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Abstract: High-precision filtering estimation is one of the key
techniques for strapdown inertial navigation system/global na-
vigation satellite system (SINS/GNSS) integrated navigation sys-
tem, and its estimation plays an important role in the perfor-
mance evaluation of the navigation system. Traditional filter esti-
mation methods usually assume that the measurement noise
conforms to the Gaussian distribution, without considering the
influence of the pollution introduced by the GNSS signal, which
is susceptible to external interference. To address this problem,
a high-precision filter estimation method using Gaussian pro-
cess regression (GPR) is proposed to enhance the prediction
and estimation capability of the unscented quaternion estimator
(USQUE) to improve the navigation accuracy. Based on the
advantage of the GPR machine learning function, the estimation
performance of the sliding window for model training is mea-
sured. This method estimates the output of the observation
information source through the measurement window and rea-
lizes the robust measurement update of the filter. The combina-
tion of GPR and the USQUE algorithm establishes a robust
mechanism framework, which enhances the robustness and sta-
bility of traditional methods. The results of the trajectory simula-
tion experiment and SINS/GNSS car-mounted tests indicate that
the strategy has strong robustness and high estimation accu-
racy, which demonstrates the effectiveness of the proposed
method.
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1. Introduction

Integrated navigation is a special technology that compre-
hensively processes data from multiple navigation
devices. It effectively overcomes the limitations of a sin-
gle system, and enhances the accuracy and performance
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of navigation [1]. The strapdown inertial navigation sys-
tem/global navigation satellite system (SINS/GNSS)
combination is better and has a large variety of applica-
tions. The two systems complement each other well and
have the advantages of strong reliability, continuous out-
put, and high positioning accuracy [2]. Nevertheless, si-
milar to platform inertial navigation systems, SINS suf-
fers from a loss of navigation accuracy over time and
cannot correct the error by itself. GNSS as a source of
auxiliary information is used to correct the system error
accumulated over time due to gyroscope drift and
accelerometer deviation [3]. In the course of practice,
information fusion technology plays a decisive role in the
integrated navigation system.

Information fusion is the key to integrated navigation,
and its realization depends on modern filtering techno-
logy. In 1960, the Kalman filter (KF) algorithm was adop-
ted by Kalman [4], which has become one of the most
important methods in modern filtering technology. How-
ever, the estimation accuracy of the traditional Kalman
filter cannot be satisfied in strongly nonlinear systems. In
particular, when the expression of a nonlinear function is
more complicated, it is easier to approximate the proba-
bility distribution of the output of the nonlinear function
than to approximate the nonlinear function [5]. Com-
pared with the linear approximation extended Kalman fil-
ter (EKF), the unscented Kalman filter (UKF) uses the
unscented transformation (UT) for state and variance
propagation [6]. UKF has a higher estimation accuracy
and reliability in nonlinear systems. It has received exten-
sive attention from domestic and international experts and
scholars and has become a hotspot of research in this
field [7]. In 2003, the unscented quaternion estimator
(USQUE) was proposed by Crassidis for application to
the field of spacecraft attitude estimation [8]. In [9], the
USQUE calculation problem is optimized for the inte-
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grated navigation attitude estimation, which reduces the
complexity of the algorithm and shortens the calculation
time. In [10], by comparing the state estimation perfor-
mance of USQUE, multiplicate extended Kalman filter
(MEKF), and Euler-KF in the integrated navigation sys-
tem, experimental tests indicate that USQUE has the best
accuracy and the strongest stability.

