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Abstract: The guidance strategy is an extremely critical factor in
determining the striking effect of the missile operation. A novel
guidance law is presented by exploiting the deep reinforcement
learning (DRL) with the hierarchical deep deterministic policy
gradient (DDPG) algorithm. The reward functions are con-
structed to minimize the line-of-sight (LOS) angle rate and avoid
the threat caused by the opposed obstacles. To attenuate the
chattering of the acceleration, a hierarchical reinforcement learn-
ing structure and an improved reward function with action
penalty are put forward. The simulation results validate that the
missile under the proposed method can hit the target success-
fully and keep away from the threatened areas effectively.
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1. Introduction

The guidance law is of importance for the missiles to
meet the demand of the military task [1-3]. In view that
the external threats may exist to destroy the operation [4],
the regular guidance law under such situation cannot sa-
tisfy the strict requirements [5,6]. Therefore, it is neces-
sary to make the guidance strategy more flexible and
intelligent [7].

Machine learning has the merits of autonomous sens-
ing and adapting to dynamic environments [8—10], in
which the deep reinforcement learning (DRL) is a promi-
nent algorithm for its excellent pattern recognition and
decision-making performance [11]. Due to such attrac-
tive feature, it has been widely employed in target track-
ing, obstacle avoidance, path planning and other research
fields related to guidance [12—14]. However, the existing

Manuscript received February 24, 2021.

*Corresponding author.

This work was supported by the National Natural Science Foundation
of China (62003021; 91212304).

DRL guidance algorithms mainly focus on the low-speed
aircraft such as unmanned aeriel vehicles (UAVs) [15]. A
dueling double deep Q-networks algorithm based on
global situation information was proposed in [16] to
improve the survival probability of UAV. Introducing
supervised learning into a two-stage reinforcement learn-
ing (RL) framework, [17] realized multi-UAV collision
avoidance. An RL reward function for multi-UAV coo-
perative searching was designed in [18], which can per-
form the mission effectively in the sea area without prior
information. Different from the UAVs, the speed of mis-
sile is faster and the direction is more difficult to control
[19,20]. An adaptive guidance system using the reinforce-
ment meta-learning with recurrent network was proposed
in [21]. A model-based DRL method was presented in
[22] to predict the model of the guidance dynamics, and
the predicted result was incorporated into a model predic-
tive path integral control framework.

The maneuvering target arouses another challenge for
missile guidance with DRL [23-25]. A DRL algorithm
with a coarse-to-fine scheme was proposed in [26], which
is used to address the aspect ratio variation in target
tracking. A multi-agent deep deterministic policy gra-
dient (DDPG) algorithm was proposed in [27], which
perform target assignment and path planning simultane-
ously. A novel DDPG missile guidance law, whose neu-
ral network has identical inputs with proportional naviga-
tion guidance (PNG), was proposed in [28] with satisfac-
tory robustness. The numerous DRL guidance algorithms
just design the reward function according to the distance
between the missile and the target, which may lead to
unstable training results for the absence of angle informa-
tion.

Obstacle avoidance should be considered during the
guidance law design for self-security, much effort has
been devoted to improving the issue [29,30]. A typical
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obstacle avoidance problem is how to guide a missile
against a maneuvering target while satisfying a circular
no-fly zone constraint. The authors in [31] distorted the
real space to make the boundary of a circular obstacle
become a straight line, then the proportional navigation
law is used to steer the missile to the target. An obstacle
avoidance guidance algorithm was derived in [32] based
on linear quadratic optimal control. An artificial potential
field methodology was developed for path planning of
cruise missile in [33]. However, these traditional obsta-
cle avoidance algorithms are mostly applicable in station-
ary scenes. Once the size or position of the obstacle is
changed dynamically, both the parameters and trajecto-
ries thereupon ought to be readjusted. DRL has the strong
decision-making ability which is suitable for the com-
plex environment with obstacle threat. An effective DRL
algorithm can avoid various obstacle threat rids of adjust-
ing parameters manually. DRL autonomous navigation of
a group of mini-robots in a multi-agent collaborative
environment was investigated in [34], and the double Q-
learning algorithm was employed to avoid the collision
between robots. Transforming the path planning problem
into a partially observable Markov decision process, a
recurrent deterministic policy gradient was proposed in
[35] for navigation in complex environments. For maneu-
vering target tracking, an improved DDPG algorithm was
proposed in [36], which improved the stability and the
convergence rate. The previous DRL-based obstacle
avoidance methods exploit the distance between the agent
and the surface of obstacles as a part of the state space,
and the obstacle avoidance penalty is added in the reward
function. However, it is unavailable to measure the dis-
tance between the missile and the so-called obstacle sur-
face directly in some cases. Besides, obstacle avoidance
strategies may lead to serious acceleration chattering
which is harmful for the missile actuator during the gui-
dance execution.

