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The renewed interest from the scientific community in machine learning (ML) is opening
many new areas of research. Here we focus on trends in ML that are providing
opportunities to advance the field of computational fluid dynamics (CFD). We discuss
synergies betweenML and CFD that have already shown benefits, and we also assess
areas that are under development andmay produce important benefits in the coming
years. We believe that it is also important to emphasize a balanced perspective of
cautious optimism for these emerging approaches.

Machine learning (ML) is a rapidly developing
field of research that has transformed the
state-of-the-art capabilities for many tradi-

tional tasks in computer science, such as image classi-
fication and captioning, natural language processing,
and recommender systems. The numerous success
stories of ML have led to widespread adoption in the
scientific and engineering communities as well, fueled
by a growing wealth of data, computing resources, and
advanced optimization algorithms. This is especially
true in the field of fluid mechanics, where emerging
technologies complement existing computational and
experimental methods, providing a unified approach to
building models from data.5

Despite these advancements, there remains a gap
in understanding how ML can be best integrated with
computational fluid dynamics (CFD). This article aims
to explore the synergies between ML and CFD, show-
casing the potential benefits and challenges in combin-
ing these fields. ML can advance CFD in areas such as
turbulence modeling, development of inflow boundary
conditions, subgrid-scale (SGS) models for large-eddy
simulations (LESs), closures for Reynolds(Re)-averaged
Navier–Stokes (RANS) equations, development of
reduced-order models (ROMs), and flow control.29 Our
approach is to first examine established techniques,
such as proper-orthogonal decomposition (POD) and
dynamic-mode decomposition (DMD), alongside deep

learning techniques with autoencoders. Next, we delve
into emerging opportunities where ML and CFD can be
further integrated, highlighting ongoing challenges and
potential solutions. We conclude by summarizing the
insights gained and potential future directions for this
interdisciplinary research.

OVERVIEW OF APPLICATIONS
The next sections discuss the more relevant applica-
tions at the intersection of ML and CFD.

Modeling the Near-Wall Region of
Wall-Bounded Turbulence
Twenty years ago, Milano and Koumoutsakos18 devel-
oped a method to predict the relevant features of tur-
bulent channel flow close to the wall by using deep
neural networks. In addition to the interest of this work
from the perspective of modeling turbulence, and
potentially developing wall models, the authors also
established connections between neural networks and
traditional methods, such as POD. In particular, they
showed that by restricting the neural networkmodel to
be linear, the network essentially learns the features
produced by standard POD. This topic has received
renewed attention in recent years due to the possibility
of training deeper neural network models with larger
data sets as well as the emergence of novel learning
architectures.2

Development of Inflow Conditions for
Turbulence Simulations
This is a critical area for CFD when it comes to achiev-
ing high-Re-number conditions and simulating complex
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geometries. Spatially developing turbulent boundary
layers (TBLs) requires very long domains to reach high-
Re numbers, and if part of the low-Re region can be
replaced by an adequate inflow condition, simulations
at the relevant high-Re regime can become feasible.
Similarly, if a simulation is designed to study the turbu-
lent flow around a complex array of obstacles, it is
beneficial to replace the inflow section of the simula-
tion by a suitable inflow condition, thus yielding signifi-
cant computational savings. Traditional approaches to
these inflows have relied on various filters, recycling
approaches, and imposing synthetic turbulent struc-
tures. However, recent progress in ML has enabled the
use of deep learning approaches to produce robust
inflow conditions, including the use of modern archi-
tectures such as transformers.32

Development of Boundary Conditions
for External-Flow Simulations
One of the challenges of simulating external flows, e.g.,
the flow past an airfoil, is the need for large computa-
tional domains to adequately reproduce the far-field
conditions and the pressure distribution around the
wing. Although the resolution of the portion of the
domain near the far field is often already quite coarse,
being able to replace this region entirely by a suitable
boundary condition would lead to significant computa-
tional savings. Furthermore, it is important to establish
prescribed pressure-gradient (PG) conditions to study
PG TBLs and their nontrivial flow-history effects. To this
end, a number of ML approaches have recently been
developed for effective boundary-condition design.2 In
particular, Gaussian-process regression has been suc-
cessfully employed to optimize the shape of the domain
to prescribe a particular PG distribution.