In the practice of the SINS/GNSS system, the natural
environment is complex and changeable, resulting in
GNSS inevitably being polluted and interfered, affecting
the overall performance of the system. The measurement
of pollution will degrade the estimated performance of
USQUE, where negative sigma points are generated, and
it is not always guaranteed that the calculated covariance
matrix is positive definite [11]. For example, if the car-
mounted SINS/GNSS system is used in a bustling city
center, satellite blockage or information interference may
occur [12]. When the SINS/DVL system of the submer-
sible actually operates, it may be subject to problems
such as changes in ocean currents or anomalous current
interference caused by topography [13]. Therefore, it is
necessary for the USQUE algorithm to deal with interfe-
rence problems in practical applications. In [14], a method
of comparing the square of the Mahalanobis distance
from the point to zero with the predetermined quantile of
the Chi-square distribution was used to enhance the
robustness of KF. However, this method is only applica-
ble to linear systems. The Masreliez-Martin UKF algo-
rithm is robust and automatically adjusts the covariance
matrixofthemeasurementprocessbyfadingfactors,butthissca-
ling method is difficult to guarantee the positive nature of
the variance [15]. In [16], to handle the noise pollution
and profitability problems in measurement, a robust adap-
tive mechanism was constructed. This control strategy
adopts a method to reduce the weight of polluted mea-
surement information and improve the anti-interference
ability of the navigation. However, the algorithm is still
disturbed by abnormal measurement information, and is
equipped to fundamentally solve the measurement pollu-
tion problem, which ultimately leads to low estimation
accuracy of the system. In fact, non-Gaussian distribu-
tion and outlier interference are common. In [17], at
present, the more common robust method of M estima-
tion is the weighted measurement of the noise covariance
matrix. Reduce the filter gain array K, thereby reducing
the influence of the measurement information. Although
this method has certain robustness, for the SINS inte-
grated navigation system with low and medium accuracy,
weakening the measurement update will cause certain
damage to the filtering accuracy. Therefore, it is neces-
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sary and urgent to design a robust mechanism to deal
with outliers in nonlinear systems and non-Gaussian envi-
ronments.

With the development of machine learning, the above
problems can be solved. Gaussian regression is a non-
parametric regression method, which is based on
Bayesian theory and continuously updates the posterior
probability distribution through measured data. The final
posterior distribution basically fits the true distribution
[18]. Gaussian process regression (GPR) has the advan-
tages of hyperparameter adaptive acquisition and proba-
bilistic output, and is easy to be implemented. At the
same time, GPR can be combined with predictive control,
adaptive control and Bayesian filtering very conveniently
[19]. Therefore, the GNSS information suffers interfer-
ence, and due to the introduction of pollution observation
results, the estimation accuracy and stability are reduced.
A control strategy and framework with enhanced robust
performance are proposed. On the basis of USQUE, a
GPR-based robust USQUE (GPR-USQUE) algorithm is
proposed. This method uses the innovation sliding win-
dow and GPR measurement sliding window in the sys-
tem online detection, and performs filtering algorithm
measurement. The focus is on building a robust control
strategy framework without relying on system models. In
SINS/GNSS direct velocity loose combined simulation
and car-mounted experiment, compare the estimation
effects of USQUE and GPR-USQUE algorithms on atti-
tude and other information. The test results illustrate that
the GPR-USQUE algorithm improves the anti-interfer-
ence performance of the traditional method without
reducing the overall estimation accuracy of the system. It
is proved that the researched algorithm has good robust-
ness and stability.

The structure design and specific content of the paper
are as follows: In Section 2, we introduce the basic equa-
tion model of direct SINS/GNSS integrated navigation. In
Section 3, the GPR-USQUE algorithm is described and a
robust control strategy framework is developed. The
effectiveness and feasibility of the developed method are
verified by simulation and car-mounted testing in Sec-
tion 4. Evaluation is given in Section 5.

