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Abstract: The status of an operator’s situation awareness is one
of the critical factors that influence the quality of the missions.
Thus the measurement method of the situation awareness sta-
tus is an important topic to research. So far, there are lots of
methods designed for the measurement of situation awareness
status, but there is no model that can measure it accurately in
real-time, so this work is conducted to deal with such a gap.
Firstly, collect the relevant physiological data of operators while
they are performing a specific mission, simultaneously, measure
their status of situation awareness by using the situation aware-
ness global assessment technique (SAGAT), which is known for
accuracy but cannot be used in real-time. And then, after the
preprocessing of the raw data, use the physiological data as fea-
tures, the SAGAT’s results as a label to train a fuzzy cognitive
map (FCM), which is an explainable and powerful intelligent
model. Also, a hybrid learning algorithm of particle swarm opti-
mization (PSO) and gradient descent is proposed for the FCM
training. The final results show that the learned FCM can assess
the status of situation awareness accurately in real-time, and the
proposed hybrid learning algorithm has better efficiency and
accuracy.
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1. Introduction

As the age of industrialization and information techno-
logy accelerates, more and more complex machines and
operating systems are being invented and put into practi-
cal use. Operators of systems will be confronted with
more complex and rapidly changing systems. In the deci-
sion-making process for dynamic systems, it is becoming
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apparent that situation awareness (SA) becomes a key
component in the decision-making process for dynamic
systems [1]. As the name implies, SA studies the under-
standing and knowledge of the situation under current
conditions. The concept is most widely used in aviation,
and it can even be argued that the concept of SA was dis-
covered and refined from research in the aviation sector
[2]. Pilots are often faced with a large amount of informa-
tion to perceive and process during a flight or mission,
requiring accurate perception and understanding of the
information. SA theory is also applied in other key areas
of cognitive loops, such as air traffic control [3], large
systems operations in large manufacturing plants [4], and
medical systems [5]. Thus, we will not distinguish
between pilots and operators later in this paper.

It is obvious that the status of an operator’s SA is very
important during the mission, and thus there exist lots of
measurement methods for SA, such as situation present
assessment method (SPAM) [6], SA global assessment
technique (SAGAT) [7], and physiological process
indices [8]. However, till now, there is no method that
can measure the status of SA in real-time with high accu-
racy. The SAGAT is accurate enough but it cannot be
applied in real-time, the method of physiological process
indices can measure SA in real-time but lose the accu-
racy. Thus, the paper’s aim is to deal with the gap
between the accuracy and real-time of the SA measure-
ment.

As mentioned before, the SAGAT method has a high
accuracy, and the physiological process indices method
can be applied in real-time. The basics of the physiologi-
cal indices method are that some physiological indices
like eye movement, blood oxygen saturation, variance of
the heart rate, etc, can reflect a human’s psychological
status like worries, happiness, fatigue, and so on [9].
Thus, we propose a hypothesis that the physiological
indices can also predict the status of SA. The methods in
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the literature failed in accuracy because they are not cali-
brated by the accurate methods.

Thus, this paper tries to use the result of the SAGAT,
which is proved accurate already, to calibrate the SA
assessment model which uses psychological indices.
Firstly, an experiment is conducted to get the data, which
includes the SAGAT results and the relevant physiologi-
cal indices at the same time. Secondly, we train a fuzzy
cognitive map (FCM) [10] using the supervised learning
method, the physiological indices are features and the
SAGAT results are labels. After the training process, the
FCM is the final model of SA assessment.

The reason for choosing the FCM as the model is its
interpretability and ease to use [11]. FCM is a new kind
of intelligent model, it looks like a neural network, but it
supports the circle causality [12]. In most cases where the
status of the operator’s SA needs to be assessed, such as a
pilot is controlling an aircraft landing, a surgeon is per-
forming a very important operation, we need to know
why the SA’s status is good or bad, so the popular mo-
dels like deep neural network can not be used since it is a
‘black box’ and cannot be explained. The FCM’s struc-
ture and reasoning process are very similar to the neural
network [13], so it has enough knowledge representation
and process ability to assess the SA status, it is more
powerful than many of the classic pattern recognition
methods like random forest and decision tree, etc.

The only obstacle is that the FCM does not have an
efficient learning algorithm [14]. This paper tackles such
a problem by using a hybrid method of particle swarm
optimization (PSO) and gradient descent. Using such a
hybrid learning algorithm, both efficiency and learning
accuracy are improved.

The innovations of this paper are as follows:

(1) Build an FCM-based model to assess the SA status
of the operators, such a model is explainable and can
measure the SA status accurately in real-time.

(i) Using the hybrid algorithm of PSO and gradient
descent to train an FCM, exploit the PSO’s global opti-
mization capability and the efficiency of the gradient
descent simultaneously.

The rest of this paper is organized as follows: Section 2
clarifies the definition of SA and review the measure-
ment methods in literature; Section 3 shows the data col-
lection method and the basics of FCM, and describe the
learning algorithms; Section 4 shows the data preprocess-
ing; Section 5 shows the learning results and does the
analysis; Section 6 concludes the whole paper’s work.

2. SA

This section shows the relevant concepts of SA and an
overview of the measurement methods of SA.

2.1 Concepts about SA

The concept of SA was introduced by the US military in
the 1980s and went through a series of debates on the def-
inition of SA and whether it could be defined in the 1980s
to 1990s. Now the academic community basically agrees
with the three-level model definition of Endsley, the chief
scientist of the US Air Force: perception of elements in a
given space-time, understanding of the meaning of ele-
ments, and prediction of the state of elements over a
small period of time in the future [1].