Improved SGS Models for LESs
In this application, the goal is to develop frameworks
that supplement coarse numerical simulations, where

only the largest turbulent scales are resolved, with addi-
tional information corresponding to the flow scales
that are too fine to be properly simulated with the cho-
sen computational mesh.8 This approach leads to sig-
nificant computational savings but opens questions
regarding the physical relevance and accuracy of the
assumptions from the SGS model. One way in which
ML is helping develop SGS models is using filtered,
direct-numerical-simulation (DNS) data to obtain the
information required to supplement the coarse model,
and then to train data-driven algorithms to predict this
filtered field. However, there are limitations to this
approach, and recently, more nuanced approaches
have been developed that replace supervised learning
with reinforcement learning (RL). This also includes
innovative approaches to develop wall models,2 which
can enable high-Re, wall-bounded turbulence studies,
as discussed in more detail in the next section.

Enhanced Closures for RANS
Equations
Beyond traditional approaches, based on using high-
fidelity data to fit the parameters from the eddy-
viscosity-based, Re-stress models, ML has brought a
number of additional approaches to RANS modeling.8

These approaches include the discovery of novel clo-
sure functional forms and interpretability of data-driven
turbulence models. Furthermore, recent approaches
based on physics-informed neural networks (PINNs)21

have also led to successful predictions of the Re
stresses in the context of RANS. We elaborate on these
topics in the next section.

Robust Methods for Nonintrusive
Sensing and Superresolution
To study and control turbulent flows experimentally, non-
intrusive sensing is important, for example, being able to
predict the flow based onmeasurements at the wall. This
is an area where numerical simulations help in the design
of better experiments, and where data-driven methods
have traditionally played an important role. The typical
methods used to predict the flow based on wall informa-
tion include linear stochastic estimation, extended POD
(EPOD), and system-identification approaches based on
transfer functions. The main limitation of thesemethods
is that they are linear, and although they are capable of
accurately predicting the linear-superposition mecha-
nism of turbulence, they do not capture nonlinear mod-
ulation. Deep learning methods, however, are capable
of accurately reproducing the nonlinear scale interac-
tions in turbulent flows and have recently exhibited
superior performance compared to linear methods.

DEEP LEARNINGMETHODS,
HOWEVER, ARE CAPABLEOF
ACCURATELY REPRODUCING THE
NONLINEAR SCALE INTERACTIONS IN
TURBULENT FLOWSANDHAVE
RECENTLY EXHIBITED SUPERIOR
PERFORMANCE COMPARED TO
LINEARMETHODS.

BY INVITATION OF THE EDITOR-IN-CHIEF

34 Computing in Science & Engineering September/October 2022



In particular, convolutional neural networks (CNNs),
generative adversarial networks, and other computer-
vision architectures provide new techniques to perform
nonintrusive sensing in turbulence, even with coarsely
sampled wall information.12

Novel Approaches for Flow Control
Finally, another area where ML is starting to have a
significant impact is flow control. Numerical simula-
tions have often been used to obtain robust control
strategies, which can subsequently be deployed in
experimental studies. Active flow control, in which the
actuation requires energy input, has been extensively
used in the context of turbulent flows, both to reduce
drag and enhance mixing, depending on the applica-
tion. Closed-loop control is typically the most effective
approach because it uses measurements of the instan-
taneous state of the flow to dynamically determine the
control action; note the importance of sensing men-
tioned previously. One traditional method of closed-
loop control is opposition control, in which a synthetic
jet at the wall actuates with the opposite sign of
the wall-normal fluctuations in the near-wall region.
ML methods are enabling more sophisticated control
strategies, e.g., through genetic programming (with the
advantage of providing interpretable control policies)
or via deep RL, which is enabling the discovery of novel
control approaches in a wide range of flows,20 includ-
ing turbulence control.14

In the remainder of this contribution, we focus on
established techniques and emerging trends, where
new applications of ML algorithms have the potential
to significantly impact numerical simulations of fluid
flows. After assessing the synergies between ML and
CFD, we then summarize our conclusions and provide
an outlook.

