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Abstract: Various types of interference signals limit the practi-
cal application of transform domain communication systems
(TDCSs) in the severe electromagnetic field, an orthogonal basis
learning method of transformation analysis (OBL-TA) is pro-
posed to effectively address the problem of obtaining an opti-
mal transform domain based on sparse representation. Then, the
sparse availability is utilized to obtain the optimal transformation
analysis by the iterative methods, which yields the sparse repre-
sentation for transform domain (SRTD) in unrestricted form. In
addition, the iterative version of SRTD (I-SRTD) in unrestricted
form is obtained by decomposing the SRTD problem into three
sub-problems and each sub-problem is iteratively solved by
learning the best orthogonal basis. Furthermore, orthogonal
basis learning via cost function minimization process is con-
ducted by stochastic descent, which is assured to converge to a
local minimum at least. Finally, the optimal transformation analy-
sis is developed by the effectiveness of different transform
domains according to the accuracy of the sparse representation
and an optimal transformation analysis separately (OPTAS) is
applied to the synthesized signal forms with conic alternatives,
dualization, and smoothing. Simulation results demonstrate that
the superiorities of the proposed methods achieve the optimal
recovery and separation more rapidly and accurately than con-
ventional methods.
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sparse representation, transform domain communication sys-
tem (TDCS).
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1. Introduction

Ensuring a low probability of interception (LPI) and sus-
ceptibility to interference is essential for maintaining the
security and reliability of communication in tactical opera-
tions. However, it is well known that the communication
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links are highly vulnerable to electromagnetic interfer-
ence. This has been addressed in recent years by the
development of cognitive communication [1,2]. These
systems have been demonstrated to facilitate the mitiga-
tion of interference from perspectives of the transmitter
and receiver simultaneously rather than the receiver only,
which provides the capability of avoiding spectral bands
occupied by interference sources or jammers. Further-
more, the cognitive framework enables the intelligent uti-
lization of available frequency in the scarce spectrum
under the complex and confrontational condition and the
communication system synthesizes the adaptive anti-jam-
ming waveforms for high spectrum efficiency through
frequency pool nulling and spectral broadening via trans-
formation analysis. Hence, the framework of cognitive
communication systems is highly attractive for anti-jam-
mer applications [3—5].

As one of the most common representatives in cogni-
tive communication systems, the overall implementation
of transform domain communication system (TDCS) first
involves a sensing determination of the spectrum of inter-
ference or jamming signals, which is typically conducted
by spectrum estimation techniques. Then, the surround-
ing signals are identified with transformation analysis in
various domains and a fundamental modulation wave-
form (FMW) is created by a random basis function with
various transform bases [6]. Because the FMW is spec-
trally synthesized to avoid the interfered regions, the
transmitted energy cannot be injected into the interfered
locations in the corresponding transformation analysis.
Moreover, interference will affect the transmitted signals
and anti-jamming performance diversely in different
transformation analyses for both the transmitter and
receiver. Meanwhile, communication performance can be
further improved by applying the diverse range of avail-
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able sparsity representations for distinguishing local sig-
nals and baleful signals. Therefore, obtaining the optimal
transform domain for various interference signals under
sparse representation is essential to ensure the security
and reliability of communications in the TDCS.

The extensive development of signal processing theo-
ries promotes many novelties for transforming signals,
such as the Fourier transform, fractional order Fourier
transform, wavelet transform, and their derivatives [7-9].
More broadly, transformation analysis converts the
detected signals into new representations using dimen-
sionality reduction or feature extraction methods for prin-
ciple component analysis (PCA) [10], linear discriminant
analysis (LDA) [11], sparse learning [12,13], etc. And the
transformation analysis is not necessarily restricted into
linear transforms. However, the multiformity of signals
and the presence of non-linear transform domains make
the selection of the optimal transform domain difficult
owing to the large amount of calculation involved. Addi-
tionally, the challenging task is particularly difficult to
settle with the high cost and unreliability of large-scale
training samples. Moreover, most of the existing methods
rely on the manual and limited selection for particular
signals, whereas actual signals are generally affected by
many factors. Therefore, it is imperative to develop the
transformation analysis methods that are flexibly applica-
ble to general signals in order to broaden the practical
applications.

This paper addresses the above-discussed issues by
obtaining an optimal transform domain for various types
of interference signals in the TDCS and an orthogonal
basis learning method of transform analysis (OBL-TA) is
proposed based on sparse representation. The process
enables us to utilize the effectiveness of different trans-
form domains to obtain the optimal transformation analy-
sis for particular types of signals according to the accu-
racy of sparse representation based on the obtained
orthogonal basis. Moreover, an optimal transformation
analysis separately (OPTAS) is applied to the synthe-
sized signal forms, which further improves the validity of
interference classification and mitigation. The simulation
results demonstrate that the proposed OBL-TA method
obtains the optimal transform domain more rapidly and
accurately than conventional methods, which illustrates
the superiorities in effectiveness and timeliness. The pri-
mary contributions are summarized as follows.

(1) An OBL-TA is proposed, where the sparse representa-
tion of interference signals can be simplified based on the
orthogonal basis obtained in the optimal transforma-
tion analysis.

