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Abstract: Partial label learning aims to learn a multi-class classi-
fier, where each training example corresponds to a set of candi-
date labels among which only one is correct. Most studies in the
label space have only focused on the difference between candi-
date labels and non-candidate labels. So far, however, there has
been  little  discussion  about  the  label  correlation  in  the  partial
label  learning.  This  paper  begins  with  a  research  on  the  label
correlation,  followed  by  the  establishment  of  a  unified  frame-
work  that  integrates  the  label  correlation,  the  adaptive  graph,
and  the  semantic  difference  maximization  criterion.  This  work
generates fresh insight into the acquisition of the learning infor-
mation from the label space. Specifically, the label correlation is
calculated from the candidate label  set  and is  utilized to obtain
the  similarity  of  each  pair  of  instances  in  the  label  space.  After
that, the labeling confidence for each instance is updated by the
smoothness  assumption  that  two  instances  should  be  similar
outputs in the label space if they are close in the feature space.
At last, an effective optimization program is utilized to solve the
unified  framework.  Extensive  experiments  on  artificial  and  real-
world data sets indicate the superiority of our proposed method
to state-of-art partial label learning methods.
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1. Introduction
Although learning from the training examples associated
with  accurate  labels  is  effective,  collecting  such  labeled
data is expensive in many real-world classification tasks.
The aim of partial label learning is to learn a multi-class
classifier from ambiguously labeled examples which can
be  easily  obtained.  Recently,  partial  label  learning  has
arisen in many real-world applications, such as ecoinfor-
matics  [1],  natural  language  processing  [2],  and  auto-
matic image annotation [3,4].

The  difficulty  of  partial  label  learning  is  that  the

ground-truth  label  hidden  in  the  candidate  label  set  can-
not  be  accessed  by  the  learning  algorithms  directly.  The
candidate  label  disambiguation  is  a  straightforward
method  to  deal  with  partial  label  learning.  The  current
disambiguation-based approaches can be divided into two
categories:  the averaging-based strategy and the identifi-
cation-based  strategy.  For  the  averaging-based  strategy,
the candidate labels  of  each training example are treated
equally  and  the  predictive  model  is  made  by  averaging
their  modeling  output  [5,6].  For  the  identification-based
strategy,  the  ground-truth  label  is  regarded  as  a  latent
variable which can be determined by an iterative refining
procedure [7−12].

It is well-known that the label correlation has a pivotal
role in multi-label learning [13]. So far, little attention has
been paid to the role of label correlation in the multi-class
classification  because  of  a  lack  of  the  label  correlation
information  in  the  label  space.  However,  partial  label
learning  could  be  a  contributing  factor  to  build  a  multi-
class  classifier  by  the  label  correlation.  Specifically,  if  a
pair  of  classes  is  hard  to  distinguish,  they  are  easy  to
appear in the candidate label set of the same sample in the
partial  label  learning.  In  terms  of  this  agreement,  label
correlation  can  be  built  from the  label  space.  After  that,
label  correlation  is  utilized  to  disambiguate  candidate
label  sets  by  the  smoothness  assumption  that  two
instances should be the similar output in the label space if
they are close in the feature space.

In the label  space,  the global label  information can be
extracted  by  label  correlation.  The  label  relationship  at
the instance level can be extracted by the semantic diffe-
rence  maximization  criterion  [12].  At  last,  to  overcome
the  influence  of  noise  and  outliers  in  the  feature  space,
the adaptive graph [10] can be integrated into the unified
framework. Then, a novel approach named label correla-
tion,  semantic  difference  maximization,  and  adaptive
graph for partial label learning (PL-LCSA) is proposed in
this paper.

There are two innovations in this paper: (i) To the best
of our knowledge, this paper is the first one that label cor-
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relation  is  introduced  to  deal  with  partial  label  learning,
and  the  information  from  the  label  space  can  be  further
expanded.  (ii)  Label  correlation,  semantic  difference
maximization,  and the adaptive graph are integrated into
a learning framework, in which the information from the
label space and the feature space can be learned simulta-
neously.  Comprehensive  experiments  show  that  PL-
LCSA achieves competitive performance against the state-
of-the-art  partial  label  learning  approaches  in  the  artifi-
cial and real-world data sets. 