This definition is based on the dynamic systems deci-
sion model, which shows that SA is the preparation of a
person before making a decision and is also the interface
between the person and the external environment. It is
important to note that SA is a state of knowledge, rather
than a process of acquiring this knowledge. The process
of acquiring SA is generally called SA, or achieving,
maintaining, and acquiring SA. SA also does not include
all of a person’s knowledge, because the process of SA is
considered to take place in the person’s working memory,
i.e., short-term memory, but SA includes the relevant
knowledge that is relevant to the task and is recalled by
the current operator. That is, SA does not include knowl-
edge stored in the operator’s long-term memory that is
not recalled in the course of performing the task. SA
should also be distinguished from operator decision mak-
ing and task performance, as experienced operators can
make poor decisions and thus perform poorly when their
SA is poor, while inexperienced novices can perform
poorly with good SA due to their inexperience. Of course,
factors that have an impact on SA, such as working me-
mory, and stress, should be distinguished from SA.

From Fig. 1, it can be seen that SA is divided into three
levels in progressive order: perception, comprehension,
and projection. The higher levels depend on the forma-
tion of the lower levels.
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Fig. 1 Three levels structure of SA [15]
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(1) Level 1: Perception

The first step in gaining SA is to perceive the state of
elements in the current environment, the attributes, and
the current key elements. For example, a pilot should per-
ceive aircraft-related parameters such as altitude, speed,
heading and angle, environment-related parameters, the
presence of mountains, and speed.

(i1) Level 2: Comprehension

The second level of SA is the understanding of the cur-
rent situation. The disordered information of the first
level is sorted out and integrated in a relevant way, pro-
cessing the interrelationships between the elements and
thus obtaining specific corresponding information, for
example, the type of aircraft based on its maneuvering
characteristics. From the viewpoint of the target, the
unimportant elements are eliminated. With the same level
of information at the first level, an experienced operator
is likely to get better information at the second level than
anovice.

(iii) Level 3: Projection

With the second level of information, the operator is
ideally able to make certain predictions about the future
state of the system based on his understanding of it. For
example, the pilot predicts the aircraft will hit the moun-
tains if the aircraft maintains the heading now, in order to
avoid that, he/she must take necessary actions.

2.2 An overview of assessment methods for SA

There are a number of evaluation methods for SA [16].
These methods fall broadly into the following categories:

(i) SA requirement analysis

By the goal directed task analysis (GDTA) method, the
needs of the SA are analyzed and the individual demand
states are then measured separately [17].

(i1) Freeze probe techniques

At a random point in time, while the operator is per-
forming a task, the operator is completely removed from
the task situation and the operator’s SA state is then
immediately and rapidly measured by using the approp-
riate scale. The SAGAT is a very famous method that can
be seen as a freeze probe technique [18].

(iii) Real-time probe techniques

The difference between the real-time probe technique
and the frozen probe technique is that the operator is not
removed from the task situation and the surveyor eva-
luates the information by directly asking the SA about it,
based on parameters such as the correctness of the opera-
tor’s answers and the operator’s reaction time, but the
evaluation process can interfere with the operator’s SA
state, resulting in inaccurate measurement results. The
SPAM which was proposed by Durso et al. and used to
assess the SA of air traffic controller (ATC) personnel, is
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representative of this approach [19].

(iv) Self-rating techniques

After the operator has performed the task, the operator
is evaluated by using the relevant SA scale. Clearly, this
is a post-test measurement method that avoids measuring
the effects of the test process on the state of SA (in fact,
as confirmed by the experiments of Endsley et al. The
measurement during the SAGAT did not also have any
influence on the operator in a statistically significant
way). SA rating techniques, proposed by Taylor in 1990,
represent this type of approach, using a 7-point scale in
which operators self-assess after completing a task on 10
dimensions [20]. The advantage of this type of method is
that the operator performs the task without interference,
but the pilot’s ability to assess himself objectively and
accurately greatly affects the reliability and validity of the
measurement.

(v) Observer-rating techniques

In the observer scoring technique, the operator, as the
observed, is only responsible for performing the task and
does not interact with the assessor and is thus not dis-
turbed. The assessor consists of a subject matter expert
(SME), who assesses the SA of the observed person by
looking at the operator’s performance, the behavior asso-
ciated with the SA. The problem is whether the SME can
accurately determine the SA of the observed person
because the SME is not the observed person and he/she
has no way of knowing what is going on in the mind of
the observed person [21]. This makes the reliability and
validity of the method extremely challenging.

(vi) Performance measures

Gugerty in 1997 measured the SA of drivers in a simu-
lated driving environment using three performance indi-
cators: hazard detection, blocking vehicle detection, and
collision avoidance [22]. An expert can perform well
when his SA is poor, while a novice can make poor deci-
sions when his SA is good. That is, performance, not SA,
is measured.

(vii) Process indices

The process of constructing one’s own SA is accompa-
nied by process indicators, such as observing relevant
information, scanning for relevant information, and rea-
soning about the necessary information. Typical methods
include verbal protocol analysis, where subjects report
their SA in the verbal form in real-time as they perform
the task. The use of eye-tracker and physiological data to
determine the operator’s SA is also part of this approach
[23].

3. Method and model

The operator’s level of SA is assessed in real-time using
the operator’s eye movement and physiological data. The
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data used is the operator’s eye movements and physio-
logical data while operating the aircraft in a cruise mis-
sion on the flight simulation experiment platform (Fig. 2),
and the level of SA is assessed by a SAGAT, where the
operator is completely isolated from the mission environ-
ment and assessed by a questionnaire as a label for the
learning data.

|

Fig. 2 Simulation experiment platform

After acquiring the relevant data, the appropriate pre-
processing is carried out to extract the appropriate indica-
tors, and feature selection is carried out appropriately.
Subsequently, the filtered features and the test results of
SAGAT are used as training data and the corresponding
models and learning methods are selected for training.