(i) The sparse representation for transform domain
(SRTD) is obtained in unrestricted form, and an iterative
version of SRTD (I-SRTD) is derived in unrestricted
form, where the SRTD problem is decomposed into three
sub-problems for the closed solutions.

(iii) Each sub-problem is solved by learning the best
orthogonal basis and the flexible attenuation rate is alter-
nated iteratively, where a cost function minimization pro-
cess is conducted by stochastic descent.

(iv) An OPTAS is applied to the synthesized signal
forms with conic alternatives, dualization and smoothing,
which achieves the optimal transformation analysis
according to the accuracy of sparse representation based
on the separate characteristics for interference and sparse
signals.

The rest of the paper is organized as follows. Section 2
describes the sparse representation for signals and derives
the sparse representation for linear transform domains. In
Section 3, the iterative optimization for general transfor-
mation analysis is proposed based on information
entropy. Moreover, the optimal transformation analysis
for synthesized signal forms is proposed in Section 4.
Simulation results are presented in Section 5 and conclu-
sions are given in Section 6.

2. Sparse representations for linear
transform domains

In general, most signals processed in communication sys-
tems can be compressed by transforming them as a series
of coefficients in some domains. However, many of the
transform coefficients of natural signals are typically
close to zero [14]. Accordingly, the compressed signals
only occupy a small fraction of the transformed signal
space, which may be represented sparsely by a few ele-
mentary components out of a given collection. Conse-
quently, sparsity can also be observed in other classes of
natural signals [15]. In fact, sparse signals are observed
almost everywhere in the wide fields of signal processing
and play an important role in a variety of tasks, such as
radar imaging, interference characterization and data
reduction. Accordingly, it is essential for the cognitive
communication system to address these sparse signals in
broadband spectrum.

2.1 TDCS signal

Different from direct sequence spread spectrum (DSSS)
that mitigates interference at the receiver, the TDCS
smartly synthesizes an adaptive waveform to avoid inter-
ference at the transmitter. The transmission sequence in
TDCS has good autocorrelation and cross-correlation per-
formance to achieve low LPI and orthogonality. Fig. 1
shows the processing steps of a general TDCS transmitter.
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Fig. 1 Processing steps of a general TDCS transmitter

To ensure an interference-free transmission, a spectrum
mask is determined by the magnitude shaping and the
available spectrum. Among them, the complex poly-
phase vector is produced by a unique pseudorandom code
selected randomly according to the spectrum mask and
the phase space. Then, the mapping rules achieve the
noise-like property of base function and the desired
energy is distributed equally or diversely in the spectrum
nulling to scale the magnitude. After selecting the opti-
mal transformation analysis, the appropriate inverse
transform is performed for the energy-injected wave-
forms to generate the buffered base function in the time
domain. Generally, cyclic shift keying is utilized for
modulation in TDCS to adapt noise-like properties.
Finally, the information bit stream is synthesized by map-
ping the buffered base function and the transmitted wave-
form with the normalized energy factor.

It is a fact that the signal can be corrupted by additive
Gaussian noise and external jamming when transmitted
through the channel, the practical channels are mainly
dominated by the line-of-sight (LOS) component and the
possible limited multipath fade due to ground reflections
where the propagation delay is mainly caused by path
loss. Meanwhile, given the potentially relative mobility,
Doppler frequency shifts may affect the channel, and con-
sequently, the spectrum allocation.

When the length of the original signal is NV, there are
w=2" possible forms of the transmitted signal in the
entire signal space S. Only a small fraction of the space is
occupied, which can be represented sparsely as

S(I)Z TTHT 1
Y,T:|:‘S'17’SZ9.”"SW]T ( )
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where ¥, is a sparse dictionary for signal space S and
most coefficients @, are apparently equivalent to zero.

2.2 Interference analysis

In practice, the communication systems are subject to
diverse types of interference in the complex environment
and the multiform interference can be divided into three
main categories, which include impulse interference, car-
rier interference and direct noise interference [16,17].
These latter two categories can be further divided as well.
For example, the carrier interference occurs in many
forms, such as sine, square, and saw-tooth waves,
whereas the direct noise interference can be divided into
different categories according to its modulation mode,
such as amplitude modulation interference, frequency
modulation (or phase modulation) interference and hybrid
modulation interference [18]. Additionally, the above cat-
egories of interference can be divided generally based on
their spectrum characteristics into targeted, multi-fre-
quency and blocking interference categories. For
instance, the narrow-band interference is representative of
targeted interference [19,20]. Here, targeted interference
typically represents interference with a high degree of
similarity to the interfered signals. Multi-frequency inter-
ference interferes with multiple carriers, and is character-
ized as frequency-division, time-division, and compre-
hensive multi-frequency interference [21,22]. Among
these, multi-tone interference is applied broadly to tacti-
cal communications. Blocking interference has the char-
acteristics of wide broadband coverage, such as in the
case of chirp interference and comb-spectrum interfer-
ence. Considering the composition and application of
jammer in practical applications, the Gaussian noise sub-
stituted for the interference source generator is investi-
gated in this paper.