2. Related work
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Formally,  let = d be  the d -dimensional  feature  space
and ={0,1}l be  the label  space with l  class  labels.  The
training set can be denoted by ={(xi, Zi)|1≤i≤m}, where
xi∈  is a d-dimensional feature vector and Zi∈  is the
candidate  label  set  associated  with xi .  The  ground-truth
label  associated with xi is assumed to reside in the can-
didate label set Zi, i.e., ∈Zi. The aim of the partial label
learning is to learn a multi-class classifier f:  →  from
the training set .

The  ground-truth  label  which  resides  in  the  candidate
label  set  is  not  directly  accessible  to  the  learning  algo-
rithm. Disambiguation is a major approach to recover the
ground-truth  labeling  information.  There  are  currently
two  main  disambiguation  strategies,  i.e.,  the  averaging-
based strategy and the identification-based strategy.

max
y∈Y

∑
xi ∈ Nk(xi)·

∈

The  averaging-based  strategy  is  to  treat  the  candidate
labels in an identical manner and predict unseen instances
by  averaging  the  output  of  candidate  labels.  The k-nea-
rest neighbor technique for partial label learning was pro-
posed  in  [5],  and  the  candidate  label  set  of  neighbor
instances  are  integrated  by  weighted  voting  to  make  the
prediction of unseen instances, i.e., arg  
wjII(y Zj)  (Nk(xi)  is  the  set  of k -nearest  neighbor  for xi).
The deficiency of the averaging-based strategy is that the
output of the ground-truth label will  be overwhelmed by
false positive labels.

To  overcome  the  weakness  of  the  averaging-based
strategy,  the  identification-based  strategy  is  to  make  the
ground-truth  label  a  latent  variable  which  can  be  identi-
fied by an iterative process. There are several techniques
to iteratively refine the ground-truth labeling confidences,
e.g.,  the  maximum  latent  semantic  differences  criterion
[14],  the  maximum-likelihood  technique  [15],  the  maxi-
mum margin criterion [7,16],  the dictionary-based learn-
ing criterion [17], the boosting technique [18], the hetero-
geneous  loss  with  sparse  and  low-rank  regularization
[19], artificial neural network technology [4,20].

Recently,  the  feature-aware  disambiguation  strategy
aims to disambiguate the candidate label set by the infor-

mation  from the  feature  space.  The  reconstructing  infor-
mation from the k-nearest neighbor is used to update the
labeling  confidence  matrix  iteratively  [8].  The  manifold
structure  of  the  feature  space  is  propagated  to  the  label
space for disambiguation [9]. To overcome the noise and
outliers  in  the  feature  space,  the  adaptive  graph  is  uti-
lized to guide disambiguation [11]. In the label space, the
semantic difference maximization criterion aims to maxi-
mize  the  latent  semantic  differences  of  two  instances
which do not share any common candidate labels [14].

Different  from  the  method  of  disambiguation,  some
algorithms work by binary decomposition for partial label
learning.  The  disambiguation-free  approach  learns  the
predictive  model  by  the  error-correcting  output  codes
(ECOC) technique  [21].  The One-vs-One decomposition
strategy  is  adapted  to  solving  the  partial  label  learning
problem [22].

Most  studies  in  the  field  of  the  label  space  have  only
focused  on  the  difference  between  candidate  labels  and
non-candidate labels, and ignored the label correlation. In
the  next  section,  we  present  a  novel  approach  which
introduces  the  label  correlation  to  partial  label  learning
and simultaneously utilizes the information from the fea-
ture space and the label space to disambiguate the candi-
date label set. 

3. Approach
In  this  section,  we  introduce  the  proposed  approach  PL-
LCSA.  Firstly,  we  present  the  label  correlation  and  the
uniform learning framework. After that, an effective opti-
mization  procedure  is  utilized  to  deal  with  this  frame-
work. 

