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Abstract: In this paper, we introduce an incident angle based
fusion method for radar and infrared sensors to improve the
recognition rate of complex targets under half space scenarios,
e.g., vehicles on the ground in this paper. For radar sensors,
convolutional operation is introduced into the autoencoder, a
“winner-take-all (WTA)” convolutional autoencoder (CAE) is used
to improve the recognition rate of the radar high resolution range
profile (HRRP). Moreover, different from the free space, the
HRRP in half space is more complex. In order to get closer to
the real situation, the half space HRRP is simulated as the
dataset. The recognition rate has a growth more than 7% com-
pared with the traditional CAE or denoised sparse autoencoder
(DSAE). For infrared sensor, a convolutional neural network
(CNN) is used for infrared image recognition. Finally, we com-
bine the two results with the Dempster-Shafer (D-S) evidence
theory, and the discounting operation is introduced in the fusion
to improve the recognition rate. The recognition rate after fusion
has a growth more than 7% compared with a single sensor. After
the discounting operation, the accuracy rate has been improved
by 1.5%, which validates the effectiveness of the proposed
method.

Keywords: convolutional autoencoder (CAE), half space, high-
resolution range profile (HRRP), incident angle based fusion, tar-
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1. Introduction

In view of the increasing complexity of modern battle-
field environment, the current missile-borne platforms
mostly use a radar/infrared composite form for fusion-
based target recognition. The main challenges for fusion-
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based recognition from multisensory data include experi-
mental data acquisition, feature extraction, classification
and data fusion methods.

The radar sensor has the ability to work all-weather
under complex climate conditions, and is not easily inter-
fered by weather factors such as fog. It is a very common
tool in modern battlefield. High resolution range profile
(HRRP) of the target can be obtained by radar sensor.
HRRP is the vector sum of the complex echoes from scat-
terer centers of a target from the radar line-of-sight (LOS)
[1]. An HRRP contains the structural information of the
target and can be easily obtained and processed. Thus, the
radar automatic target recognition (RATR) classification
method based on HRRPs has been widely developed.
However, an HRRP is extremely vulnerable to clutters in
practice, especially in half-space environment. Half space
can be divided into upper half space and lower half space.
The media of the two spaces are different. The vehicle on
the ground can be regarded as a half space target, which
is at the junction of two different media: air and ground.
The ground clutter distributes widely, which results in
huge differences between half space HRRPs and free
space HRRPs, making accurate target recognition more
difficult.

In order to solve this problem, this paper uses a high
frequency algorithm to simulate the HRRPs of objects in
half space [2]. The high frequency algorithm is to intro-
duce the half-space Green’s function into the conven-
tional physical optics method, using a graphical-electro-
magnetic computing method, the radar cross-section of
conductive targets can be calculated in half-space. The
graphical-electromagnetic computing method [3] adds an
appropriate lighting mode to the physical models, deter-
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mines the three primary colors intensity components of
each element, and then calculates the value. Recently,
using deep learning, RATR based on HRRPs has been
widely studied [4—7]. In [4], a denoising sparse autoen-
coder was proposed on airplane target recognition and
obtained a good performance. Stacked autoencoder and ex-
treme learning machine were used for target recognition
in [7]. However, most of the targets are that in free space.
Therefore, these methods are more suitable for feature
extraction and classification of free space HRRP. Com-
pared with free space, the structure of HRRP in half space
is more complex. Compared with the traditional architec-
ture, convolution architecture has a better performance on
coding and feature extraction. In this paper, a stacked
convolutional autoencoder (SCAE) [8] is used to extract
the features of half space HRRP samples.

An HRRP is susceptible to electromagnetic interfe-
rence, while infrared images are not affected by ground
clutter or sea clutter, that is, they are immune to half
space environment and insensitive to azimuth. Therefore,
the shortage of radar sensors can be compensated by col-
lecting and classifying infrared images. A convolutional
neural network is used to extract the high abstract fea-
tures of the infrared images and a softmax classifier is
used to classify the targets.