2.3 Sparse representation

Sparse representation is the basis of compressive sensing,
which represents information in a signal as a small set of
real or negative numbers and most of the coefficients are
close to zero. To estimate the coefficients of sparse sig-
nals for representation where the interference or TDCS
signals are defined as the general signal x € C¥, and C"
is regarded as the N-dimension complex vector. Conse-
quently, the general signal x can be represented sparsely
in the corresponding transform analysis 7., which is for-
mulated as

min |x - PO
e
s.t. 9], <K )

where ¥ is a dictionary, which encodes the critical infor-
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mation for a series of similar signals, @ is the coefficient
vector, K is the sparsity, ||¢||r denotes the Frobenius norm
and ||*||, denotes the number of nonzero elements.

Efforts to design a suitable or general transform
domain for signals began with the development of the
Fourier transform, cosine transform and their derivatives
[23]. Many pioneers have applied the fast Fourier trans-
form (FFT) [24], fractional Fourier transform (FrFT)
[8,25] and discrete wavelet or cosine transform
(DWT/DCT) [26] for conducting signals decomposition
and analysis. Because the diversities of signals include
the time-varying and non-stationary characteristics, mul-
tiple transform domains have been applied for signal
decomposition and analysis, such as the time domain, fre-
quency domain, fractional domain and wavelet domain.
These domains can be converted to each other and sig-
nals can be processed independently simultaneously.

In addition to dictionary learning methods, a signal
may be sparse under a particular transformation whether
the transformation is linear or whether the transformation
matrix is reversible, such as in the case of gradient opera-
tors or curved shifts. Accordingly, the transformed signal
is a sparse vector, and the transformation analysis 7.
achieves the aforementioned transform domains for the
general signal x, satisfying the following condition:

N
T.(x) — Z '/’,'91' = PN gNxi (3)

i=1

where the sparsity K<<N, y is a basis and € denotes the
projection coefficient vector.

According to iterative methods [27] with the fast gra-
dient updating for a, sparse availability can be utilized to
solve the problems in (2) and (3), the SRTD in unre-
stricted form [28] is given as

i 2
min ||T.(x) - ¥6); +ll®ll, (4)

where the attenuation rate is a>0.

In the simplest cases where the transformation analy-
sis is restricted to linear transforms and 7. or ¥ is orthog-
onal, such as in the orthogonal base of the normalized
DFT and various DWT, the matrix T-'¥ is invertible.
The aforementioned problem in (4) can be simplified as

. -l 2
min - |lx =T 96|, + |6l (5)

Therefore, the matrix T-'¥ can be obtained using a

dictionary learning algorithm, such as the method of opti-

mal directions (MOD) and k-singular value decomposi-
tion (kSVD), which is given by

O = argmin ||x— T 'I’@”i
bmby<k ) A (6
(7] = min|x - T~ 6|+ |6l

Once T™'¥ is obtained, it is easily factorized into an
invertible matrix 7-' and an orthogonal matrix ¥ by
matrix decomposition methods such as QR decomposi-
tion.

Naturally, solving the problem in (6) is computatio-
nally much simpler and cleaner than solving the problem
in (4). Additionally, the complexity of the aforemen-
tioned approach for solving problem in (6) can be
reduced from N’ to Nlog,N by applying existing fast dic-
tionary learning methods, where N is the dimensionality
of interference signal x . However, the transformation
analysis often fails to conform to linear restrictions due to
the multiformalism of signals involved and the nonlinea-
rity of transform domains. Under these conditions, itera-
tive optimization methods provide a means of an optimal
solution to non-convex optimization problems.

3. General independent transformation
analysis

Through converting the sparse signal to the appropriate
domains for processing, the results have discovered obvi-
ous sparse features and many TDCS signals can be com-
pressed, that is, they can express with sparse represen-
tations properly after transformation analysis by choos-
ing appropriate basis, which pave the way to investigate
the sparse representation and reconstruction further.
Therefore, the sparse representation of the signal can be
simplified to the orthogonal basis of the optimal trans-
form domain.

The problem given in (4) can be simplified by decom-
posing it into the following three subproblems by tempo-
rarily fixing the variables. Then, it can be achieved by
accelerating the process of optimization during iterations.

6 = arg min ||7.(x)- POl
¥ =min |[T.(x)~ PO +all6"ll %

T (x) = min [|T.(x)—¥"0"||; +a|l6"l,

Here, we note that the orthogonal dictionary Y"%¥ =1,
where 1 is the identity matrix. These components are then
alternately solved in an iterative fashion, which is illus-
trated in detail as follows.

3.1 Orthogonal basis learning

The above discussion indicates that one of the subprob-
lems in (7) would be best solved by obtaining the opti-
mal orthogonal basis ¥* through a learning approach,
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while ensuring that the orthogonal dictionary ¥* obtained
by iterations is an orthogonal matrix.

Suppose that ¥, ; and a training datasetx are given
initially, after the transformation analysis 7. temporarily
fixed, the best coefficient vector is obtained approxima-
tely as

6" = Dy(x, V)V T.(x) ®)

where Dg(x,¥) represents a K -sparse diagonal matrix,
which indicates that there are K largest coefficients above
Zero.

