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UAV safe route planning based on PSO-BAS algorithm
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Abstract: In order to solve the current situation that unmanned

aerial vehicles (UAVs) ignore safety indicators and cannot gua-

rantee safe operation when operating in low-altitude airspace, a

UAV route planning method that considers regional risk assess-

ment is proposed. Firstly, the low-altitude airspace is discre-

tized based on rasterization, and then the UAV operating charac-

teristics and environmental characteristics are combined to

quantify the risk value in the low-altitude airspace to obtain a 3D

risk map. The path risk value is taken as the cost, the particle

swarm optimization-beetle antennae search (PSO-BAS) algo-

rithm is used to plan the spatial 3D route, and it effectively

reduces the generated path redun dancy. Finally, cubic B-spline
curve is used to smooth the plan ned discrete path. A flyable
path with continuous curvature and pitch angle is generated. The

simulation results show that the generated path can exchange

for a path with a lower risk value at a lower path cost. At the

same time, the path redundancy is low, and the curvature and

pitch angle continuously change. It is a flyable path that meets

the UAV performance constraints.
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1. Introduction

With the advance of low-altitude airspace reform, it has
become a current development trend for UAVs to leave
isolated airspace and enter low-altitude fusion airspace to
develop diversified missions. A large number of disor-
dered low-altitude unmanned aerial vehicles (UAVs)
bring harm to ground facilities and public safety [1].
Especially with the wide use of small UAVs in urban
space, there will be a large number of UAVs performing
aerial photography, logistics, security, search, rescue, and
other tasks over cities. Meanwhile, the complex low-alti-
tude environment formed by irregular obstacles in dense ur-
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ban space brings severe challenges to the UAV safe oper-
ation [2]. At the same time, when the UAVs run at low
altitude in the city, it may fall and hurt people and vehi-
cles, increasing the UAV accidents risk [3]. Therefore, it
is necessary to plan a safe and flyable route for UAVs in
the complex urban low-altitude environment, to provide
technical support for UAVs low-altitude air traffic man-
agement.

Route planning is one of key UAV autonomous flight
technologies. There are many mature traditional methods.
Common route planning methods include the heuristic
algorithm, the mathematical optimization algorithm, the
potential field method, the graph theory, etc.

(1) Heuristic optimization algorithm. It is an optimiza-
tion algorithm that searches for approximate optimal
solutions at an acceptable computational cost. It mainly
includes ant colony algorithm, genetic algorithm, and A*
algorithm. Luo et al. [4] used the ant colony algorithm
with positive feedback and good robustness to separate
the pheromones according to the advantages and disad-
vantages, strengthened the pheromones with good effects,
and improved the route planning speed. Bao et al. [5] pro-
posed an improved heuristic function and local search
strategy of ant colony algorithm with angle factor, it is to
solve the algorithm slow convergence speed problem in
3D UAV route planning. Xu et al. [6] presented a route
planning approach for rotary UAVs ( R-UAVs) in a
known static rough terrain environment. Considering the
length, height and tuning angle of a path, the route plan-
ning of R-UAVs is described as a tri-objective optimiza-
tion problem. An improved multi-objective particle
swarm optimization algorithm is developed.

(i1) Mathematical optimization method. According to
the established UAV route planning model, the optimiza-
tion problem can be transformed into the optimal control
model, and the mathematical optimization method can be
used to solve it. Zhang et al. [7] proposed a sequential
mixed integer linear optimization method. It could simul-
taneously select speed regulation, direction, and height
adjustment to generate a resolution path for the complex
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low-altitude multi-machine conflict problem. On the
premise of route pre-planning, Sarim et al. [8] adopted
the mixed integer linear programming method and then
carried out fine planning to improve the route smooth-
ness.

(iii) Potential field method. The route planning method
based on the potential field constructs a virtual potential
field in the airspace, generates a navigation function, and
converts the aircraft motion law into the result of the
force between objects. Fan et al. [9] proposed a regular
hexagonal guidance method based on the artificial poten-
tial field method to improve the local minimum problem.
At the same time, a relative velocity method was pro-
posed to detect and avoid moving objects in dynamic
environment.