Although the infrared sensor can make up for the short-
age of radar sensor, the infrared sensor itself is easy to be
affected by the weather and has a short detection dis-
tance. Due to the respective disadvantages of radar sen-
sors and infrared sensors, the reliability of classification
results obtained by a single sensor is not stable. There-
fore, combining the two results to detect a target is a fea-
sible method, which should effectively improve the
recognition rate. Multisensory information fusion can be
categorized into data-level fusion, feature-level fusion
and decision-level fusion. Comparing with the first two,
decision-level fusion requires less information and pro-
cessing. The Dempster-Shafer (D-S) theory is flexible
and is widely used in recent years [9—11]. In this paper,
the decision fusion method based on the D-S evidence
theory is used to fuse the recognition results of the radar
and infrared sensors. We also analyze the relationship
between the pitching angle and the discount coefficient
and use discounting operation to reduce the dependence
of recognition results on sensors with low credibility.

The rest of the article is organized as follows. Section 2
introduces the feature extraction methods and the steps
of decision fusion in detail. Recognition results of half
space targets at different incident angles before and after
fusion are compared to examine the validity of the
method in Section 3. Section 4 summarizes the results
and conclusions of this paper.
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2. Methods
2.1 HRRP characteristics of half space targets

For targets in free space, the propagation path of the wave
is single and the echoes received by radar mainly come
from the targets. However, in practical applications, the
ground, i.e., half space is located on radar LOS. Waves
will scatter between the ground and the target, which
makes the echoes received by the radar more complex.
As shown in Fig. 1(b), different from the free space, the
waves will scatter many times between the target and the
ground in half space environment. This makes the echoes
received by the radar different, and makes the HRRPs
different. The path of echoes in free space is only path A,
but echoes in half space travel along path 4, path B and
path C. Fig. 1(a) shows the HRRPs of T-80 Main Battle
Tank in half space and free space. Building a model for
targets in half space based on targets in free space cannot
work well since their HRRP samples are too different, as
demonstrated in Fig. 1(a). Therefore, it is obvious that
half space HRRP samples perform far better than the free
space HRRP samples when training the model.

0.5

< <
(O8] E
.

Amplitude
<
[\S)

0 20 40 60 80 100 120
Range cell index
(a) HRRPs of T-80
- : Free space; + : Half space.

(b) Echoes

Fig. 1 HRRP and echoes in half space and free space

2.2 Feature extraction of radar HRRP based on SCAE

First, L2 normalization is used to remove the amplitude
sensitivity of the HRRPs. Then, an SCAE is used to
extract features from the normalized HRRPs. Finally, an
LSVM is used to classify the targets by using the ex-
tracted features as the input.

Autoencoder is an unsupervised learning algorithm,
which consists of an encoder and a decoder. Autoenco-
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der can extract the important information of the input by
making the output as similar to the input as possible. The
encoder uses the input x to calculate the hidden represen-
tation, and the decoder uses the hidden representation /4 to
reconstruct the input x. % is the output of the decoder.

h=0c(Wx+b), )]

f=c(Wh+b), )

where W and W’ are the weight matrices, and b and b’
are the bias vectors. We make ¥ close tox by training
0 = (W,b), whose loss function is

L= % -x. (3)
i=1

A stack autoencoder (SAE) is the stack of multiple
autoencoders. An SAE extracts features layer by layer,
and can get deeper and more abstract features. A convo-
lution computation [12] is introduced into the encoding
and decoding layers to explicitly take spatial information
into account. Wx is replaced by W*x and W’k is repl-
aced by W’ *h. (-)* means convolution multiplication.

In order to enhance the performance of the convolu-
tional autoencoder (CAE), we add a constraint called
winner-take-all (WTA) sparsity [13]. The constraint is
composed of spatial sparsity and life sparsity. When
using spatial sparsity constraints, in the training phase,
the output is not directly reconstructed from the hidden
layer data, but from the largest unit in the feature map of
the hidden layer, while the other units are zeroed. In the
testing phase, the condition is closed and an additional
ReLU layer is used to process the feature map, and then a
maximum pooling is applied to get the output. Life spar-
sity is a further constraint based on spatial sparsity. In
training, only the first k% non-zero hidden units are
retained in the mini-batch samples, and the rest are set to
zero. These restrictions can force the model to extract the
robust features of the HRRPs. A WTA-CAE is shown in
Fig. 2. The input is the simulated HRRP, and the output is
the reduced HRRP after decoding.
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Fig.2 WTA-CAE

1027

2.3 Infrared image recognition based on convolu-
tional neural network (CNN)

The infrared image is related to the temperature of the
target. When the temperature of the target is higher than
absolute zero, infrared radiation will be generated,
and the radiation intensity can be distinguished by color.
The higher the temperature of the same object, the greater
the amount of radiation generated, and the greater the
brightness of its infrared image. For example, the tempera-
ture of the engine will rise when the vehicle is driving,
and the tire will have higher temperature due to friction
with the ground, so the brightness of the corresponding
part of its infrared image is high.