2. Model basic equation

This section highlights the system modeling of the
SINS/GNSS direct velocity loose combination. The sys-
tem uses GNSS auxiliary measurement information to
perform measurement updates to reduce the accumula-
tion of errors in the SINS system time update process.
The framework of the SINS/GNSS integrated navigation
system is shown in Fig. 1.
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2.1 System equation

The main framework is set in this Subsection. The Earth
frame is represented by e, i is the inertial frame, b is the
coordinate system of SINS (Right-Forth-Up), and # is the
navigational coordinate (East-North-Up, ENU). The pos-
ture part of the state is represented as a quaternion. There-
fore, the system state is defined as X = [¢},v", p,&",V"].
The SINS/GNSS direct integrated navigation equation
[20], is as follows:
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The posture part is represented by a quaternion, as
q=[q0.p"], ", is the projection of b relative to the n
frame under b, ® is multiplication, w?/ is the angular
velocity of the rotation of the Earth, w!, is the projection
of n relative to the e frame under n, v"* = [v}, v, v} ] is the
velocity for the Earth frame, f’represents accelerometer
information, g" is the gravity vector, X represents the
cross-product of two vectors, Ry and R, are latitude and
precision radius of curvature respectively, and C(q}) is
defined as
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For integrated navigation systems composed of low-
precision inertial navigation. The estimation accuracy of
the equipment error has a great influence on the overall

performance provided by the integrated navigation. The
information update model of the gyroscope is written as
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where & is the gyro bias, n,, and 1, are white-noise.
Similarly, the accelerometer measurement model is writ-
ten as
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where I” is the accelerometer bias, 5,, and 7, are white-
noise. In summary, (1)—(3) constitute a direct time-con-
tinuous state differential equation.

2.2 Measurement equation

The measurement model considers the position as the
external auxiliary information of the SINS/GNSS velo-
city loose combination mode. The velocity is represented
by V=[V: Vy V,]". The system observation model is
written as

Vk = Hvxk + Vv (4)

where Hy = [05,3 I3 050], v, is the observation noise
which obeys the Gaussian distribution.

3. Method derivation

3.1 USQUE

The USQUE algorithm effectively solves the quaternion
normality constraint problem when it comes to nonlinear
filtered pose estimation. It also uses hierarchical compu-
tation to solve the problem of matching variance in the
filtering process [21]. The USQUE algorithm uses a modi-
fied Rodrigues parameter (MRP) to transfer sampling
points, and the outer layer still retains the quaternion for
attitude update. The specific algorithm flow is shown as
follows:
X = f(x ) +wi
{ k f ( k- l) k=1 ( 5)

yi=Hyx +v,

where x; € R” is the state estimation vector, y, € R” is the
measurement update vector, f(-) is the system function,
and H, is known as the measurement matrix. System
noise is denoted as w;_; ~ N(0,Q,_,). Measurement noise
v, ~ N(0, R,;). Especially, the state estimator is denoted as
R = [66’2_1 Jhet> €1 /k_l] and the filter variance is
denoted as P,y at time k. §;_ ;- 1s the quaternion esti-
mation vector. e;_; represents other state variables except
for attitude.
0413 -1

a+6¢os-

6o =t (6)

where 667, is the MRP representation of the quaternion
error dq;_;, which converts the quaternion into a three-
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dimensional representation. The adjustable parameters £
and a generally take £ =1 and a = 0.

The update of the USQUE algorithm mainly includes
time propagation, measurement update, and attitude
acquisition.

3.1.1 Time propagation

Generate sigma points by state and variance.

P
Xi-1(0) = [ Xk_](l.) }
Xioi (D)
Sigma(Xy_y k-1, Proijir), 1=0,1,-++,2n 7N
where y;_;(i) represents the Sigma point sampling equa-
tion of USQUE at time k—1, x2°,(i) represents the pos-
ture in the state, x{_ (i) represents the non-posture in the
state, i is the corresponding Sigma point, and the dimen-
sion of the state is n. For simplicity of explanation, only
the posture update in the state quantity will be explained.
Outer attitude update is set as follows:

S0 oq q 10 q
Xij-1/k=1 7 Xig=1/i=1 = Xig=1ji=1 = Xikji-1

oY

where 7 ,,., is the Sigma point based on dgq,

X = X 1 is obtained through the connection of
6o and dq, which can be given as

oy A~

/\/;{,k—l/k—l :Xi,lli—l/k—l O -1/k-1- (®)
Inner attitude recursion is set as follows:
O oo
X?,k/k—l - Xi,z/k—l - /\/i,k/k—|

where x01, | — x%,_ is obtained through the connec-
tion of 6o and 6q, x?,,_, = Xi1,_, is obtained by using a
multiplicative quaternion as follows:

5q

Xiki-1 :XZk/k—l ®(‘ik/k—l)7l- ©

Calculate the state £;,_, and variance Py, at k/k—1 as
follows:

2n
-ijk/k—l = Z Wi Xik/k-15 (10)

i=0

2n
DPijk-1 = Z wi(/\’i,k/k—l - -f"i,k/k—l YX k-1 — ffi,k/k—l)T + 01,
izo (1)
where w; is the weight.
3.1.2 Measurement update

Filter update, given by
Xk = Ripor + Ky — Hx Ry jimr)
Py =1, - KH, P, . (12)
K, = Pk/k—lH;r[HkPk/k—lHAT +R,]™

3.1.3 Attitude acquisition

The essence of attitude update is to calculate 66 —
OGiik = Gik, 001 — 04y also uses the relationship
between do and 0§, — §ii- 00 uses the multiplicative
quaternion, as follows:

Gk = 6 ® Grje-i- (13)

Finally, the attitude part in the state is set to zero, the

error accumulated in the attitude update process is

released, and the filtering period at the next moment is
entered.

3.2 GPR robust machine

GPR is one of the Bayesian methods. This method pro-
vides a principled way of dealing with uncertainty. At the
same time, a confidence interval with upper and lower
bounds of probability can be generated. This is essential
for making decisions. In actual estimation, we are not
only concerned about the estimated value itself, but also
about the uncertainty of the estimated value. As a non-
parametric method, GPR can adjust the expression abi-
lity of the model according to the amount of training data.
On the contrary, neural networks need a lot of training
data to support [22].

In the nonlinear modeling section, the set of training
data, where x; represents input data, and y; represents
output. The relationship between input features and out-
put can be defined as

yi=flx)+e (14)
where f(x) is the true value, e is independently distri-
buted Gaussian noise, € ~ N(0,0,).

The Gaussian process is also called the normal random
process. In this data collection, all random variables con-
form to Gaussian joint distribution [23]. Gaussian pro-
cess is determined by the covariance function and the
mean function. In order to determine the GPR model in
the case of nonlinearity, the kernel function can be used
to map the multi-dimensional input to the high-dimen-
sional space. The kernel function can be any positive defi-
nite covariance matrix [24]. The squared exponent cova-
riance is used as a kernel function in this paper, as fol-
lows:

Cov(y,,y;) = k(x;,x,) +020(i — j), (15)
k(x;,x)) = ol TR ) (16)

where Cov(-) is corresponding variance, oy, w, o, are
parameters. The parameter set 6={o,,w,o,} is the
hyperparameter, which is generally obtained by the maxi-
mum likelihood method. Thus, the Gaussian process is
finally transformed into a problem to find the minimum
for the objective function under the equation condition.
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The objective function can be given by

1 _
l2(p(r1x.0) = =3 (k. x)+72L,) y=

%lg le(x, %) + 021, - g 1e(2n). (17)

Since the objective function (17) is non-abrupt, it is
impossible to find the optimal solution. The suboptimal
solution of the objective function can be calculated by
using particle swarm and other optimization algorithms.
Through multiple iterations, the value of the optimal solu-
tion is gradually approached, and the corresponding
hyperparameters are obtained.