3.1    Label correlation

R
R

We denote X=[x1, x2,···, xm]T
∈

m×d as the feature matrix,
and Y=[y1,  y2,···,  ym]T

∈
m×l as  the  partial  label  matrix

where yi,j=1 means that the j-label is one of the candidate
labels  of xi ,  i.e., yi,j∈Zi .  Otherwise, yi,j =0.  Let P=[pij]m×l

be  the  labeling  confidence  matrix,  where m  denotes  the
number  of  training  examples, l  denotes  the  number  of
class  labels,  and pi,j  indicates  the  probability  of  the jth
label as the ground-truth label associated with instance xi.
For each training example (xi, Zi), we aim to generate the
labeling confidence vector pi=[pi1, pi2,···, pil]. P should be
constrained to the following condition:

l∑
j=1

pi, j = 1, ∀i ∈ {1,2, · · · ,m}, (1)

0 ⩽ pi ⩽ yi, ∀i ∈ {1,2, · · · ,m}. (2)

The aim of (1) is to normalize pi, and make the sum of
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labeling confidence vector pi  be 1 for each instance. The
aim of (2) is to make sure that the labeling confidence of
non-candidate  labels  must  be  0,  and  the  ground-truth
label resides in the candidate label set. Once the labeling
confidence vectors are normalized, the partial label train-
ing  set  can  be  transformed  into  its  disambiguation
counterpart ={(xi, pi)|1≤i≤m}. Then the predictive mo-
del can be learned by the disambiguation results .

RThe label correlation matrix can be denoted as B∈ l×l,
where bi,j  is  the  similarity  between  the i th  and  the jth
labels.  The label  correlation  matrix  can be  calculated  by
the cosine similarity:

bi, j = cos
(
qi, q j

)
=

⟨
qi, q j

⟩
||qi||||q j||

=

m∑
s=1

qi,s q j,s√
m∑

s=1

q2
i,s

√
m∑

s=1

q2
j,s

(3)

where qi  is  the i th  column  of  label  matrix Y=[y1,
y2, ···, ym]T, i.e., Y=[q1,q2,···,ql].

To  disambiguate  the  candidate  label  set  by  the  label
correlation, the labeling confidence matrix will be genera-
ted by the smoothness assumption that two points should
be the similar output in the label space if they are close in
the feature space.

According  to  this  assumption,  we  can  calculate  the
similarity of instances in the label space by

simLi, j = pT
i Bpj =

l∑
k1=1

l∑
k2=1

pi,k1 bk1 ,k2 p j,k2 (4)

where  simLi,j is  the  similarity  between  instance xi  and
instance xj in the label space. The larger the similarity is,
the bigger simLi,j is.

Then the similarity of instances in the feature space can
be obtained according to

hi, j =

 exp
(
−
||xi− x j||2

2σ2

)
, xi ∈ Nk(x j)

0, xi < Nk(x j)
(5)

σ

σ

( m∑
i=1

m∑
j=1

)where  is  the  average  Euclidean  distance  among  each

pair  of  instances,  i.e., = ||xi−xj||2 ·m−2. hi,j  is  the

similarity between instance  xi  and instance xj  in  the  fea-
ture space.

Then we should model  the smoothness assumption by
minimizing  the  gap  of  instances  similarity  between  the
label  space  and  the  feature  space,  and  the  label  confi-
dence matrix can be calculated by

min
P

m∑
i=1

m∑
j=1

(
hi, j− pT

i Bpj

)2
,

s.t. P1l = 1m, 0m×l ⩽ P ⩽ Y, (6)

Rwhere 1l=[1,1,···,1]T
∈

l is  an  all  1  vector  with  size l,
0m×l is  an all  0 matrix with size m×l ,  and constraints  are
the matrix form of (1) and (2) respectively. 

3.2    Uniform learning framework

The feature and label information are simultaneously uti-
lized to disambiguate the candidate label sets in our uni-
form learning framework.

G N S
N

S R
R

In  the  feature  space,  we  adopt  the  adaptive  graph  to
recover  the  intrinsic  manifold  structure  within  the  data
more  robustly  and  accurately.  Let =( ,Ξ, )  be  a
weighted graph, where ={xi|1≤i≤m} is the node of the
graph, and Ξ={{xi,xj}|xj∈Nk(xi),1≤i≤m} is a set of edges
from xi  to xj  if and only if xj  is among the k-nearest nei-
ghbors of xi. ∈

m×m corresponds to the information of
the manifold structure in the feature space. L∈ m×m is an
index  matrix  where li,j =1  if  (xi,xj)∈Ξ;  otherwise, li,j=0.
The labeling confidence matrix can be calculated [11] by
solving the following problem:

min
P,S,W

m∑
i=1

|| f (xi,W)− pi||22+α
m∑

i=1

||pi−
∑
li, j=1

si, j pj||22+

β

m∑
i=1

||xi−
∑
li, j=1

si, jx j||22+λ||W||2F,

s.t.