In recent years, the CNN has developed rapidly and it
can extract the features of the image effectively. Some
researchers have used CNN to process infrared images,
and achieved good results [14,15]. After normalizing the
infrared images, a CNN is used for feature extraction, and
a softmax classifier is used for classification.

Fig. 3 shows the structure of the CNN which we used
in infrared images’ recognition.
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Fig.3 Structure of CNN

2.4 Decision fusion based on D-S theory

The fusion follows the classification. Before fusion, we
need to calculate the basic probability assignment (BPA)
of each sensor’s classification result. Then, we use the
D-S theory to combine the BPA of each sensor, and get
the final classification result. The BPA is the degree of
trust assigned to each proposition in the hypothesis space.
BPA cannot satisfy the countable additivity and it is the
evaluation weight of various hypotheses, but not the
probability. BPA €[0,1] and the sum of BPA of each
proposition in hypothesis space is 1. Thus, first, the BPA
of each proposition in the hypothesis space is calculated
before fusion.

For radar HRRP target recognition, the HRRP obtained
by radar sensor is a 1x128 vector, the data is relatively
simple, and there are only three categories of classifica-
tion tasks, so the support vector machine (SVM) is used
for classification. In the three classification tasks, an
SVM consists of three linear SVMs (LSVM). For every
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sample x , each LSVM classifier will output a scoring
function f{(x), and we can get
yi = sign(fi (x)). 4)
If y;=1, the classifier considers that the sample
belongs to category i, and a larger f{(x) indicates stronger
credibility. However, it does not mean that the sample is
100% classified as categoryi. Only a probability of
1—exp(—|fi(x)|) determines that it is category i. Since a
classification threshold is used, a small percentage of
targets is still misclassified, which is represented by the
hypothesis space H. The whole hypothesis space is a
complete space in which elements do not intersect each
other, H = {h,-,ﬁ,—}, h; means the target is determined as
category i, h; indicates that the target is not classified as

category i. Thus, when y; = 1, the BPA formula is as fol-
lows:

1 —exp(=1fi(0D, m={h;}
my (m) =4 exp(—|fi(0), 7=H - )
0, otherwise
If y; =—1, the sample is considered not to belong to

category i. Therefore, the BPA formula is as follows:

L—exp(-lfiaD, 7= {h}
exp(—|fi0l), =m==H . (6)
0, otherwise

my () =

The infrared image obtained by infrared sensor is a
256%256 image, which is more complex. At present,
CNN can better classify the images, and the softmax clas-
sifier can achieve better results for the classification tasks
of different kinds of targets. Thus, a softmax classifier is
used to classify infrared images. A softmax classifier is a
multi-classifier (three categories in this paper). Its output
is a multi-dimensional vector (three dimensions in this

paper):
a= (al5a27a3) (7)

where q; is the probability that the sample belongs to Ca-
tegory i, so its BPA formula is as follows:

my(m) =a;, m={h}. ®
The BPA for A4 after fusion is as follows:
1
m@A)=~ > mEmE), Ao, ()
ENF=A
N= " m(Eym(F), (10)
ENF#2

where £ and F are the BPA based on different sensors.
When classifying the same target, different sensors may
have different results, and the same sensor may also con-
sider the target to belong to different types. The above
formula is to fuse the parts of the result that contain the

same category, and get the BPA that the target belongs to
each category.

The category corresponding to the maximum value of
BPA is the final classification result.

Each sensor has its own shortages. In some cases, the
reliability of the radar sensors is lower than that of the
infrared sensors, while it sometimes is the opposite. This
problem can be alleviated by introducing discounting
operation [16]. If the reliability of a sensor is known to be
o, which is called discount coefficient, the BPA is as fol-
lows:

m*(A) = (1-a)m(A), Ae€H, (11)

m*(H) = a+ (1 —a)m(H). (12)

In target recognition, the greater the difference in
HRRPs between different targets, the easier it is to iden-
tify them. At some pitching angles, the HRRPs of diffe-
rent targets have great similarity, which makes the target
recognition difficult. When the pitching angle is too large
or too small, because of the high similarity of HRRPs
between different targets, the recognition rate based on
the radar sensor is low. We believe the credibility of the
radar sensor is low. However, when we fuse the results of
the two sensors, it is generally assumed that the credibi-
lity of the two sensors is the same. This makes the final
recognition accuracy not very ideal. Therefore, we need
to make a discount on the radar sensor at these angles.
The discount coefficient is used to reduce the BPA of the
sensor. The larger the discount coefficient is, the smaller
the BPA is, and the less dependent the final result is on
radar sensor. Thus, we can improve the recognition rate
by introducing a discounting operation into the result of
HRRP recognition.