3.1 Data collection

The data is obtained as follows:

(1) Flight simulations are performed by subjects on a
flight simulation experiment platform, during which the
subjects’ eye movement data and physiological data are
measured in real-time by oculomotor and physiological
instruments.

(i1) The experimenter calls off the subject’s task after a
random time (longer than 6 s), the subject is removed
from the simulation environment, and both the oculomo-
tor and physiograph measurements are ended, saving the
data from this measurement.

(ii1) Immediately after the subject is removed from the
simulation environment, the subject’s level of SA is
tested on a task-specific SAGAT and the results of this
measurement are saved.

3.2 FCM

The FCM was proposed by Kosko in 1986 as a soft com-
puting system. It is a combination of fuzzy logic and neu-
ral networks. It consists of a number of variable concepts
and causal relations that illustrate the causal relationships
between these concepts. Nodes represent concepts and
directed edges with weights indicate the connections
between these nodes. A simple FCM model is shown in
Fig. 3.

Fig.3 A simple FCM

Each concept node has its own value, which is always
a fuzzy value that represents how well the state matches
the concept. Values in the interval [1, 1] or [0, 1] are usu-
ally chosen.

The weight is also a fuzzy number such as w, shown
in Fig. 3, and we usually choose a real number between
the interval [—1,1] as the weight value. A negative weight
means that the presynaptic and postsynaptic nodes change
in opposite directions during stimulation; a positive
weight means that they change in the same direction. And
the absolute value of the weights represents the magni-
tude of the effect of the presence of the two nodes.

Not only does the FCM have a powerful knowledge
representations capability, but it can also use the informa-
tion it collects to deduct the value of a concept. For
example, in each iteration, each concept can be given a
new value from the following equation:

C.i=S(C,-W) (1)
where W is the weight matrix and C is the node vector,
S(+) is the activation function to compress the node value
into [0, 1] or [1, 1], when the node value is in [0, 1], the
activation function is

1
S(x)= Te‘“ 2

when the node value falls in [1, 1], S(*) is the hyperbolic
tangent.

The positive parameter A is used to control the steep-
ness of the curve. The lager A is, the steeper the curve is.

3.3 The learning algorithm of FCM

To the state of the art, learning algorithms for FCMs are
mainly group-based heuristics and hybrid learning me-
thods used to combine expert knowledge with knowl-
edge from data. Heuristic learning methods have become
the dominant algorithms for FCMs to extract expert
knowledge from data [24]. However, heuristic learning
algorithms, such as genetic algorithms and particle swarm
algorithms, can give weights that meet the requirements
of the learning task but have long learning times and poor
learning accuracy. Therefore, many scholars have consi-
dered using non-heuristic learning algorithms to learn
FCMs. Some scholars have already tried to use gradient
descent to learn FCMs [11], but their proposed method
requires data after each iteration as labels, while usually,
the data of complex systems, in reality, are only the final
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output results of the system, for the intermediate process
data, it is almost difficult to obtain, so such a gradient
descent method is difficult to get realistic applications.

By using a numerical approach to calculate the gra-
dient, the problem of the gradient being difficult to solve
analytically due to the extreme complexity of the objec-
tive function is bypassed, thus eliminating the need to use
intermediate data from the operation of the system as
labels to learn FCMs.

Due to the complexity of the objective function, it is
very easy for a single gradient descent method to fall into
a local optimum. In fact, through simulation, the gradient
descent method falls into an unacceptable local optimum
almost every time, resulting in underfitting and poor
learning. Therefore, a combination of the PSO algorithm
and the gradient descent method is eventually used to
avoid falling into a local optimum prematurely: the parti-
cle swarm algorithm is used to obtain a solution that has
already reached a certain level of accuracy, and this solu-
tion is then used as the initial value for the gradient
descent method to learn. That is coarse tuning using PSO
and fine-tuning using gradient descent. The comprehen-
sive performance of such a hybrid learning algorithm is
the best by simulation.

3.3.1 FCM learning algorithm based on

gradient descent

Applying gradient descent to FCM learning is to opti-
mize the objective function using gradient descent, with
the weights updated by the following formula:

wi; (t+1) =w; (1) —nAw; (3)
where
Aw;; = M 4)
aW,'j

Aw;; is the gradient, 7 is the learning step size, the size of
its value affects the learning rate and accuracy, the value
of  can be dynamically adjusted according to the num-
ber of learning steps, and the smallest possible step size is
used when the number of steps is large enough or close to
the optimal solution. (W) is the objective function, and
the following function is used as the objective function to
learn the FCM.

Msamples— 1

D= AL ()

Ngamples =0

JW)=

Ngample—1

where (y;—¥,) is the mean square error and

Asamples ‘=5
L, (W) is the I, norm of the weight matrix as regulariza-
tion term, making the learned weight matrix as sparse as
possible. Also, since in the FCM, when |w,»j| <0.05, it is
considered that the two nodes see no relationship, so in

the process of learning, if |w,- ,-| <0.05, then w;; is set to 0.
The algorithm to calculate the objective function is as
function Aim(-).

