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From the editors

by Jim X. Chen
George Mason University

The Evolution of Computing: AlphaGo

G
oogle’s AlphaGo program made headlines recently when it played a game 
of Go with a top human player and won. We’re conditioned to like chal-
lenges until we face a formidable opponent, but what happens when we face 
a computer? 

I learned to play Go when I was in elementary school. It’s the simplest board game 
concept, yet it’s the most difficult to play. I quickly gave up because it can take hours 
to finish just one game, and it takes seemingly forever to improve your skills. It’s worth 
learning the game, but I wouldn’t recommend it to all youngsters. 

Figure 1 shows the Go board—on the 19 × 19 array, two players (black and 
white) take turns placing a stone of their own color on an empty grid point. 
Adjacent stones of the same color along the vertical and horizontal grid lines 
form an area. When an area is surrounded by an opponent’s stones, it’s “alive” if 
it has at least one empty point inside the area; otherwise, the stones in the area 
are captured and removed from the board. However, if the surrounded area has 
only one empty point left, it’s captured because an opponent can place a stone 
in that point and solidly surround it. Therefore, an area is only really alive if it 
has two separate empty points inside—for example, as Figure 2 shows, if black 

Figure 1. A Go board. On the 19 × 19 array, two players take turns placing a stone of their own color on 
an empty grid point.
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places a piece at X on a border or corner, then its area is alive. If white places 
a piece at X, the black stones will eventually be removed. The players count 
points in their own live areas to decide who won or lost. That’s it—simple! But 
rather frustratingly, it’s difficult to see where to place a stone to gain a territorial 
advantage. 

 When I started my MS in computer science back in 1983, I looked at the game 
again in an artificial intelligence course. Roughly speaking, the person who starts a 
match has 19 × 19 possible empty points to place his or her stone, leaving 19 × 19 – 1 
empty points for his or her opponent’s next move. This goes on to searching (19 × 19)! = 
361! possible combinations for the best results. Compared to other games, the Go board 
has many more options—for example, a chess board has only (8 × 8)! = 64! possible 
combinations. Furthermore, a chess piece’s move is confined to its next step, as the king 

Figure 3. Microprocessor data over time. The number of transistors, integer performance, 
CPU frequency, power consumption, and number of cores has shifted—in some cases, 
dramatically. Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham,  
K. Olukotun, L. Hammond, and C. Batten Dotted line extrapolations by C. Moore.
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Figure 2. A critical point. If black places a piece at X, its area is alive. If white places a piece at 
X, black stones will eventually be removed.
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can only move one spot away from its current position, significantly reducing its number 
of combinations. 

So where does this leave humans versus computers? The huge number of options 
in Go (361!) is still beyond computing power; ordinary human players can see just a 
few moves ahead. In fact, let’s assume a human player can see three steps ahead—if 
so, we have at most 361 × 360 × 359 = 46,655,640 situations to consider, which is a 
manageable number for computers. Good human players can memorize successful 
gambits played in other games and maybe see a few moves further ahead, but 
machines can remember all existing games, although it takes a tremendous effort to 
pull that information together. AlphaGo was initially trained to mimic human play 
by attempting to match the moves of expert players from recorded games (its database 
holds 30 million moves). Once it reached a certain degree of proficiency, it was trained 
further by playing multiple games against other instances of itself, using reinforcement 
learning to improve its play. This accomplishment is all the more amazing because 
there’s no easy way to evaluate a position in Go—the number of stones on the board 
is a weak indicator of a position’s strength, and a territorial advantage is difficult to 
calculate. A professional human player can make relatively easier judgments compared 
to a machine due to instincts that algorithms can’t capture, but AlphaGo might have 
broken this barrier. 

But kudos to AlphaGo aside, the real story here is the evolution of computing. 
In 1983, CPU speed or frequency was 25 MHz. Assuming 1,000 CPU cycles 
correspond to making a decision on a Go board, it would have taken 31 minutes to 
make a decision about 361 × 360 × 359 = 46,655,640 possible moves back then. Today, 
a single CPU’s frequency is above 4 GHz, as shown in Figure 3, making it 160 times 
faster on the same algorithm—in this case, taking less than 12 seconds to make that same 
decision.1 In Figure 3, you can see that although CPU frequency stalls at its current level, 
the number of cores and transistors continues to double every other year or so. If we design 

Figure 4. GFLOPS in GPU versus CPU over time. Here, GPUs are measured in GFLOPS instead 

of number of cores, which integrates speed instead of just the number of parallel processing 

units.
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better computing algorithms, we could double the computing speed at its current level 
every other year or so.

In computing, a better measurement of computing power and performance is 
FLOPS (floating-point operations per second). Most microprocessors today can carry 
out 4 FLOPS per clock cycle, thus a single-core 2.5-GHz processor has a theoretical 
performance of 10 billion FLOPS, or 10 GFLOPS. Today, the most stunning recent 
hardware advancement is the GPU, which is akin to having thousands of tiny CPU 
cores for parallel processing. Figure 4 shows the evolution of the GPU compared to 
the CPU. Here, GPUs are measured in GFLOPS instead 
of number of cores, which integrates speed instead of just 
the number of parallel processing units (for example, the 
Nvidia GeForce GTX TITAN Z has 5,760 cores at 8,122 
GFLOPS). If Go moves could be decided in parallel, 
we could end up with 0.01 second for making a move. 
Visualize that for a moment: from 31 minutes to 0.01 
second in 30 some years. 

A lphaGo is probably most powerful at its database, 
which is the weakest aspect of human capacity com-

pared to computers, not in its evaluation. It’ll be interest-
ing to see what would happen if we removed the database. 
Regardless, with its advancement in computing and stor-
age power, AlphaGo beats the most diligent and deeply 
intelligent human brains. The ramifications on the next 
evolutionary computing step remain to be seen. 
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Erratum

In “Lesbian, Gay, Bisexual, Transgender, and Queer Students’ Sense of Belonging in Com-

puting: An Intersectional Approach,” which appeared in Computing in Science & Engineer-
ing, vol. 18, no. 3, 2016, pp. 24; doi: 10.1109/MCSE.2016.45, the originally published 

version of the article contains an error in the author bio section. The correct text should read 

“Heather Wright is a research associate for the Computing Research Association’s Center for 

Evaluating the Research Pipeline (CERP). Her research interests are centered on her passion 

for promoting social justice among all groups of individuals—especially those who are under-

represented in computer science and other closely related fields. Wright received a BS in 

sociology from Radford University, with minors in technical & business writing and women’s 

studies. Contact her at heather@cra.org.”

Computing in Science & Engineering regrets this error.

 DEADLINE FOR 2017 AWARD  
NOMINATIONS

DUE: 15 OCTOBER 2016

In 1982, on the occasion of its 
thirtieth anniversary, the IEEE 
Computer Society established 
the Computer Entrepreneur 
Award to recognize and 
honor the technical managers 
and entrepreneurial leaders 
who are responsible for the 
growth of some segment of the 
computer industry. The efforts  
must have taken place over 
fifteen years earlier, and 
the industry effects must be 
generally and openly visible.

All members of the profession 
are invited to nominate a 
colleague who they consider 
most eligible to be considered 
for this award. Awarded 
to individuals whose 
entrepreneurial leadership is 
responsible for the growth of 
some segment of the computer 
industry.

COMPUTER ENTREPRENEUR 
AWARD

AWARD SITE:  https://www.computer.org/web/awards/entrepreneur

www.computer.org/awards 