The fusion process is shown in Fig. 4.
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Fig. 4 Process of decision fusion recognition
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3. Experiments and discussion
3.1 Data set

This paper verifies the validity of the proposed me-
thod using the data of three targets, including T-80 Main
Battle Tank, UAZ-469 off-road Vehicle and URAL-4320
Truck. The models corresponding to three targets are
shown in Fig. 5. The specific parameters are given in
Table 1. Both the HRRPs and infrared images used for
the experiments are simulated. The sizes of HRRPs and
infrared images are 1x128 and 512x512.

e

(a) T-80

(b) UAZ-469

(c) URAL-4320
Fig. 5 Models of the three kinds of targets

Table 1 Dimensional parameters of targets

complex structure of half space HRRP, the recognition
rate of the half space HRRP is much lower than that of
free space HRRP.

Table 2 Recognition result by SVM

Training set Test set Recognition rate/%
Free space Free space 82.24
Free space Half space 39.60
Half space Half space 75.64
Half space Free space 69.34

m
Target Length Width Height
T-80 9.720 3.560 2.740
UAZ-469 4.025 1.785 2.050
URAL-4320 7.366 2.500 3.005

For HRRP data, in order to make the dataset more
complete, we calculate the data of three kinds of targets
in half space and free space. The aspect angle and the
pitching angle of the targets change gradually. The aspect
angle changes from 0° to 90° (with 1° interval), and the
pitching angle changes from 10° to 80° (with 1° interval).
Thus, there are 90 samples under each pitching angle.
The half-space data of odd pitching angles is used for
training, while the data of even pitching angles is used for
testing. This operation makes the training set cover all
cases of half space target as much as possible.

Four experiments are conducted to validate the neces-
sity of the half space dataset (pitching angle of the data
changes from 17° to 42°). Without any feature extraction,
an LSVM is directly used to classify the targets. The
design of the three experiments is as follows: (i) free
space data is used as training set and test set; (ii) free
space data is used as training set and half space data is
used as test set; (iii) half space data is used as training
set and test set; (iv) half space data is used as training set
and free space data is used as test set. The results are
listed in Table 2. These results average over all three tar-
get types.

As shown in Table 2, the models trained by different
training sets are extremely different, and due to the more

For infrared images, Wang et al. [17] proposed a model
for calculating infrared images of ground targets, and we
use it to simulate the infrared images of the three targets
in this paper. The infrared images of the three kinds of
targets are shown in Fig. 6. Three samples of each target
at every odd pitching angle are chosen as the training set,
while the infrared images of each target at even pitching
angle and aspect angle are chosen as the test set.

(a) T-80

(b) UAZ-469 (¢c) URAL-4320

Fig. 6 Infrared images of the three kinds of targets

3.2 Recognition result of single sensor

In this paper, for radar sensor, we use WTA-SCAE to
extract high-dimensional features of HRRP data. The
extracted features, as the input, are classified by an
LSVM. The proposed WTA-SCAE’s structure is as fol-
lows. In the first layer of the SCAE, 64 filters with a 15 x
1 receptive field applied at strides of 1 pixel are used. In
the classification time, we use max pooling over 6x1
regions at strides of three pixels to obtain the final 64x37
representations. In the second layer, we train another 512
feature maps on top of the pooled feature maps of the first
layer, with a 5x1 receptive field at strides of one pixel. In
the classification time, we use max pooling over 3x1
regions at strides of two pixels to obtain the final 512x16
representation. And a ReLU is used as the activation
function. A denoised SAE (DSAE) is robust to noise, and it
can encode and decode the noisy/imperfect data. Thus
DSAE has a wide range of applications in target recogni-
tion based on HRRP. In order to prove the superiority of
WTA-SCAE, we compare the recognition rate based on
WTA-SCAE, WTA-CAE, DSAE and traditional CAE.
The recognition rates obtained by different methods are
listed in Table 3. The data used in the experiment is the
half space HRRP.
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Table 3 Comparison of DSAE, CAE, WTA-CAE, and WTA-SCAE