Then, based on the coefficient vector @* obtained tem-
porarily, we adopt the SVD decomposition for 7.(x)@*"

Uzv' =T.(x)0™"
{ : ©)

q[; — UVH

With the gradient descent algorithm, a few or all of the
parameters are adjusted to minimize the output error and
the I-SRTD in unrestricted form is conducted by

Wy

t+1

=¥ —-aVJT.(x),¥,) (10)

where VJ(T.(x),¥;) is the gradient of the cost function
J(*) (also denoted as the estimation error), which can be
derived from (10) as follows:

J(T.x). %) =||T.(x)- ;6"

D) - w6 (T x)f;- (11)

i=1

2
.

Meanwhile, the cost function and its gradient may be
obtained further by combining (9) with (11) as follows:

J(T.(x).¥7) = IT.(x)ls =
L
DTGl D, ) W' T(x), (12)

i=1

VJ =¥ T.(0)T.(x)". (13)

Considering the fact that compressive signals are gene-
ralized commonly as the exponential form with the
increase of a [29 ], we can adjust the value of ¢, itera-
tively by

max

-1
a/,zarot_’( %o ) , t= 1,2,"'9tmax (14)

where a, is the initial setting, » is the adjustable parame-
ter and £,,,, is the maximum of iterations.

The relationship between the bases obtained at succes-
2. . . .
, 1s restricted with an arbi-

sive iterations qum”i > ”Y’,
trary x after applying the Gram-Schmidt process for
orthogonalization and normalization of the bases. This
provides the corresponding restrictions:

JT.(x),¥,) < J(T.(x),¥7). (15)

In this case, the iterative process is continued until the
results satisfy the bound ||¥* - V|| < &, where & repre-
sents an arbitrary parameter of precision.

3.2 Independent transformation analysis

The optimization problem in (11) has been solved based
on a number of structured libraries investigated in previ-
ous studies, such as time-frequency dictionaries, wavelet
packets and cosine packets. Most of these libraries can be
considered as corresponding to orthogonal bases in same
cases [30]. Herein, we denote these libraries as S. An adap-
tive method for selecting the optimal basis from .§ [31] is
proposed that delivers near-optimal sparsity representa-
tions on the order of Nog,N in terms of time. This me-
thod is formulated as

min Z{T.(x)T. S} (16)

where the term Z{T.(x)} = Ze[T .(x;)] represents the

level of entropy associated with information theory and
e[T.(x;)] is an entropy function with scalar representa-
tion, which is defined as

oT.(x)], = min(IT.(x) - ¥"O"[ +all"llp. A7) (17)

where the parameters A; = A*(1 + t)*. Here, >0 is the
threshold and ¢ = \/ﬂTzM,- where M, represents the
total number of distinct vectors occurring among all bases
in the library. For example, M=nlog,n for the structured
library based on wavelet packets.

According to the definition of information entropy [32],
we can obtain the optimal transformation analysis 7. as

T:(x)=arg min Z{T.(x)T, C S} (18)

where there exists the probability of occurrence exceed-
ing (1—&/M;) when (18) satisfies the condition

|

where Th is the obtained threshold of the optimal trans-
formation analysis.
The overall processing presents the convergent proper-

AA;
T.0)-T.)|; < = -min S{T@-T@) (19
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ties of the OBL-TA, and it will converge to the global
minimum at the end. The iterative process of the OBL-
TA algorithm is illustrated in Fig. 2. Above all, we can
utilize the effectiveness of the different transform
domains to independently obtain the optimal transforma-
tion analysis for the corresponding general signal accord-
ing to the accuracy of sparse approximation based on the
obtained orthogonal basis, which will further improve the
validity of interference classification and mitigation.

Inputs: x, S,
N, a, and ¢,

‘max

Initialize
parameter: ¥©

No Yes

Compute coefficients
0, .:0_ =" T.(x)

l

Adjust the attenuation
rate a: o=t af”

Obtain the best
approximation for
T.(x): T.x)=¥.,0,,

Update the dictionary
atoms in the basis ¥

Compute the gradient:

Y(T.(x)¥)

l

Compute the
updated ¥,

l

Orthogonalize and
normalize the basis ¥,
L —— 7

Update the
— transformation
analysis 7.(x)

~

Outputs: ¥, 6,,and the
optimum 77 (x)

Fig. 2 Iterative process of the OBL-TA algorithm

4. Optimal transformation analysis separately

4.1 Synthesized signal forms

The detection of synthesized signal forms at the receiver
is not affected in the spectrum sensing stage of TDCS
because its signals are highly sparse and noise-like. Thus,
the synthesized form of received signals may be deter-
mined by whether the interference exists or not accord-
ing to the obtained rejection domain in transformation
analysis. The problem based on the hypothesis testing is
illustrated as

Hy:s+j+n
y= (20)
H, :s+n

where y is the perceived electromagnetic information, s is
the TDCS communication signal, j (if it exists) is electro-
magnetic interference, and » is the environmental noise.