Function Aim(X, Features, Y)

Data: The parameter vector X to be learned, training data
feature matrix Features, each row represents all features
of a sample feature the training data feature vector Y, the
feature of each sample is y;, the number of samples is
Rgmples» the number of features is /, the FCM(C;,, W)
Result: Objective function value
W = reshape(X, [/+1, [ +1]); /* Transform the parameters
to be learned into the form of a matrix of the size [/+1, [+
1] required for FCM */
for i =0 : 1y do

cin = Features|[i,:];

out FCM = FCM{C,,, W),

Y[i] = out FCM[—1] // The last node is the output
node
end

ns.\mplcs_l
2.

mse = i—=3)7;

nsamples -0

2 =AL,(W);,
return mse +/2 ;

Due to the complexity of FCMs, solving Aw;; by ana-
lytic methods is almost impossible, so the gradient vector
is obtained directly through the definition of partial
derivatives (6).

af(W) =1imf(W117”' "/Vi_j+5aWnn)_f(W1]"" 9Wnn)

BWU 6—0 6

(6)

where ¢ is taken to be as close to 0 as possible within a
computer-processable accuracy. To make the calculated
partial derivatives as accurate as possible, § = 107" is
used in this paper. The algorithm for calculating the gra-
dient is shown in the function Gradient(-).

Function Gradient(X)

Data: The parameter vector X to be learned, Training
data feature matrix Features, Training data feature vec-
tor Y
Result: Gradient of the objective function AX
o=10"
for i = 0: (/+1) x (/+1) do

addtion = zeros((/+1) x (I +1));

addtion[7] = J;

temp,= Aim (X + addition, Features, Y);

temp, = Aim (X, Features, Y);
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AX[i] = (temp,—temp, )/J;
end
return AX;

With the iteration of the gradient descent method, the
objective function will gradually approach the subopti-
mal value, and the learning step # should not be too large
at this time, otherwise, it will easily oscillate back and
forth around the suboptimal value, so the learning step
needs to be adjusted dynamically, so the following
dynamic adjustment strategy is set:

n=a, f(We)>f(W). (7

If a is set to a positive number less than 1, the learning
step 1 will become smaller and smaller as the learning
result gets closer to the suboptimal solution, and the
learning accuracy will increase. a is usually taken to be
between [0.9, 0.99].

The gradient descent method is particularly prone to
local optimality when solving for the minimum of a com-
plex function. Therefore, when the gradient is detected to
have fallen to 0 and the learning effect is still unsatisfac-
tory, the initial value and learning step should be reset
and the search for optimality restarted. Generally, a
threshold o of the objective function is set:

n="o ®)
W =rand(size(W)), AW ==0;f(w,) >0

where 7, denotes the initial learning step, which is gener-
ally taken as 0.1, and rand (size (W)) denotes the regener-
ation of the initial W. In summary, the learning algo-
rithm for FCMs based on gradient descent is shown in
Algorithm 1.

Algorithm 1
dient descent

FCM learning algorithm based on gra-

Data: Training data feature matrix Features,

Each row represents all features of one sample features,
training data feature vector ¥,

the features of each sample is y;,

the number of samples 1S 7g,pics»

the number of features is /,

fuzzy cognitive map FCM(C;,, W),

the maximum number of iterations

interation_number,

initial learning step # = 7,

learning step decay coefficient a,

maximum threshold of objective function Threshold
Result: FCM weight matrix W

X =rand((/+1) x (/+1)); /* Initialize the parameters to be
learned by gradient descent, of size (I+1) x (/ + 1) */
for i =0 : interation number do Gradient descent

AX = Gradient(X);
X=X—1nAX;
for j = 0: (/+1) x (/+1) do Check that the parameters to
be learned are not out of bounds
if abs(X[j ] > 1) then
X[j]=rand(-1,1)
end
end
A[i] = Aim(X, Features,Y);
if A[-1] > A[-2] then Dynamic adjustment of learning
steps
n=an
end
if AX == 0 && A[—1] > Threshold then
X, =rand((/+1) x ([ +1));
1= Mo,
end
if AX == 0 && A[—1] < Threshold then
Break;
end
end

3.3.2 FCM learning algorithm based on PSO

This section focuses on a particle swarm-based FCM
learning algorithm. In PSO, each possible solution to the
optimal problem is imagined as a bird, called a “particle”.
There are m particles in d -dimensional space, and at a
given moment, the position of particle i is

Xi:(Xi]’XiZ’“'axid)a i:1’27""m‘ (9)
The velocity of particle i is
Vi=(Va, Vi, Vi), i=1,2,-- ,m. (10)

The best ever position of particle i passing through is

Pbest; = (Pbest;;, Pbest;,,--- , Pbesty,), i=1,2,---,m.
(11)
The best historical position through which the population
has passed is

Gbest = (Gbest,,Gbest,, - -- ,Gbest,). (12)

The bird will decide its speed in the process of feeding
based on its own experience and the position of other
birds in the flock. Based on the current position and
speed, it can get the position at the next moment, so that
each bird constantly updates its speed position by learn-
ing from itself and the flock. The update rule for the ith
particle from moment # to moment ¢+ 1 can be summa-
rized by the following equation:

Vi = [V!+ C,R, (Pbest, — X!) + C,R, (Gbest' — X!), (13)
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X=X+ Vi, (14)

where [ is the inertia factor, usually taken as 1; C; and C,
are the learning factors, usually taken as 2; R, and R, are
random numbers between (0, 1). The above equation is
updated for one particle in the population, and all parti-
cles in the population are updated in turn using the above
equation.

For the N-node FCM, similar to the gradient descent
method, each particle represents all values of the weight
matrix.