SYNERGIES BETWEEN ML
AND CFD

The intersection of ML and CFD is a rapidly growing
discipline. Therefore, we have organized the following
into established methods and connections, emerging
and developing research areas, and ongoing challenges
and limitations.

ESTABLISHED TECHNIQUES
New approaches in ML are having a significant impact
on the development of ROMs. Even the most complex
flows exhibit certain patterns and dominant structures,
which can be used to construct models with simpler
dynamics than the original physical system, but still
containing some of their essential ingredients.3,5,22

These patterns enable the development of ROMs,
which can be used to make predictions of the com-
plete system with lower fidelity at a significantly lower
computational cost. Some of the most widely used
methods for ROM development rely on linear algebra.
For instance, the well-known POD, also known as prin-
cipal component analysis, is based on the singular
value decomposition (SVD) algorithm for matrices.
POD reduces the dimensionality of flow-field data by
identifying the most important modes of variation in
the data, which are typically associated with large-
scale features in the flow. We assume that a velocity
field uðx, tÞ can be expressed as a linear combination
of the mean flow �u ðxÞ and a set of orthogonal spatial
modes /iðxÞ:

uðx, tÞ ¼ �u ðxÞ þ
XN

i¼1

aiðtÞ/iðxÞ (1)

where aiðtÞ are the temporal coefficients specifying the
amplitudes of the spatial modes, x are the spatial coor-
dinates, t is the time, and boldface denotes vectors. To
find the temporal coefficients aiðtÞ in (1), we can use
the snapshots of the flow-field data uðxj, tkÞ at discrete
spatial locations xj and time instances tk: These snap-
shots are organized into a matrix U¼ ujk

� �
, where

each column corresponds to a time instant and each
row corresponds to a spatial location. We then perform
an SVD on the matrixU; obtaining a set of orthonormal
spatial modes /iðxÞ and their corresponding singular
values ri related to the energy contained in each mode.
We keep N modes by choosing a threshold for the sin-
gular values that captures a desired percentage of the
total energy in the system.

Substituting the POD into the governing equations
of the fluid flow, such as the Navier–Stokes equations,
gives a system of equations for the coefficients. This is
known as Galerkin projection, and it involves projecting
the governing equations onto the subspace spanned
by the POD modes. The result is a system of ordinary
differential equations for the temporal coefficients
aiðtÞ: a dynamical system representing the dynamics
of the flow restricted to the low-dimensional POD
subspace.

Two important properties of the POD modes are
their orthogonality, implying that a particular physical
feature of the system will be represented in only one
mode of the expansion, and the fact that they are
ranked by their energetic contribution to uðx, tÞ, thus
facilitating the truncation process. Note that (1) decom-
poses the spatiotemporal problem into spatial modes
and their temporal dynamics so that POD is fundamen-
tally based on a separation of variables. Thus, having
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/iðxÞ implies that only the temporal coefficients need
to be obtained to build a ROM.

A number of ML-based approaches have been used
to predict the temporal coefficients in a purely data-
driven manner, including the various types of recurrent
neural networks,25 Koopman-based frameworks,9 sparse
identification of nonlinear dynamics (SINDy),4 CNNs,17

and even more recently, transformers.32 These data-
driven approaches have enabled the development of
robust ROMs for flow cases of significant complexity.

Another data-driven approach used to identify flow
features is the DMD,23,24,28 in which the spatiotemporal
data can be decomposed into Fourier-like modes with
their corresponding amplitudes, frequencies, and growth
rates. DMD differs from POD in several ways. Although
POD decomposes the data into spatial modes and tem-
poral coefficients, DMD decomposes it into dynamic
oscillatory modes with a single frequency. DMD is a
purely data-driven approach and does not require an
equation, as is needed in Galerkin projection. DMD cap-
tures transient dynamics, while POD is more suited for
quasi-steady flow. Both are powerful tools for reduced-
order modeling, and the choice between them depends
on the problem at hand.