If the assumption H; is true, different forms of interfer-
ence should be considered in this case, such as the nar-
rowband interference and the multi-tone interference.
According to the obtained dictionary for signal or inter-
ference separately by orthogonal basis leaning, the spec-
trum estimation with sparse representation in trans-
formed domains may be given by

Yy =T.(s+j+n)=T.(s)+T.(j)+n' = 5
Y05+V,0,+n @D
where y' denotes the transformed signal, ¥ and ¥, are
the dictionary of signal and interference, respectively. g
and @, are the multiple coefficients representing sparsely
for signal and interference and n' is a transformed noise
vector.

To create a spectrum mask for avoiding the interfer-
ence more intelligently and accurately, an artificial intel-
ligence (Al)-enabled engine is embedded in TDCS [33].
In clarity, a transmitter is presented in Fig. 3 where the
engine consists of three parts, the approximation, classifi-
cation, and transformation analysis for interference sam-
ples. The approximation element is designed for improve-
ment on anti-jamming performance in system, especially
under large samples and variable unknown interference.
It requires some signal approximation algorithms for
restricted different conditions, such as projection theo-
rem and sparse approximation. The classification ele-
ment is utilized by the intelligent methods (i.e., swarm
intelligence, reinforce learning, and neural networks) to
distinguish various types whatever the known or unknown



1070 Journal of Systems Engineering and Electronics Vol. 33, No. 5, October 2022

interference is. Furthermore, the transformation analy-
sis aims to find the connotative characteristics of inter-
ference, and it makes both the transmitter and receiver
mitigate the interference more effectively and specifi-

cally.
Al-enbaled engine -
[Estimate| imati
pectrum pproximation|
] Classification ] Transmition
Transform.atlon Data
analysis stream —’(g)
Modulation
Inverse Buffered CSK
phases g } > .
transform| waveforms|i [modulation
vector
Base function

Multiple
access
phases vector

Fig. 3 Modified TDCS transmitter embedded Al-enabled engine

Consequently, the unknown vector 7.(s) and 7.(j) can
be represented sparsely in the multiple transform analy-
sis T.. To further determine a sparse object in a trans-
formed domain while reducing residuals due to sparsity
constraints alone by means of the total-variation norm
[34], the problem can be described as

mTin IT.(s)+T.(Pll,

. lIs + jllrv < K (22)
s.t.
ly = WsOs+ ¥, 0l < &

where K is the enforcing sparsity of the synthesized forms
in some transform, ¢ is an adjustable scalar and the ||*||;v
denotes the total-variation norm, which is defined as

“x”TV = Z \/|xm+l,n — Xmn

mn

2 2
+ |xm.n+l _xm,n .

(23)

Based on the assumptions of the separate characteris-
tics for interference and sparse signals in [35], the synthe-
sized form of the problem in (22) for interference is
achieved by convex constraints:

min|[T.()+T.()ll; + Alls + Jllry
s.t. Iy — PsOs+ W50, < & (24)

Typically, the parameter ¢ is adjusted to make the solu-
tions feasible or high probability when the noise is
stochastic.

However, most of the works are concerned with the
aforementioned unconstrained problem in (5), the similar
methods cannot handle important variations in (24) and it
requires to be addressed efficiently in practice.

4.2 Optimal selector of transform domain

In this section, we develop an improved method for solv-
ing the aforementioned problem by conic alternatives,
dualization, and smoothing.

Firstly, due to the generalized transformation analysis
T.(s) and T.(j) without analytical forms, the conic alterna-
tives are applied to the synthesized forms in (24), which
is represented as

minz + Al|s + jllpy

{IIT.(S)+T-(1')|I1 <z
s.t.

25
Iy — ¥Psbs+W,0,ll <& )

where z is a new introduced variable.

Similarly, the total-variation norm ||x||ry can be cast as
a complex /, -norm problem ||W(x)||;, where W (*) repre-
sents as the linear operation for x and it is defined as

[W (xm,n)] = (xm+1,n - xm,n) +j (xm,n+l - xm,n . (26)

Therefore, the transformed forms of conic alternatives
can be derived from (25):

min z+ At
IT.()+T.(hll, <z
st. 4 W+, <t ) (27)
ly — PsOs+¥,0,|. < &

Then, the dual variables (p,,p,p;) compose the
Lagrangian forms, which is given by

L(s,j;p1,P2.03) = —(p1, T.(s) +T.(j)) -
(P2, W(s+J))—(ps,y — WsOs + ¥;0;)—<lpsll: ~ (28)

where (-) represents the inner product.