%
Target DSAE CAE WTA-CAE  WTA-SCAE
T-80 68.40 69.51 71.57 74.41
UAZ-469 67.40 64.97 74.29 76.14
URAL-4320 68.72 68.49 74.40 75.03
Average 68.17 67.66 73.42 75.29

Compared with DSAE and CAE, the proposed method
achieves the best recognition performance. The target
recognition rate based on WTA-SCAE is 7.63% higher
than that based on CAE and 7.12% higher than that based
on DSAE. That is, the performance of WTA-SCAE is
better than the other two methods in feature extraction.

As shown in Fig. 7, though, compared with DSAE,
CAE and WTA-CAE, the recognition rate based on WTA-
SCAE is higher, and the recognition rate based on
infrared images is also high, the recognition rate of some
pitching angles is still far below the average, and the
average recognition rate is not up to 90%. Therefore, the
recognition rate needs to be improved.

100
95 8.
90 *
85
80
75
70
65t |
60

Recognition rate/%

10 20 30 40 50 60 70 80
Pitching angle/(°)
— : Fusion; --- : Radar; - : Infrared.

Fig. 7 Recognition rate after fusion

3.3 Recognition result of incident angle based fusion

The recognition results of the two sensors are fused by
the decision fusion method based on D-S theory, and the
fusion results of all pitching angles are shown in Fig. 7,
the recognition rate based on decision fusion is higher
than that of a single sensor. The recognition accuracy of
the infrared sensor is higher than that of the radar sensor,
but it only reaches 89.3%. After fusion, the average
recognition accuracy reaches 94.4%, which is more than
5% higher than that of a single sensor. Moreover, the
recognition rate is improved by 8.34% compared with a
single sensor when the pitching angle is 72°. Therefore,
the decision fusion recognition method can be used in tar-
get recognition.

However, when the pitching angle is too large or too
small, the reliability of the radar sensor is relatively
low because of the high similarity of HRRP between dif-
ferent targets in these angles. To improve the recognition
rate, discounting operation is used to reduce the depen-
dence of recognition rate on the radar sensor. The dis-
count coefficient is limited from 0 to 1 (the interval is 0.1).

Journal of Systems Engineering and Electronics Vol. 33, No. 5, October 2022

The recognition result with the discounting operation
is shown in Fig. 8. When the pitching angle is less than
24° or between 52° and 66°, the HRRP’s similarity of dif-
ferent targets is large, and the reliability of the radar sen-
sor is low. At this time, discounting operation (discount
coefficient = 0.1) is used to further improve the recogni-
tion rate. When the pitching angle is greater than 66°,
the HRRP similarity of different targets is larger, so the
reliability of the sensor is lower. At this time, discount-
ing operation (discount coefficient is 0.2) is used to fur-
ther improve the recognition rate. When the pitching
angle is between 24° and 50°, because of the high relia-
bility of the radar sensor, discounting operation is not
needed (discount coefficient is 0) to obtain a high recog-
nition rate.

100
95
90
85
80
75
70 . i
65 |
60 L L L L

10 20 30 40 S50 60 70 80

Pitching angle/(°)

: Radar; -~

Recognition rate/%

— : Fusion; --- - : Infrared.

Fig. 8 Recognition rate after discounting operation

The fusion with discounting operation performs better
than that without discounting operation. After discount-
ing operation, the recognition rate of most pitching angles
is increased by 1.5% on average. Moreover, when the pit-
ching angle is 52°, the recognition rate is increased by 5%.

4. Conclusions

In this paper, we introduce an incident angle based fusion
method of radar/infrared sensor for target recognition,
which can improve classification performance. The WTA-
SCAE approach outperforms CAE and DSAE, and the
features extracted by the WTA-SCAE are more robust
compared with the other two methods. Data fusion can
reduce the instability of a single sensor due to environ-
mental influences. And with a certain fault tolerance
capability, the decision-level fusion is a high-level fusion,
which can get the correct results when a sensor has errors.
The recognition rate after fusion is much higher than that
of a single sensor. Moreover, the discounting operation
has a better performance in overcoming the dependence
of the unreliable sensor. The experimental results vali-
date the effectiveness of the method.
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