P1l = 1m

0m×l ⩽ P ⩽ Y
S1m = 1m

0m×m ⩽ S ⩽ L

, (7)

where f(xi,W)  is  a  predictive model,  and W  is  the model
parameter. The first term is to learn W .  The second term
is to learn the labeling confidence matrix, the third term is
to  determine  the  adaptive  graph  weight  matrix,  and  the
fourth term is a regularization term.

In the label space, PL-LCSA aims to disambiguate can-
didate label sets by the label correlation and the semantic
difference maximization. The aim of semantic difference
maximization is to maximize the semantic differences of
the two instances which do not share any common candi-
date  labels.  It  can  be  expressed  [14]  by  the  following
problem:

max
P

m∑
i=1

m∑
j=1

ri j

∥∥∥pi− pj

∥∥∥2

2
(8)

where R=[ri,j]m×m is an index matrix; ri,j=1 if Yi
TYj=0, oth-

erwise ri,j=0.
By  integrating  (6),  (7),  and  (8),  the  final  objective
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function is shown as follows:

min
P,S,W

m∑
i=1

|| f (xi,W)− pi||22+δ
m∑

i=1

m∑
j=1

(
hi, j− pT

i Bpj

)2
+

α

m∑
i=1

||pi−
∑
li, j=1

si, j pj||22+β
m∑

i=1

||xi−
∑
li, j=1

si, jx j||22−

γ

m∑
i=1

m∑
j=1

ri, j||pi− pj||22+λ||W||2F,

s.t.


P1l = 1m

0m×l ⩽ P ⩽ Y
S1m = 1m

0m×m ⩽ S ⩽ L

, (9)

where λ is the regularization parameter, δ, α, β, and γ are
the trade-off parameters. 

3.3    Alternative optimization

Before the optimization procedure,  the matrices P  and S
should  be  initialized  by  solving  the  standard  quadratic
programming (QP) problems [11] as follows:

min
S

m∑
i=1

||xi−
∑
li, j=1

si, jx j||22,

s.t.
{

S1m = 1m

0m×m ⩽ S ⩽ L , (10)

min
P

m∑
i=1

||pi−
∑
li, j=1

si, j pj||22,

s.t.
{

P1l = 1m

0m×l ⩽ P ⩽ Y . (11)

Then, we utilize the alternative optimization procedure
to solve the problem (9).

Update S, with fixed P and W, the problem (9) can be
stated as follows:

min
S
α

m∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣pi−

∑
li, j=1

si, j pj

∣∣∣∣∣∣
∣∣∣∣∣∣2
2

+

β

m∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣xi−

∑
li, j=1

si, jx j

∣∣∣∣∣∣
∣∣∣∣∣∣2
2

s.t.
{

S1m = 1m

0m×m ⩽ S ⩽ L . (12)

The optimization problem (12) can be rewritten [11] as
follows:

min
ŝi

s̃T
i (α(Dp

i )T(Dp
i )+β(Dx

i )
T(Dx

i ))s̃i,

s.t.
{

1T
k s̃i = 1

0k ⩽ s̃i ⩽ 1k
, (13)

Rwhere s̃i∈
k denotes the weight vector which shows the

importance  of  the  neighbor  sample  in  reconstructing xi.

R
R

Denote  matrix Di
p=[pi−pi

1,pi−pi
2,···,pi−pi

k]T
∈

k×l and
Di

x=[xi−xi
1,xi−xi

2,···,xi−xi
k]T
∈

k×d,  where pi
j  is  the

labeling confidence vector associated with the jth nearest
neighbors of xi ,  and xi

j  is  the j th  nearest  neighbors of xi.
The optimization problem (13) is a standard QP problem
which can be solved by existing QP tools. We adopt inte-
rior point methods to solve (13) by the quadprag function
in Matlab.