The motivation of our research is to improve the DRL
guidance performance along with the ability of obstacle
avoidance. Inspired by the mentioned issues, we propose
an improved hierarchical reinforcement learning (HRL)
guidance algorithm based on DDPG.

The main contributions of our work are formulated as
follows:

(i) The performance of DDPG guidance is enhanced by
employing the line-of-sight (LOS) rate information for
the reward function. Such treatment is effective to
achieve a stable training result, and conducive for the
missile to strike the maneuvering target.

(i1) The threat avoidance for circular no-fly zone is
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realized by the extended state space. The state space is
extended by analyzing the distance between the missile
and the edge of the threat area. Via setting the termina-
tion criterion related to the state space, the proposed gui-
dance algorithm can avoid the obstacle threat and guaran-
tee self-security.

(iii) The harmful chattering in previous DRL guidance
is attenuated by the improved HRL framework. A DDPG-
based HRL strategy is presented with two training stages.
The chattering of acceleration can be reduced. The target
striking and threat avoidance can be achieved by the
reward functions relevant to the LOS angle and the
extended state space.

The structure of this paper is formulated as follows.
Section 2 introduces the dynamic models of guidance
and the preliminary. Our main achievements of the
research are elaborated in Section 3, including a DRL
guidance framework, the environment state space and an
HRL algorithm for missile guidance in restrained area.
Section 4 gives the simulation results and discussions.
Section 5 summarizes this paper and prospects the future
research.

2. Preliminary and description

In this section we first give the preliminaries and a brief
description including a DRL algorithm——DDPG, which
can be used to perform guidance tasks with continuous
action space.

2.1 Dynamic model for guidance

The 3D dynamic model of guidance can be divided into
two perpendicular 2D models. For simplicity, the
dynamic model is constructed according to the relation-
ship between the missile and the target in the horizontal
plane. We use polar coordinate to represent the relative
position of the missile and the target. The engagement
geometry is shown in Fig. 1, where M and T represent the
missile and the target, respectively.

yA

=y

Fig. 1 Geometry of the engagement scenario

The missile-target engagement kinematics can be
described by
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d = Vycosny —Vcosy

dg = Vsinn—V;sinny )
g=0+7

q=0r+1nr

where d denotes the distance between the missile and the
target, g represents the LOS angle. V, # and ¢ denote the
speed, the heading error and the flight-path angle of the
missile. V7, #; and o, denote the speed, the heading error
and the flight-path angle of the target.

2.2 DDPG and guidance

The framework of DDPG guidance is shown in Fig. 2,
where S,, 4,, and R, denote the state, action and reward in
timestep ¢ respectively. The framework mainly contains
environment description and the DDPG algorithm.

Memory
Data collection | Sampling

| <r, s>

Target policy
network
a'l
Target value
network

<s,a,r,s™>

Update

Target value

Temporal
difference
(TD) error

Policy gradient

Fig. 2 Flow chart of DDPG

2.2.1 Environment description

There are several modules for environment description.

The first module is to sense the information of the mis-
sile and the target, and generate the environment state.
Assuming that only the normal accelerations can be
exploited on the missile, which means the speed is con-
stant. Then the state at timestep ¢ can be expressed as S,=
{dis qis M N}

The second one is to receive the action and change the
environment state. Action 4, is output by policy network,
which generates the normal acceleration command. The
missile receives the command and changes the state to
St+1-

The third one is to produce the reward. The reward
functions reflect characteristics and physical meanings of
different DRL tasks.

2.2.2 DDPG

DDPG is the key factor of our guidance framework,
which receives the environment description data, esti-
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mates the state value, modifies the policy network, and
outputs accelerations to control the velocity direction of
missile.

DDPG collects a set of data {S, A, R, S, } from
environment description and save it in the memory dur-
ing each timestep. We can sample a batch of date <s, a, r,
s"> from memory when training the DDPG.

