventually be removed.

X X

6 July/August 2016

From the editors

can only move one spot away from its current position, significantly reducing its number
of combinations.

So where does this leave humans versus computers? The huge number of options
in Go (361!) is still beyond computing power; ordinary human players can see just a
few moves ahead. In fact, let’s assume a human player can see three steps ahead—if
so, we have at most 361 × 360 × 359 = 46,655,640 situations to consider, which is a
manageable number for computers. Good human players can memorize successful
gambits played in other games and maybe see a few moves further ahead, but
machines can remember all existing games, although it takes a tremendous effort to
pull that information together. AlphaGo was initially trained to mimic human play
by attempting to match the moves of expert players from recorded games (its database
holds 30 million moves). Once it reached a certain degree of proficiency, it was trained
further by playing multiple games against other instances of itself, using reinforcement
learning to improve its play. This accomplishment is all the more amazing because
there’s no easy way to evaluate a position in Go—the number of stones on the board
is a weak indicator of a position’s strength, and a territorial advantage is difficult to
calculate. A professional human player can make relatively easier judgments compared
to a machine due to instincts that algorithms can’t capture, but AlphaGo might have
broken this barrier.

But kudos to AlphaGo aside, the real story here is the evolution of computing.
In 1983, CPU speed or frequency was 25 MHz. Assuming 1,000 CPU cycles
correspond to making a decision on a Go board, it would have taken 31 minutes to
make a decision about 361 × 360 × 359 = 46,655,640 possible moves back then. Today,
a single CPU’s frequency is above 4 GHz, as shown in Figure 3, making it 160 times
faster on the same algorithm—in this case, taking less than 12 seconds to make that same
decision.1 In Figure 3, you can see that although CPU frequency stalls at its current level,
the number of cores and transistors continues to double every other year or so. If we design

Figure 4. GFLOPS in GPU versus CPU over time. Here, GPUs are measured in GFLOPS instead

of number of cores, which integrates speed instead of just the number of parallel processing

units.

5,750

Nvidia GPU single precision

Nvidia GPU double precision

Intel CPU double precision

Intel CPU single precision

Th
eo

re
ti

ca
l G

FL
O

P
S

5,500

5,250

5,000

4,750

4,500

4,250

4,000

3,750

3,500

3,250

3,000

2,750

2,500

2,250

2,000

1,750

1,500

1,250

1,000

750

500

250

0

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

GeForce 780 Ti

GeForce GTX 680

GeForce GTX 580

GeForce GTX 480

GeForce GTX 280

GeForce 8800 GTX

GeForce 7800 GTX
GeForce 6800 Ultra

GeForce FX 5800

Pentium 4

Woodcrest

Bloomfield

Harpertown

Westmere

Sandy Bridge
Ivy Bridge

Tesla K40
Tesla K20X

Tesla M2090

Tesla C2050
Tesla C1060

GeForce GTX TITAN

July/August 2016 7

better computing algorithms, we could double the computing speed at its current level
every other year or so.

In computing, a better measurement of computing power and performance is
FLOPS (floating-point operations per second). Most microprocessors today can carry
out 4 FLOPS per clock cycle, thus a single-core 2.5-GHz processor has a theoretical
performance of 10 billion FLOPS, or 10 GFLOPS. Today, the most stunning recent
hardware advancement is the GPU, which is akin to having thousands of tiny CPU
cores for parallel processing. Figure 4 shows the evolution of the GPU compared to
the CPU. Here, GPUs are measured in GFLOPS instead
of number of cores, which integrates speed instead of just
the number of parallel processing units (for example, the
Nvidia GeForce GTX TITAN Z has 5,760 cores at 8,122
GFLOPS). If Go moves could be decided in parallel,
we could end up with 0.01 second for making a move.
Visualize that for a moment: from 31 minutes to 0.01
second in 30 some years.

A lphaGo is probably most powerful at its database,
which is the weakest aspect of human capacity com-

pared to computers, not in its evaluation. It’ll be interest-
ing to see what would happen if we removed the database.
Regardless, with its advancement in computing and stor-
age power, AlphaGo beats the most diligent and deeply
intelligent human brains. The ramifications on the next
evolutionary computing step remain to be seen.

Reference
1. W. Harrod, “A Journey to Exascale Computing,” Proc.

High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1702–1730.

Jim X. Chen is a professor of computer science at George Ma
son University. He’s also an associate editor in chief of CiSE.
Chen’s research is in graphics, virtual reality, and medical im
aging; he has a PhD in computer science from the University
of Central Florida. Contact him at jchen@gmu.edu.

Erratum

In “Lesbian, Gay, Bisexual, Transgender, and Queer Students’ Sense of Belonging in Com-

puting: An Intersectional Approach,” which appeared in Computing in Science & Engineer-
ing, vol. 18, no. 3, 2016, pp. 24; doi: 10.1109/MCSE.2016.45, the originally published

version of the article contains an error in the author bio section. The correct text should read

“Heather Wright is a research associate for the Computing Research Association’s Center for

Evaluating the Research Pipeline (CERP). Her research interests are centered on her passion

for promoting social justice among all groups of individuals—especially those who are under-

represented in computer science and other closely related fields. Wright received a BS in

sociology from Radford University, with minors in technical & business writing and women’s

studies. Contact her at heather@cra.org.”

Computing in Science & Engineering regrets this error.

 DEADLINE FOR 2017 AWARD
NOMINATIONS

DUE: 15 OCTOBER 2016

In 1982, on the occasion of its
thirtieth anniversary, the IEEE
Computer Society established
the Computer Entrepreneur
Award to recognize and
honor the technical managers
and entrepreneurial leaders
who are responsible for the
growth of some segment of the
computer industry. The efforts
must have taken place over
fifteen years earlier, and
the industry effects must be
generally and openly visible.

All members of the profession
are invited to nominate a
colleague who they consider
most eligible to be considered
for this award. Awarded
to individuals whose
entrepreneurial leadership is
responsible for the growth of
some segment of the computer
industry.

COMPUTER ENTREPRENEUR
AWARD

AWARD SITE: https://www.computer.org/web/awards/entrepreneur

www.computer.org/awards