The methods discussed in this section learn a linear
subspacewhere the dynamics of the ROMare expressed.
Deep learning enables learning a nonlinear coordinate
system on a curved manifold, where it is possible to
compactly represent the complex, nonlinear dynamics
of fluid-flow systems.11 In a neural network, each layer
produces an output by taking a linear combination of
the inputs, adding a bias, and passing it through a non-
linear activation function. When we consider a linear
neural network (i.e., the activation function is linear)
with an identity mapping, we find that the matrix of
weights is equivalent to the matrix formed with the
eigenfunctions of POD, implying that the linear opera-
tions used in POD can be seen as the operations of a
linear neural network. We can obtain the POD via train-
ing a linear neural network using backpropagation
with the squared distance between the original and

reconstructed data as the cost function. As discussed
earlier, Milano and Koumoutsakos18 used this idea to
develop a nonlinear generalization of POD by adding a
nonlinear activation function in two hidden layers of
the neural network. They used this model for recon-
struction of the near-wall flow in a turbulent channel,
finding that it gives better compression than linear
POD (better reconstruction for unseen data) at a higher
computational cost.

In the nonlinear generalization of POD using a neu-
ral network, one is replacing SVD by backpropagation
to learn a lower-dimensional representation of the
data. This low-dimensional representation can be con-
sidered the nonlinear principal components of the
data, capturing the essential features of the flow. The
neural network model can then be used to reconstruct
the high-dimensional, fluid-flow data from the low-
dimensional representation. In deep learning, this two-
step process is called an autoencoder: a network
that projects high-dimensional data into and from a
lower-dimensional latent space. In an autoencoder,
the so-called encoder E maps the input data u to a
low-dimensional latent space r; i.e., u! r; while the
decoder D maps the latent space back to the original
data: r! ~u , obtaining the reconstruction ~u :When the
autoencoder produces an accurate reconstruction, it
also provides an effective, low-dimensional representa-
tion of the original data in the latent space. The pro-
cess for implementing an autoencoder is summarized
as follows:

F ¼D� E (2a)

~u ¼ Fðu;wÞ (2b)

Lrec ¼ eðu, ~u Þ: (2c)

Here, F denotes the network,w is its parameters to
be optimized through training, e is the loss function,
and Lrec is the reconstruction loss. Through this data-
driven framework, it is been possible to obtain nonlin-
ear modal decompositions of a number of flows, leading
to very compact representations of the original data in
the latent space due to the inherent nonlinearity of the
method.

Autoencoders, unlike POD, do not inherently pos-
sess the two most important properties of orthogonal-
ity, and rank ordering by the energy content. Recent
work has addressed both issues. Obtaining the nonlin-
ear modes in ranked order of their energy content is
possible with hierarchical encoders, which leverage
convolutional layers to learn increasingly abstract fea-
tures.13 They thus can exploit spatial locality and
multiscale information in the flow input data. The hier-
archical formulation starts by using a network, denoted
as F 1, to map the original data into a 1-D latent vector:

IN DEEP LEARNING, THIS TWO-STEP
PROCESS IS CALLEDANAUTOEN-
CODER: A NETWORK THAT PROJECTS
HIGH-DIMENSIONALDATA INTO AND
FROMA LOWER-DIMENSIONAL
LATENT SPACE.
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r1 ¼ E1ðuÞ: Next, a second network, F 2, is trained to
map the input data u into a 2-D latent space, defined
as: ½r1,r2�, where r1 is already known and r2 is obtained
at this level. This recurrent relationship of networks
can be extended to higher dimensions, building a ROM
where each additional latent vector contributes less to
the reconstruction of the original field. To promote
orthogonality, disentanglement among the latent vec-
tors can be favored by adding a b-weighted penalty
term to the loss function in variational autoencoders.
In tests using a complex turbulent flow,10 this method-
ology provided approximately 90% energy reconstruc-
tion with just five autoencoder modes, whereas five
POD modes would yield a reconstruction of roughly
30% of the energy. These results highlight the potential
of using autoencoders to develop very compact ROMs,
even in turbulent flows.