The covariance o* and the mean u* are estimated, and
the Gaussian process is finally determined as follows:

y'~GP’,o) (18)
where
#* = k(x*vxi)[k(xisxj) +0—iln]_1ya (19)

o' =k(x",x") = k(x*, x)[k(x;,x;) +0'§I,,]"k(x*,x,~). (20)

As mentioned above, in this paper, the GPR method is
used to construct a robust mechanism for integrated navi-
gation. By establishing the data model of the measure-
ment information, the GPR model output can be used to
replace the data update when the measurement is abnor-
mal. This robust machine is applied to the USQUE algo-
rithm, and the reliability of the filter is improved.

3.2.1 State equation update

Please refer to sate update equation of (7)—(11), which is
same as USQUE.

3.2.2 Observation update

Step 1 The training data input set is constructed in
the form of a sliding window of measurement informa-
tion. The window length is k. The time series that can
establish measurement information is {y;,y,,---,¥s}. Set
the sliding window to k. The historical time data from y,
to y,_; is used as input, and time y; is used as output.
Therefore, one piece of mapping condition f:R” —» R
can be represented as

Vo= et Yrs 005 ¥1) (21

Through sample training and learning, the GPR model
can be obtained.

Step 2 Get an estimate of y at the time k, and then
obtain the innovation sequence.

/\/;c/k—l(i) = X1 £ (V4 K) Prjcr);
2n

(22)
Y= Zwih(/\/k/k_l(i))
i=0

Calculation innovation, which is the difference

between the predicted and the measurement in the mea-
surement update, is defined as follows:

=YY (23)
Step 3 The method of identifying outliers in the mea-
surement information is as follows:

{rk1 >Tp, y %s outlier ’ 24)
r.. <Tp, y is not outlier
where T, is the threshold.

The key to effective outlier detection is Tj. Traditio-
nal methods are based on selection based on experience
and lack theoretical basis [19]. In this paper, a sliding
window method is used to calculate the mean 7,_; and
standard deviation C, _, of the current time series. The 30
principle is adopted in this method and defined as fol-
lows:

k-1

.1
rk—]—_k_lzri 25)

i=

1

C. =
T k=2

(26)

k-1
Z (ri—=Fi)
i=1
The threshold is further labeled as
T,=3C,. 27)
When the variance of the information sliding window
is detected to be greater than the defined threshold, it is
determined that the measurement information at that
moment contains the profit group value. At this time, the
GPR model prediction y, is used instead of measurement
¥ to update.

Step 4 Calculate the state &; and variance P, of k,
the filter gain moment is true K;.

R = X + K — HilXy 1)
P. =1, - K:H(] Py (28)
K, = Pk/k—lH;r[HkPk/k—lH;r +R,]"!

The closed-loop calculation can be referred according

to (21)—(28). The GPR innovation process of robust
USQUE is presented in Fig. 2.

Fig.2 The GPR innovation process of robust USQUE
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3.2.3 Attitude update

The essential update of attitude is calculation of 667 —
OGijx = Gipx- 001 — Ogiy also uses the relationship
between éo and 6q. 6§ — §u uses the quaternion
multiplication formula which is the same as (13).

It is worth noting that when a certain data is not part of
the training data set, the correlation of the GPR training
data will be reduced. Therefore, based on the GPR robust
strategy of sliding window, this paper finally selects the
length of the sliding window as 20 according to the experi-
mental data.

4. Simulation and field test

In this section, the robust USQUE algorithm studied is
evaluated through simulation and SINS/GNSS inertial
navigation field test.

4.1 Simulation study

To illustrate the validity of the proposed GPR-USQUE
algorithm. The following uses the SINS/GNSS direct
velocity loose combination as the application back-
ground to conduct a simulation study. Compare the per-
formance of USQUE and GPR-USQUE algorithms in
attitude estimation.

Simulate the trajectory as shown in Fig. 3, including
states of rest, constant velocity, acceleration, descent,
climb, yaw, pitch, and roll.