(15)

Each step of the update determines whether the veloc-
ity of each particle is within the specified range, and
forces individuals whose velocity exceeds the maximum
velocity of the particle back into the range (—Viux, Vinax)-
In the later stages of learning an FCM using the particle
swarm algorithm, the velocity range of each particle
needs to be contracted, similar to the gradient descent
method of dynamically adjusting the learning step, and a
strategy for dynamically adjusting the velocity range of
the particles is designed as follows:

Vmax = anaxvf(WH—l) == f(Wt) (16)

With a set to a positive number less than 1, the learn-
ing step n gets smaller and smaller as the learning result
gets closer to the suboptimal solution, and the learning
accuracy increases. a is usually taken to be between [0.9,
0.99]. In summary, the algorithm for learning FCMs
using the particle swarm algorithm is shown in Algo-
rithm 2.

X =W, s Win, War, o s Wans o, Wty oo, W)

Algorithm 2 FCM learning algorithm based on PSO

Data: Features, Y, y, ngupes !
interation_number, V..., a, Threshold, PN
Result: FCM weight matrix W
X=rand([PN, (I+1) x (I+1)]);
/* Initialize the particle swarm, each row is one particle,
size of each particle is (/+1) x (/+1) */
for ¢ = 0: interation_number do PSO
fori=0:PNdo
temp = Aim(X[:], Features, Y) if
temp < pfit[i] then Update Individual
Optimum
pfit[i] = temp;
pbest[i] = X[i];
if pfit[i] < fit then Update group
optimal
gbest = X[i];
fit = pfit[i];
end

FCM(Cins I’V),

Journal of Systems Engineering and Electronics Vol. 33, No. 5, October 2022

end
Vil = IV]i]+C R (pbest[i]-X[i])+C,R,(gbest—
X[i]); //Update
particle velocity
X[i] = X[i] + VI[i]; //Update
particle position
end
if afs(X[/][j 1) > 1, abs(V]i][J]) > Ve then Learning
whether parameters are out of bounds
X[i][j] = rand(-1, 1), V[i][/1=
1and(—Vae Vinax)
end
fitness[i] = Aim(gbest, Features, Y);
if fitness[—1] == fitness[-2] then Dynamic adjustment
of learning steps
Vinax=aV inax
end
if fitness[—1] < Threshold then
Break;
end
end

3.3.3 Hybrid FCM learning algorithm based on PSO
and gradient descent

The particle swarm algorithm has a better global search
capability compared to the gradient descent method and
can converge quickly to near the optimal or sub-optimal
solution. However, as it is an evolutionary algorithm, it
relies on comparing the fitness of a large number of solu-
tions to find the optimal or suboptimal solution, so it is
characterized by the fact that the value of the objective
function decreases very rapidly at the beginning of the
iteration, but the value of the objective function changes
very little in subsequent iterations, often hovering around
the optimal solution and taking up a lot of computation
time. The gradient descent method, on the other hand, is a
commonly used optimization algorithm with a very clear
objective: to update the variables in the direction of a
decreasing error function. However, the selection of the
location of the initial values of the variables has a crucial
impact on the results of the gradient descent method, and
even directly affects the effectiveness of the algorithm.
The objective function of the FCM learning algorithm is
very complicated and the images are rugged, so the selec-
tion of the initial weight values is very important. Com-
bining the above characteristics of the two algorithms, the
two algorithms can be combined to further improve the
accuracy: the weight matrix obtained from the optimiza-
tion of the particle swarm algorithm is used as the initial
weight matrix of the gradient descent method, which is
equivalent to the particle swarm algorithm finding a solu-
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tion near the optimal solution for the gradient descent
method with its superior global search capability, and to
avoid the particle swarm algorithm hovering near the
optimal solution, followed by the gradient descent
method to further fine-tune the weight matrix so that the
weight matrix is as close to the true value as possible.

In order to achieve the desired value for both speed and
accuracy of the algorithm, it is necessary to find the opti-
mal point at which the two algorithms combine, i.e., the
minimum number of iteration steps near which the parti-
cle swarm algorithm finds the global optimal solution
when the solution output by the particle swarm algorithm
not only takes less time but also tends to make the result
of the gradient descent method closer to the true value. A
relatively large threshold is generally set, and when the
value of the objective function is less than this threshold,
PSO is no longer run, and instead, the training parame-
ters are passed to the gradient descent method to con-
tinue the learning process. The FCM learning algorithm
based on PSO and gradient descent is shown in Algo-
rithm 3, and the flow chart of the process is shown in Fig. 4.

Algorithm 3 FCM learning algorithm based on PSO
and gradient descent

Data: Training data feature matrix Features, each row
represents all the features of one sample feature, the train-
ing data feature vector ¥, the features of each sample are
V> the number of samples iS 7.p1es

Result: FCM weight matrix W

W =PSO(Features, Y) ; // Algorithm 2

W = Gradientiy(W, Features, Y);

/I Algorithm 1, further optimization of the weight matrix

Weights to be Coarse tuned by
learned PSO
Finetuned by
gradient descent

Fig. 4 Flow chart of the FCM learning algorithm based on PSO
and gradient descent

Learned weights

4. Data preprocessing

The raw data obtained from the eye tracker and physio-
logical instruments consisted of 30 columns, including
physiological data (6 columns), oculomotor data (22
columns), and time markers (2 columns). The average
binocular coordinates (2 columns), time markers (2
columns), binocular coordinates (4 columns), and binocu-

lar sweep (gaze) marker columns (4 columns), which are
not relevant to the learning purpose, are now eliminated,
leaving only the physiological data (6 columns), binocu-
lar pupil data (6 columns), binocular sweep time (2
columns), binocular gaze time (2 columns), and binocu-
lar sweep angle (2 columns). Also, as the sampling fre-
quency of each sensor is different, the sensors with low
sampling frequency in the table have many missing va-
lues in the corresponding columns, so the data are classi-
fied according to the sampling frequency of the sensors.