Define G, as the sum of the discounted rewards after
timestep #:

Gi= ) ¥R ®)
=0

where y € [0, 1] is the discount rate.
The policy network is the map from state to action,
which can be defined as a function:

a=rn(s;0) 3)

where 0 refers to the parameters of the policy network.

The task of training is to find a set of parameters 0 to
make E,[G,] maximum which denotes the expected value
of G, when the agent follows policy z#. The value net-
work is used to evaluate the expected value of G,. It can
be defined as

q:(s,a;w) =E,[G/S, = 5,A, = a] 4

where o is the parameters of the value network.

The most important step of training is to update the
networks. The first is the value network. For stability,
DDPG uses target networks to update the value functions,
in each step:

y= r+yq”(s,’al;w,)a/:n(s’;(*)’) (5)

where @’ and 6’ denote the parameters of target value net-
work and target policy network respectively. With TD
learning, the parameters w can be updated by

w — w+aly—q.s,a;,w)V,q.(s,a;w). 6)

The second is policy network. Since the target of train-
ing is to find a set of parameters  that make E [ G,] maxi-
mum, we calculate the gradient of E,[G,] at first, which is
shown as

VE.[Go] = ZE[y’Vgn(s;Q)Vaq(s,a)]. @)

=0

The parameters € can be updated according to
0 — 0+ By'Von(s;0)V.q(s,a). ®)

The steps of DDPG can be seen in Algorithm 1.

Algorithm1 DDPG

1. Initialize the policy network z(s) and the value net-
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work ¢(s,a) with parameters 6 and w; Initialize the tar-
get policy network #’(s) and the target value network
¢ (s,a) with parameters & « § and «’ « w; Initialize the
learning rate of target network &, batch size N, memory
R;

2. Take actions according to the state A = z(S);

3. Execute the action 4, receive the reward R, acquire
new state S’;

4. Save {S,A,R,S’}to the memory;

5. Sample a batch size of N data {(s,a,r,s)}" from me-
mory randomly;

6. Update the policy network and value network:

y =r+ ’}/ql(S,7 al;w,)a/=7r(s’;9’)7
w — w+aly—g:(s,a;0)V,q.(s,a;0),
0 — 0+ By Vor(s;0)V.q(s,a).
7. Update the target networks:
W —ewt+(l-e)w,

0 —ef+(1-¢e)f.
8. Back to Step 2 until the iterations reach the maximum
number of training.

3. Proposed method

In this section, LOS-based reward functions are proposed
for missile guidance to strike the maneuvering target. An
extended state space and a new termination criterion are
adopted for threat avoidance. An HRL algorithm is pro-
posed to reduce the acceleration chattering.

3.1 Reward functions

The kernel of RL is to use the reward to estimate the
expected value of G, and get the optimal policy. The
option of the reward function is closely related to the
quality of training results.

To reduce the distance between the missile and the tar-
get, a transition reward r,, is chosen as

dz—l - d/
u=— ©)

where d, is the distance between the missile and the tar-
get in time step /. The more the distance reduced, the
more the reward obtained. The success of the mission is
evaluated by judging whether the distance is less than a
threshold d,;,. A terminal reward 7, is given by

k, dr < dmin
rle = O

otherwise
where £ is a positive constant.

(10)

3.1.1 Heading error reward

Note that (9) and (10) do not make full use of angle infor-

mation, it is difficult to be applied against the maneuver-
ing target. The reward function can be improved by intro-
ducing heading error reward to facilitate the training
result more stable.

The heading error reward r,, is presented by

Tl =exp(—|777[—t|)—1. (11)

The reward (11) aims at making the velocity vector of
the missile oriented to the target. r,; is the maximum if
the heading error of the missile velocity vector becomes
zero. Once # is larger than n/2, the missile will fly away
from the target.

3.1.2 LOS rate reward

Heading error reward may lead to the relative speed
direction tending to the LOS, and cannot attack the target
from omni direction. To overcome this issue, the LOS
rate reward is given by
rgzzexp(—@)—l. (12)
T

The reward (12) aims at making the LOS move paral-
lel. No matter what maneuver the target makes, the com-
ponents of missile velocity and target velocity perpendi-
cular to the LOS are equal.