Established ML techniques are also playing an
important role in developing improved RANS models.8

Although traditional approaches focus on fitting coeffi-
cients in classical RANS strategies, researchers are
investigating innovative methods for model discovery.
These methods include genetic programming7 or
SINDy.4 The key advantage of these approaches is their
ability to provide interpretable models that are not
constrained by the functional forms of existing ones.
Interpretability is particularly important as many deep
learning-based approaches that demonstrate potential
for novel RANS models are not interpretable. Cranmer
et al.7 present a promising approach to incorporating
interpretability into RANS models developed through
deep learning. In their work, symbolic equations are
derived through symbolic regression (using genetic
programming) based on the input–output behavior of a
trained neural network model. These models demon-
strate performance equivalent to the original neural
network while offering enhanced interpretability and
generalizability properties.

ML shows great potential in other modeling tasks,
such as assessing the impact of compressibility on the
flow31 and evaluating the properties of stratified flows,27

even at large scales. Measurement techniques are also
being improved through the integration of ML,30 partic-
ularly when combined with simulations.

EMERGING OPPORTUNITIES
Large-scale simulations of turbulent flows, particularly
at high Re, are computationally expensive due to the
multiscale nature of turbulence. With increasing Re,
the separation of scales increases and the smallest
scales near the wall become progressively smaller.
DNS requires computational meshes fine enough to

resolve all relevant flow scales, leading to a growing
number of required grid points proportional to Re37/14

(or Re13/7 for an LES).6 As a result, simulating industri-
ally relevant Re numbers remains infeasible with cur-
rent high-performance computing facilities. Reducing
the computational cost of these simulations is critically
important for the field of CFD, particularly for turbulent
flows in conditions close to full-scale applications.

Kochkov et al.15 proposed an interesting approach
for accelerating simulations using ML. Their method
involves reducing the resolution of the numerical mesh,
which automatically lowers computational cost. How-
ever, using a coarse mesh with conventional numerical
methods often gives incorrect physics and erroneous
results. Kochkov et al.15 propose a deep learning
framework to establish a correction between the low-
cost, coarse-resolution simulation and the costly, fine-
resolution simulation. Their results show that, even
with computational meshes 8–10-times coarser in each
spatial direction, it is still possible to recover the most
relevant features of the flow, including some much
smaller than the grid spacing in the coarse case,
yielding excellent agreement with the full-resolution
reference data. Their strategy involves filtering the
fine-resolution data to produce a coarse-resolution
dataset for the same time steps as the original mesh. A
CNN is then trained to predict the residual between
the coarse and fine simulations at each step, effec-
tively learning how to supplement the coarse simula-
tion with missing information. CNNs are widely used in
computer vision because they can exploit spatial corre-
lations in the data. The vortical flow used in this study
exhibits coherent structures that can be effectively
predicted using the various convolutional filters in the
CNN. Early hidden layers focus on simpler and more
abstract features, while layers closer to the output can
reproduce and synthesize more complex features due
to the concatenated application of convolutions of this
architecture. This hierarchical representation of struc-
tures is well suited to the multiscale nature of turbu-
lent flows, making CNNs a natural choice for such
predictive tasks. In general, superresolution techniques
have shown great promise in highly structured, multi-
scale fluid applications.12

It is important to note that the flow case used in
Kochkov et al.15 is relatively simple: the 2-D Kolmogorov
flow sustained by an external-forcing term. Although
the results in this flow case are quite promising, it is
crucial to assess the feasibility of this approach in
more complex scenarios, such as 3-D, unforced turbu-
lence, where fluctuations are maintained through prop-
erly resolving the near-wall region, where most of
the production occurs up to moderate Re numbers.
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Successfully accelerating such a flow simulation would
be a significant milestone in CFD and the study of high-
Re turbulence. In a related context, the neural-operator
framework16 is a promising approach, where a generali-
zation of neural networks is proposed to learn operators
capable of approximating complex nonlinear operators.
This has already been shown to perform well for coarse
meshes in two dimensions at a reduced computational
cost compared to traditional partial differential equa-
tion solvers.