(iv) Graph theory. The route planning method based on
graph theory firstly uses the rasterization method to mo-
del the environment, and then uses the search algorithm to
generate the planned path. Commonly used methods are
Dijkstra algorithm, Voronoi diagram, probabilistic road-
maps, etc. Angel et al. [10] proposed a route planning of
multiple trajectories for a swarm of UAVs based on 3D
probabilistic road maps (PRM). In addition, machine
learning [11-13], model predictive control [14,15] and
game theory [16,17] were also applied in route planning,
and they all had certain characteristics and advantages.

Although the current route planning method has been
relatively mature, the current route planning basically
takes the shortest path and the minimum threat as the per-
formance indicators to generate the UAV flyable path.
After the UAV leaves the isolated airspace and enters the
national airspace, each area in the 3D space has different
risk values, so it is necessary to comprehensively con-
sider obstacle avoidance requirements and safety risk
management. If the airspace itself risk is ignored, the gene-
rated path will cause hidden danger to the city safety, and
the low-altitude UAV air traffic management is not used.
In order to ensure the low-altitude UAVs flight safety, it
is necessary to consider the urban low-altitude airspace
risk assessment. The path can meet the obstacle avoid-
ance requirements and minimizes the path risk by com-
bining the different urban areas risk maps. In view of the
above problem, this paper studies the UAV route plan-
ning in the complex low-altitude environment with
regional risk assessment. According to the different city
modeling area, 3D airspace risk maps are established.
Combined with UAV performance constraints and obsta-
cle avoidance requirements, a path that takes into account
the urban area risks is generated based on the particle
swarm optimitation-beetle antennae search (PSO-BAS).
Finally, cubic B-spline is used to smooth the planned
path to generate continuous curvature and smooth flyable
path.
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2. Low-altitude airspace modeling

Environmental modeling is the work that needs to be
completed in the first step of UAV route planning. The
establishment of the model directly affects the effect of
path planning. Urban environmental obstacles are nume-
rous, diverse and unevenly distributed. To simplify the
airspace running environment, speed up the planning, the
city 3D space will be discretized by using the cross grid
method.

As shown in Fig. 1(a), firstly, a 3D rectangular coordi-
nate system O-XYZ is established, and then a 3D area
ABCD-EFGH is constructed in the coordinate system,
where the ABCD plane is on the XOZ plane, and then the
UAV’s low-altitude operation airspace is placed in this
3D area, AB and AE are respectively equal to the length
and width of the airspace where the UAV operates.
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Fig.1 Schematic diagrams of division of planning space and
arbitrary plane

Once the planning space is obtained, it can be further
divided. Firstly, ABCD-EFGH is divided into n equal
parts along the Y axis to obtain (n + 1) planes. Then, the
arbitrary plane is divided into / equal parts along the Z
axis and m equal parts along the X axis, as shown in
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Fig. 1(b). In this way, the planning space is discretized
into nxmx1 grids. In practical applications, the division
of the grid size should be based on the premise that the
UAYV can move freely in the unit grid, that is to say, n and
m should be selected accordingly, and / is the division in
height. This can give a good balance between the envi-
ronmental information amount storage and the path plan-
ning accuracy.

After the above processes, the low-altitude operation
airspace of the UAV can be represented by a collection of
discrete points. The airspace coordinates after rasteriza-
tion correspond to the node number one by one. The co-
ding rules can be used to convert the airspace coordinate
information to the node number.

The parks, streets, buildings, residential areas, and other
areas in the city low-altitude environment are regarded as
static obstacles for the UAV operation. They are scat-
tered in different areas in the city. For towering buildings,
the UAV avoids collisions by flying around. For lower
areas, it carries out overflight. In order to reduce the
airspace structure complexity and facilitate the effective
obstacle avoidance, various obstacles are simplified into
cuboids.