In combination of those guidance rewards, we achieve
the total reward function:

r=/llrtr+12rte+ﬁ3rg (13)

where 4,, 4, and 4; represent the weights.
3.2 Threat avoidance

3.2.1 Adaptive proportional navigation

The obstacle threat forms a risky area which can be repre-
sented as a circular area (O, rad), where O and rad denote
the threat center and the threat radius, respectively.

The threat avoidance process of the adaptive PNG
algorithm is shown in Fig. 3, where M denotes the mis-
sile, V' denotes the missile velocity. MA and MB are tan-
gent with the edge of the risky area. When the threat cen-
ter is detected by the missile detects, the threat level will
be evaluated with the premise that the velocity direction
is unchanged. Then the adaptive PNG algorithm per-
forms the avoidance task by choosing MA or MB as the
threat-avoiding direction, and guiding the missile into the
flight safety zone.

In the adaptive PNG algorithms, threat avoidance and
target attacking are two separated sub-tasks. This charac-
teristic may lead to the loss of guidance information. The
algorithm ignores the state of target and performs the
same threat avoidance action when the relative velocity
and position between missile-threat are unchanged.
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a

M e
Fig.3 Threat avoidance of adaptive PNG

However, threat avoidance and target attacking are
treated as an indivisible task in DRL guidance. All the
received information is involved in the state space and
maps to the action of missile by the policy network.
Therefore, DRL considers all the received information in
the process of making decisions, which facilitates the
missile getting a global optimal solution.

3.2.2 Extended state space

To achieve the threat avoidance, we must extend the state
space and add threat information into it. In many DRL
obstacle-avoidance system, there are sensors to measure
the distance between the agent and the surface of obsta-
cles as in Fig. 4, where d,, is the distance between the mis-
sile and the target, d; (i € [1, n]) denotes the minimum
distance between agent and surface in the direction of
Sensor i.

Target
y A d, *
Obstacle ,'4 Obstacle
:" d4

=Y

d

6
Obstacle Obstacle

Fig. 4 Schematic diagram of obstacle avoidance

Inspired by obstacle avoidance, we use the distances
between the missile and the edges of risky areas to extend
the state space. These distances can be calculated by the
geometrical relationship between the missile and the
threats. The geometry is presented in Fig. 5, where M
denotes the missile, V' denotes the velocity. O and rad
denote the threat center and the threat radius. M4 denotes
the distance between the missile and the edges of risky
areas, which can be named as risky distance. The risky
angle y denotes the angle between velocity and risky dis-
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tance. MB is tangent with the edge of risky areas at B, and
w denotes the escape angle.

Fig. 5 Relative position of missile and threat

The risky distance d,,, can be calculated by

dyocos(n—y)—rad-

dyosin(n—y)
SwoFBN7X) ) v > n—xl
rad

dya = cos (arcsin

dmux’ W < |77 _X|
(14)
where d,,,,, is the maximum of risky distance.
As the risky angle is selected, we can calculate the
risky distance by (14). We select several risky angles

within the range of [-n/2, n/2]. The extended state space
can be defined as

S :{dO,Q7nsr]T7dlid2"“9dn} (15)

where d, is the distance between the missile and the tar-
get,d; (i € [1, n]) denotes the minimum risky-distance
for different threats in risky angle y;.

We add the terminal condition and change (10) as
ki, do, < dipin
ky, d;, <0,i€{1,2,---,n}. (16)
0, otherwise

Te =

Using the extended state space and the changed reward
function, we can improve the DDPG guidance algorithm,
which could perform the guidance mission with threat
avoidance.

3.3 HDDPG guidance

An improved hierarchical DDPG (HDDPG) algorithm is
presented in this subsection to attenuate the acceleration
chattering.

The proposed DDPG guidance algorithm could achieve
expected performance in the task of target attacking and
threat avoidance. However, due to the local optimum
phenomenon caused by the tradeoff of hitting effect and
threat avoidance, the serious chattering exists in the nor-
mal acceleration of the missile. The threat avoidance
requires the missile to stay away from the threat center,



1178 Journal of Systems Engineering and Electronics Vol. 33, No. 5, October 2022

while the hitting effect requires the missile to reach the
target with the minimum miss distance. The priority
varies with respect to the dynamic environment relevant
to the hitting effect and threat avoidance. Some drastic
transitions may result in harmful chartering.