Using coarser meshes and supplementing the
resolved flow with an ML-based term to recover unre-
solved information can also be combined with a wall
model. In this approach, a model is used to calculate
the wall-shear stress, eliminating the need to resolve
the computationally expensive area close to the wall,
and yielding significant computational savings, particu-
larly at a higher Re number. This approach is popular
in atmospheric boundary layers,26 where extreme
flow conditions typically require such an approach for
realistic Re numbers. An alternative method involves
exploiting the self-similarity of turbulent structures
within the overlap region for a more sophisticated con-
dition.19 Although promising, current wall models have
limitations and can benefit from ML to devise more
advanced strategies. Some studies use CNNs1 to
predict fluctuations at the boundary-condition plane
based on information from another plane. Even though
these methods show better predictions, missing infor-
mation and scales at the input plane hinder the devel-
opment of robust models that perform well a posteri.
An interesting direction involves using RL to predict
the most likely output plane based on the input plane,
leading to adequate flow features and turbulence sta-
tistics.2 The advantage of this approach is its unsuper-
vised nature, which does not require labeled data for
the boundary condition. The most suitable boundary
condition may not be the filtered DNS plane; thus,
exploring alternatives given a predefined reward func-
tion could be a viable approach for these simulations.

ONGOING CHALLENGES
Several aspects of CFD are unlikely to be easily improved
or replaced by ML. Many of the numerical methods
underpinning CFD have been optimized for decades
and provide incredible scalability and tunable accuracy.
Imagining that ML will replace these classical numerical
algorithms is unrealistic, and a more practical goal is to
design new algorithms and frameworks that allow them
to work together.

Further, ML models are generally quite expensive
to train, both in terms of the learning algorithm itself

and the cost of generating the training data. Training
data are typically generated using high-fidelity CFD,
and this cost is often neglected when assessing the
performance of the overall techniques, compared with
traditional methods. We should also be mindful that
we are comparing emerging ML techniques, many of
which are fewer than 10 years old, with mature numeri-
cal algorithms that have been tested and developed
for over half a century. Nevertheless, it is important to
include these training costs and clarify how these mod-
els will be incorporated into existing workflows.

A number of important questions arise when
assessing an ML-based CFD solution. How general is
the model? Does it only apply to the parameters
explored in the training process, or does it generalize?
How often will the model be used, and what fidelity is
required for the ultimate objective? For example, the
fidelity required for closed-loop feedback control may
be considerably lower than that which is required to
optimize an airfoil geometry with transonic separation.
The answers to these questions inform the higher-level
questions of how ML solutions will be incorporated into
existing CFD workflows, and how training costs should
be quantified and balanced against online accelera-
tion. The community is still largely in the basic research
phase of incorporating ML into scientific computing as
it remains unclear exactly how these algorithms will be
used in production. Therefore, it is important to be as
precise and transparent as possible about the strengths
and weaknesses of these approaches.

ML solutions, especially approaches based on deep
learning, typically require either large volumes of data
or are limited to a narrow set of parameters explored in
the training process. Improvements in transfer learning
may make it possible to extend models trained at one
set of parameters to another parameter set, for exam-
ple, generalizing an ML model to higher Re numbers;
however, this capability is currently lacking. In CFD
applications, where acquiring training data requires
expensive simulations, MLwill likely benefit from active
learning approaches that are thoughtful in selecting
training data to reduce uncertainty and improve model
performance in a targeted way. Many parallels exist
among enhancing CFD with ML, the history of enhanc-
ing experiments with CFD, and enhancing CFD with
ROMs. We can leverage this vast literature on uncer-
tainty quantification, design of experiments, variable-
fidelity methods, and targeted idealizations to guide
ML solutions.