(i) Respiratory-electromyogram (EMG) data. Includes
EMG, thoracic respiration, and diaphragmatic respiration.

(ii)) Heart rate-blood oxygen saturation (Sa02).
Includes heart rate (upper and lower limits), SaO2.

(iii) Ocular motility sensor. Includes left (right) pupil
height, pupil width, pupil area, left (right) eye gaze
marker, left (right) eye sweep marker, left (right) eye
sweep time, left (right) eye sweep angle of view.

After classifying the data into the three types men-
tioned above, the missing values due to the sampling fre-
quency are removed and the data from the first 20 s of the
“freezing” moment is selected as valid data according to
the time marker. In addition to missing values due to low
sampling frequencies, there are also missing values due to
temporary equipment failures, which are interpolated
using K-nearest neighbor (K-NN) for random missing
values [25] in continuous data sequences and rejected for
large missing values due to temporary equipment failures.

The data from each source is processed and relevant
features are extracted below.

4.1 Respiratory-EMG sensor data

(i) Electromyographic data. The surface electromyogra-
phy (sEMG) of the long wrist extensors of the arm used
to control the grip is collected during the experiment and
the EMG data collected during the experiment is shown
in Fig. 5.
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Fig. 5 Example of electromyographic data
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The overall trend of the EMG data indicates the move-
ment performed, and the magnitude of the EMG reflects
the degree of muscle tension. In conducting the state of
postural awareness assessment, it is considered that the
degree of muscle tension partially reflects the state of SA
[26], and therefore the metric relating to the magnitude of
EMG is selected [27—29]. The following indicators are
extracted as alternative features.

1) Integral of absolute value (IAV)

1 N
IAV = N;m (17)
i1) Mean square value (MSV)
1 S 2 2
MSV:Nle.zE[X] (18)

i=1
The MSV represents the energy of the signal and is the
second-order moment of the signal.
iil) Variance (VAR)
1 N
= %)’
VAR = ;(x, X)) (19)
The variance represents the dynamic component of the
signal energy (the mean square is the static component)

and is the second-order center moment.
iv) Root mean square (RMS)

X+x2++x
— 1 2N N (20)

v) Willison amplitude (WAMP)

N

WAMP = Z F(x=xia) 21
i=1

1, x> Threshold

0, otherwise

f(X)={

Threshold is often set as 50—100 pV, in this experi-
ment, it is 50 pV.

(i) Thoracic respiration signal (TRS) and diaphrag-
matic respiration signal (DRS)

As both human thoracic respiration and diaphragmatic
respiration are measured in relation to human respiration,
the data for thoracic respiration and diaphragmatic respi-
ration are similar and their original data are shown in
Fig. 6. Because of this similarity, the same treatment is
adopted. It is found that there are many burrs in the raw
data due to measurement errors, so the data need to be fil-
tered to remove the noise. In this paper, the data are
smoothed by using the Kalman filter [30] and the
observed data variance is chosen to be 1. The data after
noise removal is shown in Fig. 7.
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Fig. 6 Raw thoracic respiratory data and diaphragmatic respira-
tory data
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(b) Diaphragmatic respiratory data after Kalman filtering
Fig. 7 Thoracic respiratory data and diaphragmatic respiratory

data after Kalman filtering

As with EMG data, absolute mean, mean square, vari-
ance, and RMS values are selected as alternative features,
as well as period T, frequency f', peak P , trough V', and
mean peak to peak (MPP), due to the apparent periodic-
ity of the thoracic (diaphragmatic) respiratory data.

4.2 Heart rate-blood SaO2 sensor data

(1) Blood Sa0O2 data. A finger-held photoelectric sensor is
used to calculate hemoglobin concentration and blood
Sa02 by simply placing the sensor on a human finger and
using the finger as a transparent container for
hemoglobin, using red light at a wavelength of 660 nm
and near-infrared light at 940 nm as the incoming light
source, and measuring the light transmission intensity
through the tissue bed. The raw data of the measured
blood Sa02 are shown in Fig. 8.

x10?

Sa02

0 500 1000 1500 2000 2500
Sampling times
—:Sa02;e : Crest; « : Trough; v : Sub-crest; » : Sub-trough.

Fig. 8 Raw data of the measured blood SaO2

As can be seen from Fig. 8, the data is basically
smooth and the noise has little effect on the data, so no
filtering is performed. At the same time, it can be found
that the SaO2 signal shows obvious periodicity, which is
caused by the pumping of the heart. It can be found that

within each cycle there are also two small peaks and
troughs, which are called sub-crests and sub-troughs in
this paper. At the same time, a cycle reflects the duration
of the heartbeat, so the minimum number of cycles within
the time frame can be counted to calculate the de-rate
data. Thus, the following alternative indicators can be
obtained from SaO2: the mean, variance, effective value,
and AV, as well as the mean and variance of a peak,
trough, cycle, heart rate, peak-peak, sub-crests and sub-
troughs * cycle, frequency, peak, trough, and peak-peak
values (24 alternative indicators in total).

(i1) Heart rate data. The heart rate data in this experi-
ment gives the upper and lower limits of heart rate
respectively, and its mean and variance are selected as
alternative indicators (4 alternative indicators in total).

4.3 Eye-tracker data

The eye-tracker data mainly include pupil height, pupil
width, pupil area, left (right) eye gaze marker, left (right)
eye sweep marker, left (right) eye sweep time and left
(right) eye sweep angle of view. The data are not signifi-
cantly periodic or regular, but there are more missing data
and outliers.

(1) Processing of pupil height, pupil width, and pupil
area data for both eyes.