Updating P ,  with  fixed S  and  W ,  the  problem (9)  can
be stated as follows:

min
P

m∑
i=1

|| f (xi,W)− pi||22+δ
m∑

i=1

m∑
j=1

(
hi, j− pT

i Bpj

)2
+

α

m∑
i=1

∣∣∣∣∣∣
∣∣∣∣∣∣pi−

∑
li, j=1

si, j pj

∣∣∣∣∣∣
∣∣∣∣∣∣2
2

−γ
m∑

i=1

m∑
j=1

ri, j||pi− pj||22,

s.t.
{

P1l = 1m

0m×l ⩽ P ⩽ Y . (14)

In  the  optimization  problem (14),  the  first  three  terms
are convex, and the last term is concave. To optimize the
second  term,  the  first  order  Taylor  approximation  at P0

can be utilized to replace it.
m∑

i=1

m∑
j=1

(
hi, j− pT

i Bpj

)2
= ||H− PBPT||2F ≈

tr((H− P0
TBP0)T(H− P0

T BP0))+
tr((−2HP0BT−2HT P0B+2P0 BT P0

T P0B+
2P0BP0

T P0BT)T(P− P0))

where P0 is the updated value at the previous iteration of
P.  After  Taylor  approximation  of  the  second  term,  the
first three terms are still convex, and the last term is con-
cave.  The problem (14) is  a constrained convex-concave
problem.  Fortunately,  the  concave-convex  procedure
(CCCP)  can  be  used  to  solve  this  optimization  problem
[23]. A rigorous analysis of the convergence of CCCP is
provided  by  [24].  The  idea  of  CCCP  is  to  linearize  the
concave part of the objective function. Therefore, the last
term  can  be  linearized  by  its  first  order  Taylor  approxi-
mation:

−
m∑

i=1

m∑
j=1

ri, j||pi− pj||22 = −tr(PT Lr P) ≈

− tr(PT
0 Lr P0+ (Lr P0+ Lr

T P0)T(P− P0))

where Lr=diag(Ra)−R is a Laplacian matrix where vector
Ra is the sum of row for matrix R.

We  define  the  modeling  output  matrix F=[f(x1,W),
f(x2,W),  ···,  f(xm,W)]T .  In  order  to  simplify  notation,  we
define V=LrP0+Lr

TP0  and  U=−2HP0B
T−2HTP0B+

2P0B
TP0

TP0B+2P0BP0
TP0B

T.  Then the optimization prob-
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lem (14) can be rewritten as follows:

min
p̃

1
2

p̃T(Θ+ΘT) p̃+ (δũ−2 f̃ − ṽ)T p̃,

s.t.


0 ⩽ p̃⩽ ỹ

ml∑
i=1,i%m= j

p̃i = 1

0 ⩽ j ⩽ m−1

, (15)

p̃
p̃ R

⊗ R ⊗

where  is  the  vectorization  of  matrix P ,  i.e.,
=vec(P)∈ ml, f̃=vec(F),  ũ=vec(U ),  and ṽ=vec(V ).  We

define  matrix O=α(STS+Em×m−S−ST)+Em×m  and  Θ=
El×l O∈ ml×ml,  is Kronecker product and E is an iden-
tity matrix.  This optimization problem (13) is  a standard
QP  problem  which  can  be  solved  by  off-the-shelf  QP
tools.  We  adopt  interior  point  methods  to  solve  (13)  by
the quadprag function in Matlab.

WUpdate ,  with  fixed P  and  S .  The  linear  model
f(xi,W)=WTxi is  utilized  to  predict  the  label  of  training
examples. The problem (9) can be stated as follows:

min
W

m∑
i=1

||WT xi− pi||22+λ||W||2F. (16)

R R

W

This  is  an  unconstrained  optimization  problem.  The
predictive  performance  can  be  improved  by  the  kernel
technology.  Let Φ(·):  d→ h be  a  feature  mapping
which  maps  the  feature  space  to  a  Hilbert  space  with h-
dimensions.  The  linear  model  is  rewritten  as g(xi)=

TΦ(xi).  We  convert  the  problem  (16)  into  an  equality
constrained minimization as follows:

min
W

m∑
i=1

||ξi||22+λ||W||2F,

s.t.
{

W
T
Φ(xi)− Pi = ξi

1 ⩽ i ⩽ m
. (17)

The  method  of  Lagrange  multipliers  can  be  used  to
solve  this  problem.  The  Lagrange  function  is  stated  as
follows:

L(W, I, A) = tr(IT I)+λtr(W
T
W)−

tr(AT(ΦW− P− I))

where Φ=[Φ(x1),Φ(x2),···,Φ(xm)]T,  I=[ξ1,ξ2,···,ξm]T ,  and
A=[a1,a2,···,am]Tis  the  Lagrange  multiplier  matrix.  The
optimal conditions of (17) are

∇L(W, I, A) =



∂L
∂W
∂L
∂I
∂L
∂A


=

 2λW−ΦT A
2I+ A

ΦW− P− I

 = 0.