To make the acceleration output smoothly, a penalty is
presented to restrain the sudden variation of acceleration,
which is given by

I = —exp(a) + 1. (17)
Hence, the total reward function is changed as
rz/llrtr+/12rte+/l3rg+/l4rre' (18)

However, the training results is not stable enough with
the new reward function (18). The main difficulty is that
it is hard to decide the weight of 4,. If the value of A, is
too small, the improvement is not obvious. When the
value of 4, is too large, the guidance effect will be inf-
luenced.

To improve the training stability and weaken the acce-
leration chattering, we propose an HRL framework based
on DDPG. The flow chart of HDDPG is shown in Fig. 6,
where the memory and target networks are omitted for
simplification.

Policy network

Value Gradient 1

Fig. 6 Flow chart of HDDPG

There are two layers of DDPG in the presented frame-
work, both share the same policy network. The reward
function of the first DDPG is

r=Nry + Aot + 31, (19)
and the reward function of the second DDPG is
r=Are T 4. (20)

Both two layers of DDPG update their value network
according to their reward functions respectively. The po-
licy network is shared, and it is trained in the framework
of the first DDPG until the total reward (19) is conver-
gent. The policy network learns target hitting and threat
avoidance in this stage. To make the acceleration smooth,

the training of policy network proceeds in the framework
of the second DDPG until the total reward (20) is conver-
gent. Algorithm 2 provides the explicit steps of the pro-
posed HDDPG algorithm.

Algorithm 2 HDDPG

1. Initialize the policy network z(s), the value network 1
q,(s,a)and the value network 2 ¢,(s,a) with parameters
0, w; and w,; Initialize the target policy network #’(s),
the target value network 1 g,’(s,a), the target value net-
work 2 ¢,'(s,a) with parameters 6 «— 6, w,’ < w,
W, < w,; Initialize the learning rate of target network &,
batch size N, memory R.

2. Take actions according to the state A = z(S).

3. Execute the action A, receive the reward R,, R, and
acquire new state S’.

4. Save {S,A,R|,R,,S’} to the memory.

5. Sample a batch size of N data {(s,a,r,r;,s")}" from
memory randomly.

6. Update the policy network and the value network:

Vi =1 +Yq1,(5,a 500 wens o)
Wy — w+aly, —qi,(s,a;w)]V,,qi1:(s,a; W),
V2 =1+ Yq2 (8, a5 Var—as»

Wy — Wy +aly, — G, (5,a; )1V, qor(5, 05 W5).

If the guidance strategy is not convergen, update the
policy network according to

0 — 0+BY'Von(s;0)V.q:(s,a).
If the guidance strategy is convergent, update the po-
licy network according to
0 — 0+ByVr(s;0)V,q,(s,a).
7. Update the target networks:
w/ —ew+(1-8w,
W) —ew+(1-e)w,,
0 —ef+(1-¢)f.

8. Back to Step 2 until the iterations reach the maximum
number of training.

4. Simulation

The simulation is carried out to validate the proposed
algorithm in this section. We perform the simulation in
various environments. The changes of index in the train-
ing process are given as well.



LI Bohao et al.: Hierarchical reinforcement learning guidance with threat avoidance 1179

4.1 Simulation settings work structure. The network structures of value network
For simplification, the value networks have a same net-  and policy network are shown in Fig. 7.
Input: 2,15 Input: 2,1
Input_3: InputLayer P I ] Input_4: InputLayer P L%, ]
Outout: | [(?, 15)] Outout: | [(2, 1)]
| y
Input: 2,15 Input: 2,1
Dense 10: Dense P ( ) Dense 11: Dense e 2 1)
- Outout: | (?,200) - Outout: | (?,200)

N,

Input: | [(?, 200)], [(?, 200)]
Outout: (?,200)

Add: Add

Input: | (?,200)
Outout: | (?,200)

Activation: Activation

Input: | (?,200)
Outout: | (?, 100)

Dense_12: Dense

Input: | (?, 100)
Outout: | (?, 50)

Dense 13: Dense

Input: | (?,50)
Outout: | (?,20)

Dense 14: Dense

Input: | (?,20)
Outout: | (?,1)
(a) Value network

Dense_15: Dense

Input: [(?, 15)]
Input_1: InputLayer

Outout: [(2, 15)]