Because the cost function may be not differentiable on
some points, a smoothing approach [36] is utilized to
approximate the problem in (27) and the dual function
may be demonstrated as
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! . .
8.(p1, P2, p3) = 11}f§u||s +J —x()”; —(pi, T.(s)+T.(j)) -

(P2 W(s+J))—(p3,y — Vs +¥,;0;) —lpsllg
(29)

where x, means a feasible solution. Ultimately, the mini-
mum can be obtained:

x(s,j;p) = %o +u” [T7 (p)+ W (p2)-

(Ys05+¥V,6;) ps]. (30)

To achieve convergence of dual projection certainly,
different iterative steps * are applied to each dual vari-
ables, which is given by

p**Y = argming||psllp + <f(,p> +
V4

I (31)

where x = (T.(s)+T.(j),W (s +j),y — Ps0s+¥,0;).
Finally, the feasible solutions [37] are obtained by
a®  q®

k) A
S X X
pl(k+1) — Trc(yll(]\) _

(32)

k) A A

t( X, X
(k+1) — CTrely k) _ 2 2

P V2 a® g

s A
p%(kﬂ) — Shk(ylS(k) _ t3 X3 x38)

a® 7 q®

where Trc(a,b) and CTrc(a,b) represent the element-wise
truncation operators, and Shk(a,b) is an /,-shrinkage ope-
ration, which are defined as

Trc(a,b) = sgn(a) - min{|a|, b}

CTrc(a,b) = min{l, 2}

lal

(33)

b
Shk(a,b) = a~max{1 - —,0}
llalle

Fig. 4 below depicts a standard continuation loop for
solving the problem of OPTAS and it will converge to the
global minimum at the end. Above all, we can utilize the
effectiveness of the different transform domains to sepa-
rately obtain the optimal transformation analysis for the
corresponding synthesized signal forms according to the
accuracy of sparse approximation based on the obtained
optimal selector, which will further improve the validity
of interference separation and elimination.

Inputs: y, S,
N, t., and o

> “max>

Initialize

parameters: yV,
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Update the dual
function
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Compute the
Lagrangian forms
of cost function L®

¥
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feasible solutions

L'=L®, update the
transformation
analysis in §

Linear search
for the feasible ‘—,

solutions

Adjust the rate
o®

Update the dual
variables and
iterative steps

'
Obtain the
feasible solutions
L 7

Update the
transformation
analysis 7.(x)

Outputs: the
optimum 7% (x)

Fig. 4 Iterative loop for solving the problem by OPTAS algorithm

5. Simulation results and discussion

The effectiveness of the proposed OBL-TA method is
verified generally by conducting experiments with
datasets of sparse signals with variable but limited spar-
sity levels and general sparse signals. Then the results are
compared with orthogonal sparse coding (OSC) and its
derivative geodesic flow OSC (GF-OSC) for sparse rep-
resentation [14]. The number of sampling points for inter-
ference signals is employed as 1024 and the signal to
noise ratio is 8 dB where the noise is assumed to be a
Gaussian white noise channel. For detailed parameters,
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the representative interference signals are selected with
distinct sparsity including multi-tone interference, chirp
interference, comb-spectrum interference and frequency
modulation for noise interference signals. Here, single-
tone interference samples are considered based on gene-
rated sine waves. The detailed characteristics of the types
of interference datasets are listed in Table 1. The sparsity
level of the interference signals is adjusted randomly in
the scale of [5,30]. The performances of the methods are
evaluated in terms of the measured degree of sparsity, the
convergence behaviour, comparisons of performance and
the impact of system performance. Additionally, the opti-
mal transformation analysis performance obtained by the
proposed OPTAS method is compared with that obtained
by the FFT, FrFT, DCT, and DWT domains for a selec-
tion of the interference signals, which is listed in Table 1.

Table 1 Characteristics of interference datasets

Interference type Frequency Bandwidth Amplitude

Multi-tone Constant  Constant ~ Random
Comb-spectrum Regular  Constant Regular
Chirp Regular Regular  Constant
Frequency modulation for noise =~ Regular Regular Constant
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5.1 General transformation analysis

In this subsection, various interference signals are tested
as examples and their sparsity levels are variable but
unknown. A wideband spectrum sensing method [30]
is utilized to measure the sparsity of interference signals.
Generally, compressed sensing is employed to acquire the
sensed interference signal from the datasets at sub-
Nyquist rates and the sums of the frequency components
are estimated by least squares optimization. The sparsity
is assumed as the total number of frequency subbands
based on hypothesis testing for the average detection
probability. Among them, single-tone interference, multi-
tone interference and partial-band interference signals are
above 60 in sparsity whereas impulse interference, comb-
spectrum interference and frequency modulation for noise
interference signals are below 40. Besides, the amplitude
modulation for noise interference and chirp interference
signals are in between.

Fig. 5 presents the relative estimation error obtained at
each iteration epoch of the I-SRTD for a selection of
interference signals with varying levels of sparsity.
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Fig.5 Relative estimation errors obtained by I-SRTD as a function of iteration epochs for a selection of interference signals of known sparsity
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The results indicate that the relative estimation error
decreases rapidly initially and then slowly with increas-
ing iterations for all interference types considered above,
in interference type from steep to steady almost, even for
comb-spectrum interference and frequency modulation
for noise interference types. In addition, the relative esti-
mation error generally decreases with increasing sparsity.
The conclusion is drawn that the higher the levels of spar-
sity, the better effectiveness of sparse representation for
interference signals. However, increasing sparsity can
interfere with the recovery of interference signals. Fur-
thermore, the level of sparsity affects the representation
of interference signals variously, and we can achieve the
optimal representation by the transformation analysis
even the level of sparsity remains a relatively low level.
Consequently, the optimal transformation analysis based
on the unknown sparsity of interference signals is in
greater need, and our proposed OBL-TA method is suited
for these applications more ideally.