500

I
I
£ _-+
2450 F |
b I
[}
os |
-
400 F — L
108.92 ~

<o,,[l, 108.90

2,

%
iF 108.88

88 3424

Fig.3 The simulation trajectory

The initial position is 34.246° latitude, 108.909 7° lon-
gitude, and a height of 380 m. The total simulation time is
1200 s. SINS update frequency is 100 Hz. GNSS calcu-
lation time is 1 s. The IMU parameters are set as follows:
the gyro drift is 1°/h, the angle walk coefficient is
0.1°/vh, the accelerometer constant zero offset is
100 pg/ VHz, and the accelerometer walk coefficient is
10 pg. Fig. 4and Fig. 5 give the carrier attitude and
velocity changes, respectively.
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Fig. 5 Change of velocity

The system state includes attitude, velocity, position
and device error. The initial state is defined as follows:

x, = diag (g0, Vo, Po, &0, Vo).

The initial filter covariance matrix is given
PO = dlag (PqQ’PVQ’Pp[)’PE()’PVO)
where
P, =diag ([3.024 6e,3.024 6¢7*,3.024 6¢7*]),
P, =diag ([0.01,0.01,0.01]),

P, = diag ([2.457 9¢'%,3.597 0e'%,100]),

P,, = diag ([2.350 4¢7%,2.350 4¢7"%,2.350 4e™"]),

Py, = diag ([9.565 5¢7°,9.565 5¢7°,9.565 5¢°)).

The system and measurement noise matrix is given as



LYU Xu et al.: Gaussian process regression-based quaternion unscented Kalman robust filter for integrated SINS/GNSS 1085

R, = diag ([R,,])*
R, =[0.1,0.1,0.1]
Q, = diag ([web, wdb, 05, ])*

where

web = [0.290 9¢7°,0.290 9¢7°,0.290 9¢™°],

wdb = [0.978 0e7°,0.978 0e°,0.978 0e™"].

In order to evaluate the estimated performance of the
performance of USQUE and GPR-USQUE under the
condition of observing the contamination distribution, the
so-called contamination case, the case when the observa-
tion contains wild values. The window k& involved in GPR-
USQUE is 20 s. The velocity information of the naviga-
tion system during normal operation is used as the input
of the GRP training set x = [x,X,, -, X;], where the ith
input x; = [V3NS/OFS | SINS/GPS | SINS/GPS renresents the inte-
grated navigation output at the ith moment the velocity in
the east-north-up coordinate system. In the simulation
period of 200 s, 600 s, and 1000 s for 5 s continuously,
the velocity information observed suddenly becomes 1.2
times.

The robust strategy based on GPR is applied to the
USQUE model, and the position error of the simulation
result is shown in Fig. 6. The 6L, 61, 6H respresent lati-
tude, precision and altitude errors respectively. Accord-
ing to the experimental results, in the case of measuring
the pollution distribution, the GPR-USQUE algorithm is
used in the integrated navigation system. The filtering
results are convergent and the filtering algorithm is reli-
able, indicating that the GPR robust strategy can effec-
tively suppress measurement interference.

Position error/m

0 200 400 600 800 1000 1200
Time/s
1 0L; 104 1 OH.

Fig. 6 Position error of GPR-USQUE

The attitude estimation performance of the USQUE
and GPR-USQUE algorithms is compared. Fig. 7-Fig. 9
show the attitude error curves.
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Fig. 7 Pitch estimate errors
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Fig. 8 Roll estimate errors
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Fig. 9 Yaw estimate errors

We can learn from Fig. 7-Fig. 9, the pitch, roll, and
yaw angles are significantly different in contrast. Gene-
rally, the yaw angle plays an important role in the compa-
rison of attitude estimation accuracy. The experimental
results demonstrate that the traditional USQUE algo-
rithm is not robust when outlier interference occurs in the
measurement information. Affected by interference, the
attitude error is relatively large. On the contrary, the GPR-
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USQUE algorithm proposed in this paper has better anti-
interference performance, higher accuracy of attitude esti-
mation, and strong reliability.