Y

Input: (7, 15)
Outout: | (?,200)

Y

Input: (?,200)
Outout: | (?, 100)

Input: (2, 100)
Outout: (2, 10)

Dense: Dense

Dense_1: Dense

Dense 2: Dense

Input: (?,10)

Outout: (2,5)

Dense 3: Dense

]

Input: (7,5)

Outout: 2, 1)

Dense_4: Dense

(b) Policy network
Fig. 7 Policy and value networks of HDDPG



1180

We set the parameters as V' = 600 m/s, V; = 200 m/s,
the sampling time-interval Az = 0.1 s, the acceleration
range of missile sets as [-40g, 40g] where g is the gravi-
tational acceleration. The reward function is instantiated
as: k=100, k,=10, d,,=2 000 m, d,,;,=50 m, y = 0.99,
e=0.01,1,=0.0001, A,=1, 4;=1 and 4,=0.1. The capacity
of memory is set to 3 000. The batch size is set to 64. The
root mean square-prop optimizer is employed to learn the
network parameters with a learning rate of 0.0001 for
policy network and a learning rate of 0.001 for value net-
work. The exploration noise is set to Var(—0.1, 0.1). The
number of train epochs in the first stage of HRL is n, =

150

140

130

120 {

Step

110 H

100 |

90 |

80 L L L
0 50 100 150 200 250 300 350 400
Epoch

(a) Training step based on heading error reward

150

140 |

130 |

120 |

Step

110 +

100 |

1T

0 100 200 300 400
Epoch
(c) Training step based on LOS rate reward
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400, and the number of train epochs in the second stage is
n,=200.

4.2 Simulation without threat avoidance

The effectiveness of the proposed guidance reward func-
tions is compared. Since the index of training steps and
rewards in each episode determine the effect of policy
network, the training process can be reflected by the steps
and the mean reward in each training epoch.

Fig. 8 and Fig. 9 show the training process of DDPG
guidance and the corresponding simulation result without
threats avoidance.

Mean reward

—-0.25

_050 L L L L L L L
0 50 100 150 200 250 300 350 400

Epoch

(b) Mean reward based on heading error reward

Mean reward

0 100 200 300 400
Epoch
(d) Mean reward based on LOS rate reward

Fig. 8 Training process of DDPG guidance

The purpose of DRL is to improve the cumulative
reward through continuous learning to obtain the maxi-
mum cumulative reward. From the index of reward in
Fig. 8, we can find that the reward in the two methods
both reach the high values. Steps in each epoch indicates
weather the target is being hit, and the index of steps in

Fig. 8 shows that the hit rate increases gradually.

By comparation in Fig. 9, we find the LOS rate method
has the smoother track. The acceleration curve of the
heading error method has higher volatility.

To illustrate the superiority of LOS rate reward further,
we set the target at the coordinate of (8000, 5000) and
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test the algorithm by feeding 50 random predefined ini-
tial conditions of the missile. Fig. 10 shows the simula-
tion trajectories for those conditions.

As is shown in the trajectories in Fig. 10, every missile

Y/m

hits the target and satisfies the requirement

the LOS rate-based guidance algorithm has
ing and better adaptability.

of the mini-
mum miss distance. However, the result here implies that
less chatter-

10 000 40
30
8000 |
20 H
20
6000 - §
E I
= 8
4000 + §
<
2000 -
0 1 1 1 1
0 2000 4000 6000 8000 10000 2 4 6 8 10 12 14 16
X/m Time/s
(a) Trajectory based on heading error reward (b) Acceleration based on heading error reward
10 000
8000 |
20
6000 - g
E g
= 8
4000 ot
<
2000 +
0 . . . . —40 . ; . . . . .
0 2000 4000 6000 8000 10000 0 2 4 6 8 10 12 14 16
X/m Time/s
(c) Trajectory based on LOS rate reward (d) Acceleration based on LOS rate reward
—— : Target; —— : Missile.
Fig. 9 DDPG guidance for maneuvering target
10 000 40
30
8 000
20
50
6000 g 10
£ o0
o
4000 <3 ~10
g -20
2 000
-30
0 . . . . —40 L4
0 2000 4000 6000 8000 10000 0 2 4 6 8 10 12 14 16
X/m Time/s

(a) Trajectory based on heading error reward

(b) Acceleration based on heading error reward
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L
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Acceleration/g