3. Regional risk assessment

In the complex urban low-altitude environment, due to
the differences in population density, flight height,
ground cover, and other parameters of UAV operation
regions, the operational risks are also greatly different.
Therefore, it is necessary to conduct discrete risk assess-
ment for each grid area and quantify risks. Each position
corresponds to a risk value [18]. The nxmxI 3D risk
assessment matrix R is constructed. The risk matrix of the
k(k=1,2,---,]) level is expressed as

r(prag)  r(Pize) r(Prmge)

r(paix)  1(P22k) r(P2mk)
k= . . .

r(Puin)  T(Pu2k) r(Pumie)

nxm

where r(p; ;) (i=1,2,---,n;j=12,--- ,mk=1,2,---,])
represents the risk assessment value within each grid area
in 3D space, and (i, j, k) represents the coordinate value in
3D space.

In the 3D urban airspace, the nxmx[! UAV running
path matrix can be constructed, the path matrix of the kth
level can be expressed as

m(pii)  m(piag) m(py i)
m(pa1x)  m(Paog) m(Pami)
k= . . .
m(pn,l,k) m(pn,Z,k) m(pn,m,k) nxm
where m(p; ;) (i=1,2,---,n;j=1,2,--- ,m;k=1,2,--- 1)

represents whether each grid area in the 3D space is
flown over by the UAV, denoted as

(Ps) = 1, UAV fly over the grid
MPiik) =10, UAV bypass the grid

Therefore, the cost of considering regional risk assess-
ment is expressed as
C= Z r(pi.j,k)m(pi,j,k)‘ (1)
i,jk
The lower the risk assessment value, the less security
threat the path poses. At present, the mortality rate is usu-
ally used as a method to evaluate the risk UAV operation
[19-21]. The risk assessment value calculation process in
each grid area is described below.

3.1 Risk assessment of UAV impact on humans

Due to the high people density in urban space and the
high value of ground property, the UAV falling accident
often causes higher loss of people and property. There-
fore, urban route planning considering regional risk
assessment can plan a path with lower risk value for
UAVs. It can reduce operational risk to a certain extent.
UAVs operating in urban space pose a certain threat to
ground personnel due to their reliability and the differ-
ence in operating areas. Currently, UAVs are mainly rep-
resented by accident fatality rate [22] of UAV system:

Pl szNexpP(f) (2)

where f; represents the UAV reliability index, it repre-
sents the system crash rate due to its own failure; N,
represents the people number exposed to the UAV
ground impact accident; P(f) represents the death rate of
the system impact. N,,, can be expressed as
Newp = Acpp 3)
where p represents population density; A., represents the
killing area of ground collision when the UAV system
falls down. Combined with [23], A, is related to the
UAV itself physical properties and the sliding parame-
ters, as shown in Fig. 2. It is expressed as
Avp = 2(ry + Run)d +1(r, + Ry )’ ©)

where r, represents the ground personnel radius; Ry,
represents the UAV maximum radius. According to the
geometric relationship in Fig. 2, d = h,/tan 6, where 6
represents the UAV sliding and falling angle, and it can
be determined by the following formula:
Vy
o)
mg—F, RiApaviy
“Tm 8T om ®)

t 2 hR;Apa
V,=| adt= me (1 —e  om )
T Jo RiApa

0= arctan(
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where V, and V,, respectively indicate the UAV fall
vertical speed and their own maximum speed; F, repre-
sents the UAV air resistance during it falls, g represents
gravitational acceleration, R; represents the drag correla-
tion coefficient, it is associated with its physical proper-
ties; A represents the UAV area; p, represents air den-
sity; v, represents the UAV actual airspeed when it
crashes.

W)

d=h,/tan 0
Fig. 2 Schematic diagram of the killing area of falling UAV

The UAV impact fatality rate P(f) can be expressed as

P(fy=— L ©)

BT
ﬁ Eimp

where E;,, represents the impact kinetic energy and it is

calculated with Ei,, = (1/ 2)mVi2mp, Vimp = [V + V2 «
is defined as the required impact capacity when the morta-
lity rate reaches 50% when p, is set as 0.5; 8 is defined
as the impact capacity critical value for the death events
when p, is set as 0. Shading parameter p, represents the
impact degree of UAV system ground impact event on
urban ground personnel, and its value is between [0,1].
The larger the value is, the better the ground shelter effect
is. According to the actual situation of urban ground shel-
ter effect, the various types shelter parameter settings of
areas are shown in Table 1.