To facilitate the processing and visualization of the
data, the z-score is first used.

f==F (22)
g

where x is the observed value, u is the overall mean, and
o is the overall standard deviation. Considering a large
number of outliers in the data given by the oscillograph,
in order to eliminate the influence of outliers on z-score
normalization, a robust scale is used to calculate the mean
and standard deviation using the data between the first
and third quartiles, followed by z-score normalization.
The distribution of the standardized data is shown in Fig. 9.

Normalized value
o —_

HL H

(1]

_2 1 1 1 1 0]
area(l) height(l)width(l) area(r) height(r)width(r)
Fig. 9 Box plot of pupil data distribution for both eyes
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The outliers in the data are then processed. Outliers are
first detected by the Tukey test: outliers are detected
using the interquartile range (IQR), which is the diffe-
rence between the upper quartile and the lower quartile.
Using 1.5 times IQR as standard, points exceeding 1.5 times
the IQR in the upper quartile, or 1.5 times the IQR in the
lower quartile, are specified as outliers [31]. After label-
ing these outliers, the K-NN algorithm is used to interpo-
late the outliers and missing values in the dataset. The
Euclidean distance is used to find the nearest sample
point. Each missing feature is estimated using the values
of then nearest sample points, which are weighted
according to their distance from the sample point to be
estimated. When the number of available nearest sample
points is less than n, the average value of the feature is
used for interpolation. In this paper, n is taken to be 5.
The distribution of the data after interpolation using K-
NN is shown in Fig. 10.

3

! HHH

_1 L £

Normalized value

area(l) height(l) width(1) area(r) height(r) width(r)
Fig. 10 Box plot of pupil data distribution for both eyes (after pro-
cessing outliers and missing values)

After dealing with outliers and missing values, the
mean and variance of the above indicators are calculated
as alternative characteristics.

(il) Gaze and sweep data. The sweep and gaze data
focus on their number, maximum and minimum dura-
tions, average duration and variance of gaze (sweep), and
duration and variance of sweep angle.

After processing all of the above data, a total of 101
alternative features are obtained. Of these, there are 40
features from eye movement data, five features from
EMG, 14 features each from thoracic and diaphragmatic
respiration, and 28 features from heart rate-SaO2 sensors.
The features are considered for filtering to prevent
dimensional catastrophes caused by high dimensionality.

4.4 Feature selection

The above features are filtered by using the random fo-
rest [32]. Using the 101 features obtained above, the

results obtained from the SAGAT scale are used as
labels, subjected to maximum-minimum normalization,
and then used as training data for the random forest,
which is trained with parameters set to 100 decision trees,
each with a maximum depth of 10. Finally, the impor-
tance of each feature is obtained as shown in Fig. 11.

0.05

0.04

0.03 -

0.02

Importance

0.01

40 60 80 100
Feature number

Fig. 11 Importance of each feature

The horizontal axis of Fig. 11 indicates the number of
each feature. After eliminating features with importance
less than 0.005, 59 features remain, and the sum of the
importance of these 59 features is 0.949 7.

5. Results and analysis

The 59 features and 1 column of labels are used as each
node of the FCM, i.e., a FCM with 60 nodes is con-
structed by the learning algorithm. In the learning data,
missing data due to a sensor failure is treated as 0. A total
of 200 sets of data are collected for the experiments, and
80% are randomly used as the training set and the
remaining 20% as the test set. The PSO algorithm, the
gradient descent algorithm, and the hybrid learning algo-
rithm of PSO and gradient descent are used to construct
the FCM respectively.

5.1 Metrics for the results

The effectiveness of the model fitting is evaluated by the
following metrics.

5.1.1 Explained variance (EV) score
Varly — §
EVG,9)=1- Varly -3} 23)
Var{y}

where y is the predicted value, y is the corresponding true
value, and Var{y} is the variance. Its value takes the range
[0,1], the closer to 1 means that the independent variable
explains more of the variance of the dependent variable
of the variance, with smaller values indicating poorer
effects.
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5.1.2  Maximum error (ME)

This metric calculates the maximum residual, i.e., the ME
between the predicted and true values. In a fully fitted
single-output regression model, the ME on the training
set is 0, although in the real world this is almost impossi-
ble. This indicator shows the degree of error in the fit of
the model. If y; is the predicted value of the ith sample
and y; is the corresponding true value, then the ME is
defined as

ME(y,§) = max (ly: = yil). (24)

5.1.3 Mean absolute error (MAE)

If y; is the predicted value of the ith sample and y; is the
corresponding true value, then the MAE is defined as

Ngamples— 1

D =il (25)

nsamples =0

MAE (y,$) =

5.1.4 Mean squared error (MSE)

MSE is defined as

Rsamples -1

MSE(y, ) = =9 (26)

samples =0

5.1.5 Median absolute error (MedAE)
MedAE is defined as

MedAE (y,$) = median(ly, = ¥il,---, [y, =YD (27)

The median of the residuals as a measure of perfor-
mance is highly robust and does not change drastically
due to the presence of outliers.

5.1.6 Coefficient of determination, R*

S5y

RyH=1-"u—r (28)

Z(y,-—y)z

The coefficient of determination indicates the propor-
tion of the variance in the dependent variable that can be
explained by the independent variables in the model, pro-
viding an indication of the goodness of fit and thus a
measure of the model’s performance in predicting the
unobserved sample by the proportion of variance
explained. The best possible score for the decidability
coefficient is 1.0, but it can also be negative. A model
whose predicts value is always the expectation ofy,
ignoring input features, has a score of 0.
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5.2 The results

The values of the objective function with the number of
iteration steps for learning FCMs using the PSO algo-
rithm are shown in Fig.12.
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Fig. 12
steps using the PSO algorithm

Learning FCM objective function values with iteration

The objective function for learning FCMs using gradi-
ent descent and the change in the /, norm of the gradient
with the number of iterations is shown in Fig. 13.