0 25 50 75 100 125 150 175
Time/s
(d) Acceleration based on LOS rate reward

Fig. 10 DDPG guidance for stationary target

4.3 Simulation with threat avoidance

The effectiveness of presented DDPG guidance is demon-
strated in this subsection. The DDPG guidance with the

10 000

8000

6000

Y/m

4000 |

2000

4000 6 000 8 000
X/m

(a) Trajectory based on adaptive PNG algorithm

O 1
0 2000 10 000

10 000

8000

6000 -

Y/m

4000 |

2000 |
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Fig. 11 DDPG guidance

The adaptive PNG algorithm performs the target
attacking task after the threat avoidance. The information

extended state space is compared with an adaptive PNG
algorithm which accomplishes threat avoidance by set-
ting an avoidance vector. Fig. 11 shows the simulation
results of these two methods.
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for threat avoidance

of relative velocity and position between missile-target is
not used during the procedure of threat avoidance. In con-
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trast, the proposed DDPG guidance algorithm consider-
ing much more global information to enhance deci-
sion making. The acceleration of the missile is obtained
by virtue of the policy network and the state space,
which includes the information of both the target and
the obstacle threat. Our DDPG guidance can perform
the attacking and threat avoidance tasks synchronous-
ly. As revealed from Fig. 11(b), a more efficient and sa-
fer trajectory is generated for the missile to reach the tar-
get.

4.4 Simulation for HDDPG

In this subsection, the effectiveness of the HDDPG gui-
dance is verified. Fig. 12 and Fig. 13 show the training
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process of HDDPG guidance and the corresponding simu-
lation result in threat existing environment.
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Fig. 12 Training process of HDDPG
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Fig. 13 HDDPG guidance

We can find from Fig. 12 that due to the extended state
space and the proposed reward functions, those two
stages in HDDPG both have a stable training process.
Fig. 12(a) indicates that our algorithm learns target
attacking and threat avoidance in the training prosses,
gradually. However, Fig. 13(a) shows that the threat
avoidance function leads to serious chattering in accelera-

tion. In contrast, Fig. 13(b) reveals that the proposed
HDDPG algorithm can attenuate the chattering and make
the acceleration smoother due to the action penalty in the
second stage of HDDPG.

5. Conclusions

In this paper, we propose a DDPG based HRL algorithm
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for missile guidance in consideration of threat avoidance.
A more stable training result is obtained by the improved
LOS reward function. The threat avoidance is achieved
with the aid of extending the state space. A HDDPG
framework is presented to attenuate the chattering in
acceleration. The simulation results validate the effective-
ness of the proposed algorithm. It is worth noting that
some extensions can be done in future works. For
instance, the smaller the missile-target distance is, the
higher requirement of control accuracy becomes. DRL
has a strong ability of independent decision-making but is
weak in precise control, which may lead to large accele-
ration output at the attack instant. An alternative way to
settle this problem is improved by combination of the
general guidance law method.

References

[1] JIY,LINDF, WANG W, et al. Three-dimensional terminal
angle constrained robust guidance law with autopilot lag con-
sideration. Aerospace Science and Technology, 2019, 86:
160-176.

[2] RYOO CK, CHO H, TAHK M J. Time-to-go weighted opti-
mal guidance with impact angle constraints. IEEE Trans. on
Control Systems Technology, 2006, 14(3): 483—492.

[3] JEON IS, LEE J I, TAHK M J. Impact-time-control gui-
dance law for anti-ship missiles. IEEE Trans. on Control Sys-
tems Technology, 2006, 14(2): 260-266.

[4] DONGY E, SHIM M, SUN Z W. Satellite proximate inter-
ception vector guidance based on differential games. Chi-
nese Journal of Aeronautics, 2018, 31(6): 1352-1361.

[5] MARCHIDAN A, BAKOLAS E. Collision avoidance for an
unmanned aerial vehicle in the presence of static and moving
obstacles. Journal of Guidance, Control, and Dynamics,
2020, 43(1): 96-110.

[6] XU X G, WEI Z Y, REN Z, et al. Time-varying fault-tole-
rant formation tracking based cooperative control and gui-
dance for multiple cruise missile systems under actuator fai-
lures and directed topologies. Journal of Systems Engineer-
ing and Electronics, 2019, 30(3): 587-600.