Table 1 Masking parameters

Coefficient Shelter parameter
0 No shelter
0.25 Sparse trees
0.50 Trees or low buildings
0.75 High-rise building
1 Industrial zone

3.2 Risk assessment of UAV impact on vehicle

During the UAVs operation in cities, due to the nume-
rous towering buildings, the planned flying path is often
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over the road. The UAVs fall down due to a failure and
collide with vehicles on the ground, causing traffic acci-
dents and injuries. Therefore, in the urban 3D route plan-
ning process, it is necessary to consider the risk assess-
ment of UAV impact on vehicles.

The expected death rate of a UAV hitting a ground
vehicle can be defined as the deaths number per hour
caused by the UAV falling, it can be expressed as

P, = fcCT (7
where T represents the average deaths number caused by
each traffic accident; C represents the UAV hitting the
vehicle probability. C can be defined by the ratio of the

all vehicles projected total area to the covered road total
area:

[95]]

et ®)
road

where S, represents the vehicles projected area on the
ground, N represents the vehicles number calculated by
N =KL, K represents the traffic density (the vehicles
number on the road per unit length), L represents the road
length, S, represents the road area calculated by
S road = DroaaL, and D,,q represents the road width.

C=

3.3 Three-dimensional route planning model
considering regional risk assessment

If regional risks are not taken into account, the property
index of urban airspace air route planning is Jy=
wJ;+ w,J,. If regional risks are taken into account, the
performance indicators of urban airspace route planning

is expressed as J; = C= Z F(Pi i )m(Pi )

Small UAVs flying iriyjiklrban space are limited by their
own performance, and they often cause safety hazards
when performing large maneuvers. Therefore, flight con-
straints and terrain constraints need to be considered in
the planning process.

(1) The maximum horizontal turning angle. Limited by
its own hardware performance, when the UAV turns in a
horizontal direction, the turning angle cannot exceed the
maximum horizontal turning angle Ay,,,. Assume that in
N path assembly points, and the nth horizontal turning
angle track segment compared to the (n—1)th track seg-
ment is Ay,. Then, the horizontal turning angle con-
straint is

|AY,| < A, n=1,2,---,N. )

(i1) The maximum pitch angle. Pitch angle refers to the
angle when the UAV climbs up or dives down. Due to
performance limitations, the high and low angle of the
UAV in flight cannot exceed the maximum high and low
angle 6,,,,. Assuming that in N path assembly points, the
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pitch angle between the nth track segment and the (n—1)th
track segment is 6, then the maximum pitch angle con-
straint is

|0n|<0max, n= 172a"'7N~ (10)
(iii) Terrain constraints. The flight altitude and terrain

altitude should meet the safety threshold requirements,
and the terrain constraints can be expressed as

Hsafe_min(zn_Hler) < 0 (11)

where H,,, is the safety threshold; H,, is the terrain height
where the waypoint is located; z, is the flight height of
the nth track segment in the flight path.

The total flight path risk value in the urban airspace is
used as the objective function, and obstacles such as non-
flyable buildings in the low-altitude airspace are used as
path constraints. The parameter that needs to be opti-
mized in the UAV route is the set point of the planned
path. Therefore, the 3D path model can be simplified to
the following expression, and the model considers the
urban low-altitude areas risk assessment:

minJ; =minC = minz r(pii)m(Pi i)
i,jk
"(Pi,j,k) =P +P,
m(pie) = {1, UAV flies over the grid
’ 0, UAV bypasses the grid
SUY AU < A, n=1,2,--- N . (12)
16, < Opax, n=1,2,--- N
Hg —min(z, — Hy,) <0