For further verfying the convergence behavior of the
OBL-TA algorithm and its adaptability for various inter-
ferece, some comparisions are conducted in this subsec-
tion. Among them, the length of received signals L = 1024,
each containing 20 spikes created by choosing 20 loca-
tions at random and then putting O at these points.
Accordingly, the sparsity of the signals is 2, but all have
random amplitudes. The projection matrix is constructed
by first creating a matrix with a Gaussian distribution and
normalizing the rows of the matrix to a unit value. Gaus-
sian white noise is added to the given datasets when the
signal to noise ratio is 8 dB and the transformation analy-
sis is implemented using OBL-TA, OSC, and GF-OSC,
respectively.

Fig. 6 presents the relative estimation errors obtained
with respect to iteration epochs when applying the above
algorithms to the same interference signals.
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Fig. 6 Relative estimation errors obtained with respect to itera-
tion epochs when applying the OBL-TA, GF-OSC, and classical
OSC algorithms to the same interference signals

It is noted that the relative estimation errors of the opti-
mal orthogonal basis obtained by OBL-TA decrease gra-
dually and rapidly converge to the best sparse representa-
tion under the corresponding transform domains while the
convergence is not as readily discernible for the OSC and
GF-OSC algorithms and their estimation errors are greater.
Obviously, the proposed OBL-TA achieves convergence
rapidly and obtains less relative estimation errors, which
provides superior sparse representation performance rela-
tive to that of the other two algorithms considered.

More generally applicable results are presented in Fig. 7,
which presents the relative estimation errors obtained
with respect to iteration epochs when applying the OBL-
TA, GF-OSC, and OSC algorithms to a selection of the
interference signals listed in Table 1 with unknown spar-
sity, but the level of sparsity randomly changes in the
given scope of [20,80]. It is noted that the proposed
method improves the representation accuracy in the range
of 25%—40% relative to those of the other methods in
whole, and the improvement is about 50% for frequency
modulation for noise interference signals. Additionally,
due to the levels of sparsity are arranged in order from the
higher to the lower, the relative estimation errors are gra-
dually descending with the increasing levels of sparsity.
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Fig. 7 Relative estimation errors obtained with respect to iteration epochs when applying the OBL-TA, GF-OSC, and OSC algorithms to a

selection of the interference signals with unknown sparsity

5.2 Optimal transform analysis

Fig. 8 presents the relative estimation errors obtained for
multi-tone interference (Signal I), chirp interference (Sig-
nal II), comb-spectrum interference (Signal III), and fre-
quency modulation for noise interference (Signal IV) in
the FFT, FrFT, DCT, or DWT domains. And the levels of
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sparsity are arranged in order from the higher to the lower
of the scope 60—80, 50—60, 40—50, and 20—40, respec-
tively. Here, the level of the entropy function is obtained
by the convergent value in the libraries of transfo-
rm domains and the optimal transformation analysis is
obtained by the OPTAS method.
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Fig. 8 Relative estimation errors obtained for multi-tone interference (Signal I), chirp interference (Signal II), comb-spectrum interference

(Signal III), and frequency modulation for noise interference (Signal IV) in different domains
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These results demonstrate that different types of inter-
ference signals are particular well processed in diffe-
rent domains. For example, it is noted that multi-tone
interference signals with higher sparsity are well suited
for the simple FFT and DCT domains, whereas the fre-
quency modulation for noise interference signals with
lower sparsity is well suited for the complex FrFT
domain. This is because that the representation of high-
sparse interference signals is easier than that of low-
sparse interference signals, the sparse separability can be
utilized to distinguish sharply from the different sparse
interference signals by the particular transform domain.

Meanwhile, the time-sensitive evaluation is required
for the proposed OPTAS method. For four groups of
interference signals with the change of frequency, 20
Monte-Carlo simulations are executed and the sampling
frequency f;=1024 MHz. The channel is assumed to be a
Gaussian white noise channel when the signal to noise
ratio is within the scope of 6 dB to 10 dB. All experi-
ments are performed in the Matlab R2013b environment
and the simulation hardware platform is an Intel(R)
Core(TM) i7 CPU (3.40 GHz), 4G memory PC. Here, the
timely accuracy ratio is defined as TAR= accuracy/time
and relative TAR of transformation analysis RTAR=
TAR/TAR,,,, where TAR,,,, represents the maximum of
the timely accuracy ratios under different transform
domains. Both of them reflect the time-sensitive evalua-
tion for interference signals under transformation analy-
sis in some degree. The relative running time ratios con-
sumed for different interference signals in the FFT, FrFT,
DCT, and DWT domains are presented in Fig. 9.
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Fig. 9 Relative running time ratios consumed for different inter-
ference signals in the FFT, FrFT, DCT, and DWT domains

The results illustrate that the different transform
domains are particular well suited to different types of
interference signals and have great difference in process-
ing time-effectiveness. For example, the relative running
time ratios of multi-tone interference signals under the

1075

FFT, FrFT, DCT, and DWT domains are similar to each
other whereas the FFT and DCT domains are simpler
than the others. In contrast, the relative running time
ratios of chirp interference and comb-spectrum interfer-
ence signals under the FrFT and DWT domains are more
efficient than that of FFT and DCT domains due to the
time-varying and complex characteristics required for
detailed analysis.