A promising approach to reducing training costs
while improving generalizability is to incorporate known
physics into the ML models. In fact, a good working defi-
nition of physics is models that generalize to new, unseen
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scenarios. Emerging techniques, such as PINNs,21 incor-
porate known physics into ML techniques, for example,
by including a loss function to promote the governing
equation being satisfied. Although these approaches
often provide improvements over training algorithms
that do not incorporate any physical knowledge, adding
terms to the loss function essentially acts as a sugges-
tion that the solution is physical. This is in contrast to
numerical techniques that are structurally formulated or
constrained to enforce physics up to a specified numeri-
cal tolerance. Similarly, we should balance how much
prior physical knowledge is enforced, and how rigidly,
with the flexibility to capture new effects, such as model
discrepancies and inadequacies. In the limit of training
with infinite data fromhigh-fidelity, Navier–Stokes simula-
tions, will an MLmodel converge to the simulation itself?
Will it converge to the Navier–Stokes equations? These
are fundamental open questions inML, and incorporating
physics is an area of intense active research.

CONCLUSION
Several existing, emerging, and ongoing connections are
found between ML and CFD. Some challenges in CFD
are particularly amenable to ML solutions, such as
developing ROMs for large, energetic, coherent struc-
tures and improved RANS closure models in turbulence.
In these areas, large volumes of data, often from CFD,
are used to extract patterns and simplified models that
may be used to accelerate future simulations, balancing
accuracy and computational cost. These fields benefit
from decades of experience in incorporating data-driven

models and managing uncertainties through multifidel-
ity methods and design of experiments. Thus, it is natu-
ral to incorporateML solutions into this framework.

Other aspects of CFD are promising for augmenta-
tion through ML, although developments appear to be
more challenging and improvements may be more
modest. For example, CFD may be accelerated by
learning-correction terms to accurately capture high-
fidelity physics on a coarser mesh, followed by a super-
resolution map from the coarse mesh back to the fine
mesh. Although initial demonstrations have been quite
promising, a number of ongoing questions and chal-
lenges remain before these approaches are ready for
full-scale integration with existing CFD techniques.
Current demonstrations typically involve 2-D flows,
and significant developments will likely be needed to
extend these to more realistic 3-D flow configurations.
Mature CFD techniques, such as spectral-element and
finite-volume methods, are well developed, and they
have been optimized for several decades to have a
low-memory footprint, and to scale to extremely large
problem sizes through parallel processing. It may be
unreasonable to expect emergingML solutions to com-
pete with these mature techniques without similar
concerted research efforts, and time will tell how much
benefit will be achieved. Open questions remain about
the generalizability of ML models and how they will be
incorporated into existing workflows, making it difficult
to provide a holistic comparison of various approaches.

Similarly, most of these techniques require extensive
training databases, which are typically based on the
high-fidelity CFD solutions that they aim to enhance/
augment/replace. The cost of generating the training
data is often considered a one-time, offline cost, with the
hope of future online computations being accelerated.
However, depending on the generalization capabilities of
the resulting model and the number of future evalua-
tions, the training cost may be significant and should be
considered in a holistic assessment of the algorithm.
The offline/online split is especially valid for ROMs that
will be used for control applications, where low-latency
predictions are oftenmore important thanmodel fidelity.
ROM literature also has extensive experience with quan-
tifying the trade-offs between training cost, model fidel-
ity, and online costs, for example, to maximize the use of
limited computational resources to iteratively optimize
airfoil geometries for Formula One cars. This literature,
which involves uncertainty quantification and iterative
design of experiments, should provide a useful basis for
the challenging task of incorporating ML into CFD work-
flows. We also have opportunities to improve optimiza-
tion workflows, using automatic differentiation in ML
frameworks to replace costly adjoint calculations.

FROM THE EDITOR-IN-
CHIEF
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It is important to balance optimism for the potential
of ML to enhance CFD with a healthy respect for how
well existing CFD works. We see a strong parallel
between the current rise of ML and the rise of CFD in
the 1980s. In retrospect, CFD was never destined to
replace experiments as it is a complementary approach
that offers different strengths and weaknesses. Simi-
larly, it should be clear that ML will not replace CFD;
rather, it will complement and enhance our capabilities,
providing another approach to develop improved mod-
els based on available data. The rise of ML techniques
in computational science, and in particular, in CFD, will
require educational efforts to incorporate these skills
into the standard arsenal of graduating engineers. Just
as engineering students are now expected to have com-
putational proficiency, future students will be expected
to have basic proficiency in ML.
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