4. 3D route planning based on PSO-BAS
algorithm

4.1 Standard PSO

PSO is an optimization algorithm. It simulates the birds
random predatory phenomena. Each particle can be
regarded as abird, it will have individual and group informa-
tion feedback in the predation process. Each bird repre-
sents a possible solution to the optimization problem.
When a bird finds food, other birds in the group will
move towards it. PSO algorithm is to use the birds’ infor-
mation sharing characteristics to form a process from dis-
persion to concentration. All particles have a fitness value
determined by the optimized function, and each particle
has a speed to determine the direction and its flight dis-
tance. The algorithm initializes a group of random parti-
cles (random solutions), and then searches for the opti-
mal solution through iterative updating. In the PSO algo-
rithm, each particle has a memory to track the previous
generation optimal position during iteration: one is the
optimal position found by the particle itself. It is called
the particle individual optimal position. The other is the
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optimal position found by the whole group. It is called the
particle global optimal position.

It is assumed that there are N particle in the D-dimen-
sional search space, that is, the particle swarm population
size is N, the ith particle position parameter in the D-
dimensional can be expressed as x;(k) = (x; (k), xp(k), -+,
Xip(k)). The optimization problem cost function is used to
determine whether the particle current position is better
than the historical position.

Up to now, the ith particle individual optimal value
position parameter py. is

Doest = (Pit> Pizs "+ » Pin)- (13)

Up to now, the optimal population value position
parameter g for all particles is

8best = (pglapgb"' ,PgD)~ (14)

The velocity is
vi(k) = Vi (k), via(k), -+, vip(k)). (15)

The ith particle velocity and position iteration rule at
the k time is

Vitk+1) = wvi(k) + ¢ 171 (Ppest.i(k) — x,(k))+

€272 (8rest (k) — x;(k)) . (16)
xitk+1) = x;(k) +vi(k+ 1)

where k is the iterations number, w is the inertia weight;
c; and ¢, are the acceleration factors. It mainly controls
the individual information feedback and group informa-
tion communication of particles. It enables particles to
make judgments based on the information obtained by the
individual and group optimization, adjust their own posi-
tions and approach the potential optimal position. r; and
r, are random numbers from 0 to 1. They increase the
fault tolerance and particles optimization ability.

4.2 BAS algorithm

The BAS algorithm was put forward in 2017 based on the
beetle antennae foraging principle. It mainly detects food
smell based on the beetle antennae tentacles and deter-
mines its own direction. If a higher odor concentration is
detected on one side of the antenna, the beetle will rotate
in the same direction. Otherwise it will turn to the other
side. BAS algorithm flow is as follows:

Step 1  For the m-dimensional optimization problem,
the centroid is expressed as x, left-whisker x;, right-
whisker x,, and two-whisker distance d. x, x;, and x, are
all m-dimensional vectors.

Step 2 Because the beetle head orientation is ran-
dom, a random m-dimensional unit vector is generated to
represent the vector that the left whisker points to the
right whisker
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b= rands(im, 1) (17)
[[rands(m, 1)||
where rands(-) stands for random function.
The relation between the left and right whiskers and
the mass center spatial coordinates is
x,=x'+d-b
{x, =x'-d-b

(18)

where d' represents the distance between the two whiskers
in the tth iteration. x' represents the beetle centroid posi-
tion in the tth iteration.

Step 3 Calculate the fitness values f(x;) and f(x,)
of the left and right whiskers x; and x,, and judge the
beetle direction according to the size relationship between
f(x)) and f(x,).

x' = x" = §'bsign(f(x) - f(x,)) (19)

where sign (-) is the symbolic function, and ¢' is the step
size of the th iteration.

Step 4  Calculate the fitness value after the beetle
movement, and update the distance and step size between
the left and right whisker

d=ecta d-d, (20)

21
where d' is the distance between the two whiskers in the
tth iteration; eta d and eta § are the two-whisker dis-
tance and the step size decay coefficient respectively.

Step S Judge whether the iteration end condition is
met. If yes, end the iteration; otherwise repeat Steps 2—4
until the condition is met.