W
∗

The optimal solution  can be obtained as follows:
W
∗
=
ΦT A
2λ

A =
(

1
2λ

K+
1
2

E
)−1

P
(18)

W

where K=ΦΦT  is  the  kernel  matrix  with  its  element
ki,j=κ(xi,xj), and κ(·,·) is a kernel function. For PL-LCSA,
we use Gaussian kernel to calculate K. The modeling out-
put  matrix F  can  be  calculated  by F=Φ *=KA/2λ.
Unseen instance x can be predicted [11] by

y∗ = argmax
i

m∑
j=1

a j,iκ(x, x j) (19)

where ai,j  is  the  element  of  matrix A ,  and y*  is  the  pre-
dicted label for x. The pseudo-code of PL-LCSA is sum-
marized as Algorithm 1.

Algorithm 1　Pseudo-code of PL-LCSA

Input:
D D: training label set ={(xi,Zi)|1≤i≤m}
x: the unseen instance
Parameter:
k: the number of nearest neighbors
δ, α, β, γ, λ: the trade-off coefficients
T: the number of maximum iterations
Output:
y*: the predicted label of x
Process:
1: Calculate label correlation matrix B according to (3)
2: Calculate H by (5)
3: Calculate kernel matrix K
4: Initialize S according to (10)
5: Initialize P according to (11)
6: Repeat
7: Update matrix A according to (18)
8:     Update modeling output matrix F=KA/2λ
9:     Update matrix S according to (13)
10: Update matrix P by solving problem (15)
11: Until  convergence or the maximum number of itera-
tions
12: Return y* according to (19)
 

4. Experiments
 

4.1    Experimental setup

In this subsection, two series of comparative experiments
based on synthetic  data  sets  and real-world  data  sets  are
conducted  to  evaluate  the  performance  of  PL-LCSA.
Table 1 summarizes the characteristics of six multi-class
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data sets. Following the widely-used controlling protocol
[6,8,11,14,25−27],  artificial  data  sets  are  generated  from
multi-class data sets by three controlling parameters p, ϵ,
and r .  Here, p  is  the  proportion  of  example  which  is
ambiguous. r is the number of the false positive labels in
the candidate label set (i.e., |Zi|=r+1). ϵ  is the probability
that a false positive label co-occurs with the ground-truth
label.  The  choice  of  false  positive  label  is  important,
because it is the key factor of the label relationship in the
synthetic  data  sets.  In  this  paper,  the  reason  why  we
choose multi-label  data  sets  as  synthetic  data  sets  is  that
the multi-label data can be used to generate label correla-
tion information. Firstly, (3) is used to calculate label cor-

relation  in  multi-label  data  sets.  Then  the  most  relevant
label  corresponding  to  the  ground-truth  label  is  taken  as
the false positive label. Table 2 summarizes the characte-
ristics of six real-world data sets, where Avg. CLs is the
average number of candidate labels.
  

Table 1    Characteristics of the multi-class data sets

Data set Instance Feature PCA Class
Enron 196 623 − 7

Medical 752 1 287 − 30
Scene 2 230 294 − 6
Bibtex 2 744 1 894 800 89

Mediamill 2 854 120 − 10
Tmc2007 3 130 15 418 1 000 21

 
 

Table 2    Characteristics of real-world partial label data sets

Data set Example Feature Class Avg. CLs Task domain
FG-NET 1 002 262 78 7.48 Facial age estimation [28]

Lost 1 122 108 16 2.23 Automatic face naming [6]
MSRCv2 1 758 48 23 3.16 Object classification [1]
BirdSong 4 998 38 13 2.18 Bird song classification [29]

Soccer Player 17 472 279 171 2.09 Automatic face naming [3]
Yahoo! News 22 991 163 219 1.91 Automatic face naming [30]

 

The  data  sets  in  Tabel  1  are  derived  from  multi-label
benchmark data  set  by retaining instances  with  only one
relevant  label.  They  can  be  collected  from  Mulan
(http://mulan.sourceforge.net/index.html).  Because  the
features of Bibtex and Tmc2007 are relatively sparse, we
make  dimensionality  reduction  by  principal  component
analysis  (PCA),  and  the  feature  dimensions  after  dimen-
sionality  reduction  are  shown  in  the  fourth  column  of
Table 1.