5.3 Performance analysis for diverse spectrum states

When a TDCS system is put into the complex electro-
magnetic environment, the transmitter and the receiver
will be situated in different spectrum states and their
states can be divided into the consistency and inconsis-
tency with spectrum sensing, which results in the diver-
sity of interference processing.

To further exploit the impact factors on the perfor-
mance of bit-error-rate (BER) for addressing different
interferences by the OPTAS method, multi-tone interfe-
rence (Signal I) and comb-spectrum interference (Signal
IIT) are selected in the consistent spectrum sensing cases.
The variable spectrum dataset of measured interfe-
rence is determined by the settings in Table 1, where the
frequency range of Signal I varies from [30,55,85] kHz to
[280,305,335] kHz and the adjustable rate range of Sig-
nal III interference varies from 130 to 380, and the fre-
quency range varies from 80 kHz to 330 kHz. For the
interference and noise power, the initial signal to noise
ratio is 4 dB where the noise is assumed to be a Gaussian
white noise channel. Moreover, all interferences to noise
ratios (INRs) change from —4 dB to 10 dB with the inter-
val of 1 dB where the noise power is constant. The expe-
riment results for different sparse interferences in
the consistent spectrum sensing cases are illustrated
in Fig. 10.
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Fig. 10 Comparison of BER obtained for multi-tone interference
(Signal I) and comb-spectrum interference (Signal III) in the consis-
tent spectrum sensing
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It is demonstrated that the mitigation performance of
multi-tone interference and comb-spectrum interference
are improved gradually with the increase of the INRs,
which indicates the higher power density of interference
is more available for separation. However, when the
INRs of the comb-spectrum interference keep in the
degree of —2 dB to 2 dB, its BERs performance makes
worsen than others for its similarity to the noise. Dis-
tinctly, it takes the advantage for addressing multi-tone
interference when compared with that of comb-spectrum
interference due to the intrinsic complexity in spectrum
distribution.

The next section of the experiment is conducted for the
demodulation performance of BERs for TDCS signals in
the inconsistent spectrum sensing cases. For traditional
TDCS system, it is a tough task to settle this different
spectrum cases due to the interaction between the trans-
mitter and receiver for synthesizing the base function.
When the detection error is obtained by sensing spectrum
in the receiver, the performance will degrade obviously
[38]. Thus, the BERs performance for traditional TDCS
and the proposed Al-enabled TDCS in Section 4 are com-
pared in Fig. 11. Here, the detection error is simplified as
the difference of sensed spectrum between the receiver
and transmitter. It is known that the most accredited
degree of detection error for keeping communication is
about 25% and this complex spectrum case is selected as
the sample. The mean values of BER from 100 simula-
tions are adopted as the final result and the interference
parameters are set as same as those in Fig. 10. Mean-
while, the comb-spectrum interference is selected as the
representative interference.
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Fig. 11
ference mitigation among the traditional TDCS and the proposed

Comparison of the BERs performance obtained for inter-

Al-enabled TDCS when the sensed spectrum is inconsistent

The results illustrate that the BER of the proposed Al-
enabled TDCS is more acceptable than the traditional
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TDCS for its flexible separation of interference spectrum.
It is evident that the performance degraded gradually with
the increase of INRs. The reason for the poor interfer-
ence mitigation performance is that the accumulated error
for signal separation is not satisfactory when the interfer-
ence power makes bitter. Furthermore, the ideal results
are found that the impacts of interference on the pro-
posed Al-enabled TDCS are suppressed more clearly than
the conventional whereas both of them are suited for low
power interference almost below 0 dB. As the power den-
sity of interference grew higher above 3 dB, the pro-
posed Al-enabled TDCS achieves smaller BERs and
descending tendency when compared with the traditional
TDCS of up-growing BERs, which demonstrates its supe-
riority in interference mitigation.

6. Conclusions

The optimal transformation of interference is an impor-
tant factor restricting the anti-jamming performance of
TDCSs for tactical communication. In this paper, an OBL-
TA is proposed based on sparse representation. Sparse
availability is utilized to obtain the optimal transforma-
tion analysis by the SRTD in unrestricted form. In addi-
tion, the I-SRTD in unrestricted form is obtained by
decomposing the SRTD problem into learning the best
orthogonal basis. Furthermore, based on the assumptions
of the separate characteristics for interference and sparse
signals, an OPTAS is applied to the synthesized signal
forms with conic alternatives, dualization, and smoothing.
The process enables us to utilize the effectiveness of dif-
ferent transform domains to obtain the optimal transfor-
mation analysis according to the accuracy of sparse repre-
sentation based on the obtained orthogonal basis, which
will further improve the validity of interference classifi-
cation and mitigation. The simulation results demon-
strate that the proposed method obtain the optimal trans-
form domain more rapidly and accurately than conven-
tional methods, and it can therefore effectively meet the
requirements of interference classification and mitigation,
which significantly improves the anti-jamming perfor-
mance of TDCSs.
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