& =eta 567,

4.3 PSO-BAS algorithm

The BAS algorithm biggest limitation is its individual
singleness. When a certain iterations number is reached,
the step size attenuation will lead to the beetles move-
ments in all directions that are too small. Therefore, it is
difficult to jump out after falling into the local optima.
Using a fixed step or a larger initialization step may skip
the best and easily lead to unstable results. With the infor-
mation sharing characteristic among the PSO particles, a
PSO-BAS algorithm is proposed in this paper. In this
algorithm, the PSO individual optimal value comparison
process is changed to BAS optimization, so as to update
the individual and global optimal value [24,25].

The PSO algorithm function is to make the “beetle”
distribution more dispersed. It is to make all close to the
optimal value through the different particles information
exchange. At the same time, changing the PSO compari-
son process to BAS for further optimization can better
improve the convergence speed and prevent premature
local optimization due to convergence. The algorithm
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specific process is described as follows:

Step 1 Initialize the population size, speed and posi-
tion of particles.

Step 2 Evaluate the fitness of each particle.

Step 3 Update individual and global optimality throu-
gh BAS.

Step 4 The PSO approaches dominant particle in (16)
to the global optima.

Step S Update the BAS parameters.

Step 6 Judge whether the accuracy standard is met. If
the iterations maximum number is not met, then turn to
Step 2.

4.4 Cubic B-spline smoothing path

The urban space 3D route planning obtained based on
PSO-BAS algorithm basically satisfies the UAV con-
straint conditions. However, in the actual flight process,
the planned flight path often has sharp angles and discon-
tinuous curvature, so it is necessary to conduct smooth-
ing processing on the flight path to generate a smooth and
flyable 3D path. B-spline is a special case of Bezier
curve. By approximating the polygon, a smooth curve can
be obtained. Since it has continuity and will not affect the
global situation when changing control points position, it
has been widely used in track smoothing [26].

Given (n+1) control points P;(i =0,1,---,n), thenn
times uniform B-spline curve can be expressed as

On(t)= " B, ()P,

i=0

(22)

where B;,(f) is the n-order (n-1) degree B-spline curve
basis function. The B-spline curve is composed of curve
segments, and adjacent curves have the same control
points. The definition of B;,(r) [26] can be expressed as

I, <1<ty
Bio(t) = ,

23
0, else @3)

=1 Ligp1 — 1

B, () = B, (1) + By (), n2 1.

(24)

i+n i i+n+1 T i+l

In order to facilitate local curve control, cubic B-spline
curve is selected to smooth the UAV track. The matrix
can be expressed as

1 3 2
S,-(t)zg[r 2ol
3 -6 3 0| P
-3 0 3 0 H P, (25)
1 4 1 o]lp

Cubic B-spline curve formula is used to generate a
smooth track curve with continuous curvature. It satisfies
UAV performance constraints, as shown in Fig. 3. The
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blue line is the track obtained after cubic B-spline curve
smoothing processing.

P, s
P, \- Py
P, | [

Fig.3 Cubic B-spline curve smoothing processing

5. Simulation analysis

In order to verify the effectiveness and applicability of
the urban low-altitude UAV flight route planning consi-
dering regional risk assessment proposed in this paper.
The Xidian University North Campus is selected as the
UAV track planning background. The satellite image is
shown in Fig. 4, and the starting and ending positions are
marked.

Fig. 4 Map of Xidian University North Campus

The route planning method flow chart considering
regional risk assessment is shown in Fig. 5.

Since the same area has great differences in parame-
ters in different time periods, the parameters are selected
to refer to a specific moment instantaneous value in the
route planning scene during the simulation process. It can
be estimated by historical data. The parameters required
for risk assessment in this planning scenario are shown in
Table 2. The parameters required for the PSO-BAS algo-
rithm are shown in Table 3.

According to the planning method proposed in this
paper, the risk value in the low-altitude airspace is evalua-
ted, and then the comprehensive cost value required by
the UAV route planning is comprehensively considered
to generate discrete path points. Finally, cubic B-spline
curve is used to smooth the path to obtain the UAV fly-
able path, as shown in Fig. 6.