4.2 Vehicle test

To deeply understand and verify the advantages of the
control strategy development in this paper, a car-mounted
experiment is carried out. In the sports car experiment,
the main equipment used low-precision micro electrome-
chanical system (MEMS) and NovAtel ProPak6 GNSS
receiver. Inertial Exploer 8.60 (IE 8.60) is a high-preci-
sion integrated navigation post-processing software from
NovAtel. It is used to perform the SINS/GNSS differen-
tial tight combination bidirectional smoothing process,
and the navigation results are used as reference values.
The gyroscope constant drift is 0.01°/h, accelerator bias
is 0.005 g. In this experiment, the GNSS update fre-
quency is 1 Hz, inertical measurement unit (IMU) fre-
quency is 125 Hz. Because of the loose combination used
by the system, only the inertial navigation update is per-
formed when there is no measurement information. The
experiment is carried out from Qingdao, China, and the
movement is about 700 s. The trajectory map is shown in
Fig. 10.

Fig. 10 Test trajectory around the sports grounds

First, for GNSS data, between 100 s and 500 s, the out-
liers increases by 100 m/s. The final attitude and attitude
error curves are plotted in Fig. 11 andFig. 12. From Fig. 11
and Fig. 12, we can get the USQUE filtering perfor-
mance is very well during 0—100 s, which means that the
state statistics in the system model obey the Gaussian
assumption. On the contrary, the measurement informa-
tion containing outliers has a great negative impact on the
traditional USQUE algorithm, after 100 s. According to
the test results, the attitude curve of the GPR-USQUIE fil-
tering method in the attitude estimation of integrated nav-
igation converges quickly and with high accuracy, and
the attitude error is significantly reduced in the overall
period. In the comparison of the attitude error of the field
test, we can know that the GPR-USQUE algorithm has a
small attitude error and robustness. The attitude error of
the traditional USQUE algorithm jumps, which affects
the reliability of the system.
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Fig. 12 Attitude estimate errors

As we all know, in the case of four observable satel-
lites, GNSS measurement can output high-precision
velocity and position information. Affected by the envi-
ronment, vehicle GNSS information will be obscured.
From the perspective of practical application, the algo-
rithm developed in this paper can effectively solve the
above problems.

When the robust mechanism detects that the measure-
ment is unreliable, GPR effectively processes the mea-
surement and replaces the update, performs integrated
navigation, and maintains high filtering accuracy. The
above discussion is validated by the results of velocity
and position error comparisons in Fig. 13 and Fig. 14.

It can be seen from Table 1 that GPR-USQUE has a
249%—56% reduction in the mean value of attitude error,
and the mean square error is also reduced accordingly.
The experimental results illustrate the attitude estimation
accuracy and strong robustness.
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: GPR-USQUE.

Table 1 Mean values and mean variances of errors of attitude

Mean Mean variance
Algorithm
USQUE GPR-USQUE USQUE GPR-USQUE
Pitch 1.0394 0.1963 1.9027 0.0858
Roll 0.9617 0.3087 1.7816 0.1711
Yaw 30.9339 1.5175 1228.1 16.046 6

5. Conclusions

In the attitude estimation of the integrated navigation sys-
tem, the outlier problem of the pollution distribution of
the observation information seriously affects the system
performance. A control strategy and framework with
enhanced robust performance are proposed in this paper.
This paper evaluates the development method through
simulation and car-mounted test data. Test results verify

that the proposed algorithm can effectively search for
outliers and perform robust processing. It can reduce the
error caused by the observation uncertainty and improve
the robustness and stability. The disadvantage of develop-
ing a robust strategy is that it relies on reliable previous
external measurements. Improved algorithms that can
resolve the coexistence process and measurement uncer-
tainty are under development and expected to be pro-
posed in the near future.
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