In this paper,  five partial label learning algorithms are
utilized  for  comparative  studies.  Each  algorithmis  confi-
gured with the following literature:

(i)  PL-KNN [5]:  a k -nearest  neighbor  approach which
makes  the  prediction  for  unseen  instances  by  averaging
the  labeling  information  of  its k -nearest  neighbor  (sug-
gested configuration: k=10).

(ii) IPAL[8]: an instance-based approach which disam-
biguates the candidate label set via an iterative label propa-
gation  procedure  (suggested  configuration: k =10  and
α=0.95).

⌈ ⌉

(iii)  PL-ECOC[21]:  a  disambiguation-free  approach
which learns the predictive model by the error-correcting
output codes (ECOC) technique (suggested configuration:
τ=0.1·|D|, L= 40·log2(l) ).

(iv)  PL-AGGD  [11]:  an  approach  which  disam-
biguates  the  candidate  label  sets  by  adaptive  graph  to
overcome the noise and outliers in the feature space (sug-
gested configuration: k=10, λ=1, μ=1, γ=0.05, and T=10).

(v)  SDIM [14]:  an  approach  which  aims  to  maximize
the latent semantic differences of the two instances whose
ground-truth  labels  are  definitely  different  (suggested
configuration: λ=0.05, β=0.001).

The  parameters  of  PL-LCSA  are  set  as δ=0.5,  α=0.5,
β=0.05, γ=0.5, λ=1, k=10, and T=10. Ten-fold cross-vali-
dation  is  executed  in  each  algorithm,  and  mean  predic-
tion accuracy and standard deviations will be recorded. 

4.2    Results and discussion
 

4.2.1    Real-world data sets

±

•

Table  3 is  the  summary  classification  accuracy  (mean
standard deviation (std)) of each comparing algorithm on
the real-world data sets.  indicates the PL-LCSA is sta-
tistically superior/inferior to the comparing algorithms on
each  data  set  (pairwise  t-test  at  0.05  significance  level).
The  performance  of  each  algorithm  is  poor  on  the  face
and  gesture  recognition  network  (FG-NET)  aging  data
set, because its Avg. CLs is extremely large.

As shown in Table 3, it can be seen that:
(i) On the Lost, MSRCv2 and Soccer Player data sets,

the performance of PL-LCSA is superior to all  the com-
paring algorithms;

(ii)  On the BirdSong data set,  the performance of  PL-
LCSA is comparable to the PL-ECOC and superior to the
other comparing algorithms;

(iii)  On the FG-NET data set,  the performance of  PL-
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LCSA is comparable to the SDIM, PL-AGGD, PL-KNN
and superior to the PL-ECOC and IPAL.

(iv)  PL-LCSA  is  never  outperformed  by  any  compar-
ing algorithms.

 
 

±Table 3    Classification accuracy (mean std) of each comparing algorithm on real-world partial label data sets

Data set PL-LCSA SDIM PL-AGGD PL-ECOC IPAL PL-KNN
Lost 0.789±0.030 0.797±0.030 •0.744±0.020 •0.706±0.043 •0.645±0.034 •0.459±0.039

MSRCv2 0.562±0.021 •0.500±0.023 •0.509±0.028 •0.427±0.024 •0.531±0.037 •0.418±0.046
BirdSong 0.756±0.008 •0.734±0.012 •0.734±0.009 0.751±0.013 •0.712±0.015 •0.603±0.013

Soccer Player 0.596±0.013 •0.577±0.016 •0.539±0.016 •0.169±0.005 •0.544±0.014 •0.494±0.012
Yahoo! News 0.670±0.008 0.663±0.013 •0.647±0.009 •0.561±0.011 •0.607±0.012 •0.471±0.005

FG-NET 0.079±0.020 0.076±0.037 0.076±0.027 •0.005±0.007 •0.061±0.018 0.066±0.018

From Table  3,  PL-LCSA  is  capable  of  better  perfor-
mance  compared  with  other  comparison  methods  in  the
real-world data sets. Because three items are integrated in
the  PL-LCSA,  we  set  three  sets  of  comparative  experi-
ments  in  real-world  data  sets  to  determine  the  effect  of
these  modules  by  parameters δ  and  γ .  The  first  set  of
comparative  experiments  shows  the  performance  of  the
adaptive graph. The second set shows the performance of
the adaptive graph and the label correlation. The third set
of comparative experiments shows the performance of PL-
LCSA.