Parameter initialization

The urban 3D
space risk
assessment

]

Use BAS to evaluate
particles

!

Use PSO to move
particles

Fig. 5 Route planning process based on PSO-BAS

Termination
conditions are
satisfied?

is carried out,
and the 3D
risk map is
obtained
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Table 2 Values of regional risk assessment parameters

Parameter Value Parameter Value
fo/h! 6.4x1075 pa/(kg/m?) 1.225
m/kg 1.38 B/7 34
p/km~2 30 000 R, 0.3
rp/m 0.25 S car/m> 8.4
hp/m 1.65 K 0.1
Ryay/m 0.2 Dioad/m 3
Vmax/(m/s) 16 T 3
g/(m/s’) 9.8 Hgafe/m 3
A/m? 0.018 8 — —

Table 3 PSO-BAS algorithm required parameters

Parameter Value Parameter Value
N 20 cl 1.5
w] 0.5 2 2
w2 0.2 m 3
k 200 eta_d 0.95
w 1 eta 0 0.95

In order to verify whether the spatial curve satisfies the
UAV maneuvering performance constraints, the smoo-
thing spatial track is divided into horizontal and vertical
directions. The UAV maximum pitch angle and turning
radius are determined by calculating the curve derivative
respectively. As shown in Fig. 7 and Fig. 8, the step size
is one coding counting unit, the spatial track curvature is
continuous, and the curvature value is less than 1, and the
spatial track pitch angle is less than w/4. It conforms to
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the UAV performance constraints. Therefore, the path
obtained after smoothing processing can be used for the
UAYV actual flight.

100 "~ 100
: Cubic B-spline smoothing path.

o: Discrete path;

Fig. 6 Schematic diagram of low-altitude airspace route planning
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Fig. 7 Curvature change of space track
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Fig. 8 Spatial track elevation angle variation

In order to verify the PSO-BAS algorithm superiority
proposed in this paper, the PSO-BAS algorithm is com-
pared with the paths planned by the PSO algorithm, ant
colony optimization (ACO) algorithm, and PSO-ACO.
The results are shown in Fig. 9. The path risk value trend
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with the iterations number is shown in Fig. 10. After
improvement, the PSO-BAS algorithm completes the
search process at 55 iterative times. It is faster than other
algorithms. At the same time, the cost risk value tends to
stabilize, reaching 8.75x 1077, and the optimization is
also stronger than other algorithms. Therefore, it can be
concluded that the PSO-BAS algorithm can quickly plan
the flyable path, and at the same time can effectively
reduce the redundancy, reduce the risk value, and
improve the planning effect.
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Fig.9 Comparison of different planning algorithm tracks
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Fig. 10 Search process of different solving algorithms

The path risk value and path length in the planning
method considering risk assessment and the planning
method without risk assessment are compared. The re-
sults are shown in Table 4, and the analysis show that the
planning method considering risk assessment through
additional pay 15% of the path cost, in return for 86%
lower risk value of the safe path, and it is helpful for
UAYV in complex low safe operation environment.
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Table 4 Performance comparison of route planning methods

Type Path risk value Path length/m
Planning methods
considering risk 8.75%x 1077 156.74
assessment
Planning methods without
considering risk 6.45x1076 136.48

assessment

6. Conclusions

In this paper, a relatively safe and smooth UAV flying
path is planned based on the characteristics of complex
urban low-altitude airspace and regional risk assessment.
Aiming at many kinds of obstacles characteristics and
high uncertainty in urban low-altitude airspace, a com-
plex low-altitude environment containing dense obsta-
cles is constructed to operate close to the actual city. In
view of the threat posed by UAV crash to urban space
with high density of people and property, based on
regional risk assessment, the path risk value is consid-
ered in the route planning process to generate a relatively
safe planning path. Aiming at the problem that the dis-
crete path precision generated by PSO algorithm is not
enoughthePSO-BA Salgorithmisproposed andthepathissmoo-
thed by cubic B-spline curve to get flyable paths that
meet the UAV performance constraints.
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