1000 1500 2000 2500 3000
Number of iterations
— :Aim; --- : ,(Gradient).

Fig. 13 Aim function values and /; values optimized by gradient
descent method

As the learning effect of gradient descent is very
dependent on the initial value, the learning effect is poor
and unusable when the initial value is randomly given, so
the required accuracy is achieved only after several rese-
lections of the initial value are made. From Fig. 13, we
can see that the gradient and the objective function go
through several large ups and downs before reaching the
required accuracy.

The variation of the objective function value with the
number of iteration steps using a learning algorithm com-
bining the PSO learning algorithm and gradient descent,
and the variation of the number of second parity of the
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gradient with the number of iteration steps are shown in
Fig. 14.
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Fig. 14 Objective function curve and gradient (/) curve for FCM
using PSO and gradient descent

As can be seen from Fig. 14, the objective function
value is optimized below a threshold by the PSO algo-
rithm in the first stage, followed by a gradient descent
stage for fine-tuning.

The performance metrics of each learning algorithm on
the training set are shown in Table 1, and on the test set

in Table 2.

Compare the metrics for the training set and test set. It
can be found that the PSO reached the best learning
result, for its EV, and R? are perfect and the ME, MAE,
and MSE are the lowest, but its running time is the
longest. Almost perfect results in the training set may
indicate over-fitting, and the long-running time shows a
relatively low efficiency. As for the gradient descent, it
can be found that it is the least effective learning algo-
rithm, for its lowest R*> and EV, the highest ME, MAE,
and MedAE. Now scrutinize the hybrid algorithm, firstly,
the PSO in the hybrid algorithm uses about one-third of
the time of pure PSO to get a relatively good result, and
then the gradient descent algorithm finetunes the results,
using about 900 0 s, to get a good result. The hybrid algo-
rithm obtains the almost same quality as the pure PSO,
but the running time is about two-third of the pure PSO.
Compared with Table 1 and Table 2, it is easy to check
over-fitting or under-fitting. It can be found that all of the
algorithms may confront a little bit of over-fitting, for EV
and R?, all of them decrease a little bit; for the ME, MAE,
MSE, and MedAE, all of them increase a little bit. How-
ever, such little change of efficiency causes a negligible
impact.

Table 1 Performance metrics for each learning algorithm (training set)

Learning algorithm EV ME MAE MSE MedAE R Running time/s
Random forest 0.8960 0.2020 0.0843 0.0109 0.0710 0.8869 0.1098
PSO 1.0000 0.0039 0.0012 0.0000 0.0005 1.0000 212447169
Gradient descent 0.8766 0.5404 0.1258 0.0479 0.0406 0.8753 9283.7482
PSO (in hybrid algorithm) 0.9757 0.2740 0.0614 0.0099 0.0368 0.9743 6376.7343
Hybrid algorithm 0.9994 0.0350 0.0119 0.0002 0.0091 0.9994 14767.073 1

Table 2 Performance metrics for each learning algorithm (test set)

Learning algorithm EV ME MAE MSE MedAE R Running time/s
Random forest 0.8775 0.2025 0.0994 0.0259 0.0768 0.8780 0.1098
PSO 0.9957 0.0056 0.0306 0.0476 0.0118 0.969 6 21244.7169
Gradient descent 0.8688 0.5866 0.1449 0.0599 0.0863 0.8708 9283.7482
PSO (in hybrid algorithm) 0.9500 0.2996 0.0705 0.0250 0.0593 0.9718 6376.7343
Hybrid algorithm 0.9680 0.0695 0.0165 0.0274 0.0189 0.9800 14767.073 1
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6. Conclusions

This paper focuses on the SA status measurement based
on the FCM model. To the state of art, only the SAGAT
method to measure the SA status has good statistical
validity. However, the SAGAT cannot be applied in real-
time since the operators have to be interrupted from the
missions. In this case, lots of missions that need the ope-
rator’s real-time SA status cannot be solved. To tackle
such a problem, we use the eye-tracker and physiological
data to predict the SAGAT results, since the data comes
from the eye-tracker and physiological instruments are
highly relevant to human’s cognitive status and can be
obtained in real-time. The learning machine is chosen as
FCM, because of its interpretability and ease to use.
However, there still not exists an efficient enough learn-
ing method for FCM. Thus, we apply hybrid methods of
PSO and gradient descent method to learn the FCM and
obtain good results.

To summarize, the contributions of this paper are con-
struction of a 60-node FCM to assess the operators’ SA
status in real-time, and using the hybrid algorithm of PSO
and gradient descent to learn the FCM in high efficiency.

The constructed FCM contains the knowledge from
data and indicates the links between nodes, which can
help us to understand how the movement of the eye and
the relevant physiological signal is related to the SA sta-
tus. Also, the model can assess the operator’s SA status in
real-time and do not interrupt the missions since the
devices can be embedded in the platform, even in the
clothes of the operator.

The future work will focus on how to deal with the
uncertainty of the data and the dynamic environment
which FCM cannot handle. For example, the data of heart
rate comes from different sensors may be inconsistent,
and the dynamic situation change may cause a sudden
loss of SA of the operator, which may not be caught by
the FCM. One of the solutions is to use relevant FCM
extensions, such as dynamic fuzzy generad grey congni-
tive maps, to adapt the uncertainty data and dynamic
environment, in this way, the learning algorithms for
FCM extensions also need to be designed.
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