±Table  4 shows  the  classification  accuracy  (mean std)
of these three sets of comparative experiments. A signifi-
cantly increased performance was observed in the second
set experiment compared with the first set experiment on
MSRCv2, BirdSong, Soccer Player, and Yahoo! News. It
is because the label correlation has contributed to the par-
tial  label  learning.  The  performance  of  the  third  set  of
experiment  achieves  the  better  performance  to  the  sec-
ond,  and  the  reason  is  that  the  label  correlation  and  the

semantic difference maximization can jointly promote the
performance.
 
 

±Table  4      Classification  accuracy  (mean std)  of  control  variables
for PL-LCSA on real-world data sets

Data set δ = 0.5 γ = 0.5, δ = 0.5 γ = 0, δ = 0 γ = 0,
Lost 0.789±0.030 0.767±0.032 0.746±0.025

MSRCv2 0.562±0.021 0.544±0.030 0.507±0.028

BirdSong 0.756±0.008 0.751±0.010 0.733±0.011

Soccer Player 0.596±0.013 0.589±0.013 0.538±0.015

Yahoo! News 0.670±0.008 0.666±0.009 0.648±0.009

FG-NET 0.079±0.020 0.071±0.023 0.077±0.024
  

4.2.2    Synthetic data sets

Fig. 1 illustrates the classification accuracy of each com-
paring  algorithm  on  the  synthetic  data  sets  as  the  co-
occurring  probability ϵ  varies  from  0.1  to  0.9  with  step
size 0.1, where r=2 and p=1.
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In  general,  PL-LCSA  achieves  competitive  or  better
performance  at  synthetic  data  sets. Fig.  1 reveals  that
there has been a gradual decrease in the second half. The
reason may be that the greater the similarity between the
ground-truth label and the false positive label is, the more
difficult  it  is  to  distinguish.  Compared  with  the  PL-
AGGD, PL-LCSA achieves competitive performance at a
smaller  value  of ϵ  and  better  performance  at  a  bigger
value of ϵ on Enron, Scene, and Mediamill. The reason is
that  the  size  of  label  space  on  Enron,  scene,  and  Medi-
amill  is  small,  and  the  synthetic  data  does  not  have  the
information about the label correlation at a smaller value
of ϵ  and it  is  disadvantageous to PL-LCSA. On the con-
trary,  when  the  value  of ϵ  is  high,  PL-LCSA  achieves
superior  performance  against  PL-AGGD.  It  shows  that
the  more  the  information  about  the  label  correlation  is,
the better the performance of PL-LCSA is. 

4.2.3    Parameter sensitivity

Fig.  2 shows  the  accuracy  of  PL-LCSA  under  different
configurations  for  parameters δ  and  γ  on  Lost  and
MSRCv2.  As  γ  increases,  PL-LCSA  starts  to  take  into
consideration the semantic difference maximization crite-
rion  and  the  classification  accuracy  increases.  For δ ,  as
the weight of the label correlation increases, the classifi-
cation  accuracy  decreases  first,  and  then  increases.  In
practice,  we  suggest  users  to  choose δ  and  γ  around  0.5
for all data sets.
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Fig. 2    Parameter sensitivity analysis for PL-LCSA 

5. Conclusions
In this paper, we propose a unified framework that simul-
taneously  focuses  on  the  label  and  feature  space.  Mean-
while,  this  work generates  fresh  insight  into  the  acquisi-
tion of the learning information from the label space, i.e.,
the  label  correlation.  The  framework  integrates  the  label
correlation,  the  adaptive  graph,  and  the  semantic  diffe-
rence maximization criterion. The relationship of instances
can be learned by the adaptive graph in the feature space,
the semantic difference analyzes the label relationship at
the  instance  level,  and  the  label  correlation  learns  at  the
global  label  level.  An  effective  optimization  method  is
also  proposed  for  this  framework.  Experiments  on  real-
world and artificial data sets have demonstrated the supe-
riority  of  PL-LCSA  to  the  state-of-the-art  partial  label
learning approaches.
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