[77 DARSHAN D, ARCHANA C, DEBAJYOTI M. Attificial
intelligence based missile guidance system. Proc. of the 7th
International Conference on Signal Processing and Inte-
grated Networks, 2020: 873-878.

[8] JIE Z, LI H D, BIN X. A joint mid-course and terminal
course cooperative guidance law for multi-missile salvo
attack. Chinese Journal of Aeronautics, 2018, 31(6):
1311-1326.

[9] WANG P, ZHANG X B, ZHU J H. Integrated missile guid-
ance and control: a novel explicit reference governor using a
disturbance observer. IEEE Trans. on Industrial Electronics,
2018, 66(7): 5487-5496.

[10] FU SN, LIU X D, ZHANG W J, et al. Multiconstraint adap-
tive three-dimensional guidance law using convex optimiza-
tion. Journal of Systems Engineering and Electronics, 2020,
31(4): 791-803.

[11] FANG M, GROEN F C A. Collaborative multi-agent rein-
forcement learning based on experience propagation. Journal
of Systems Engineering and Electronics, 2013, 24(4):
683-689.

[12] SHALUMOV V. Cooperative online guide-launch-guide po-

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(23]

[26]

[27]

(28]

[29]

[30]

Journal of Systems Engineering and Electronics Vol. 33, No. 5, October 2022

licy in a target-missile-defender engagement using deep rein-
forcement learning. Aecrospace Science and Technology,
2020, 104: 105996.

YOU S X, DIAO M, GAO L P, et al. Target tracking stra-
tegy using deep deterministic policy gradient. Applied Soft
Computing, 2020, 95: 106490.

GAUDET B, LINARES R, FURFARO R. Deep reinforce-
ment learning for six degree-of-freedom planetary landing.
Advances in Space Research, 2020, 65(7): 1723-1741.

L1Y, QIU X H, LIU X D, et al. Deep reinforcement learning
and its application in autonomous fitting optimization for
attack areas of UCAVs. Journal of Systems Engineering and
Electronics, 2020, 31(4): 734-742.

YAN C, XIANG X J, WANG C. Towards real-time path
planning through deep reinforcement learning for a UAV in
dynamic environments. Journal of Intelligent & Robotic Sys-
tems, 2020, 98(2): 297-309.

WANG D W, FAN T X, HAN T, et al. A two-stage rein-
forcement learning approach for multi-UAV collision avoid-
ance under imperfect sensing. IEEE Robotics and Automa-
tion Letters, 2020, 5(2): 3098-3105.

YUE W, GUAN X H, WANG L Y. A novel searching
method using reinforcement learning scheme for multi-UAVs
in unknown environments. Applied Sciences, 2019, 9(22):
4964.

LI G F, WU Y, XU P. Adaptive fault-tolerant cooperative
guidance law for simultaneous arrival. Aerospace Science
and Technology, 2018, 82: 243-251.

LI G F, WU Y, XU P. Fixed-time cooperative guidance law
with input delay for simultaneous arrival. International Jour-
nal of Control, 2021, 94(6): 1664—1673.

GAUDET B, LINARES R, FURFARO R. Adaptive gui-
dance and integrated navigation with reinforcement meta-
learning. Acta Astronautica, 2020, 169: 180-190.

LIANG C, WANG W H, LIU Z H, et al. Range-aware impact
angle guidance law with deep reinforcement meta-learning.
IEEE Access, 2020, 8: 152093-152104.

HU Q L, HAN T, XIN M. Sliding-mode impact time guid-
ance law design for various target motions. Journal of Guid-
ance, Control, and Dynamics, 2019, 42(1): 136-148.
ZHANG W J, FU S N, LI W, et al. An impact angle con-
straint integral sliding mode guidance law for maneuvering
targets interception. Journal of Systems Engineering and
Electronics, 2020, 31(1): 168—184.

LIGF, LI Q, WU Y J, et al. Leader-following cooperative
guidance law with specified impact time. Science China:
Technological Sciences, 2020, 63(11): 2349-2356.

ZHANG W, SONG K, RONG X W, et al. Coarse-to-fine
UAV target tracking with deep reinforcement learning. IEEE
Trans. on Automation Science and Engineering, 2018, 16(4):
1522-1530.

QIE H, SHI D X, SHEN T L, et al. Joint optimization of
multi-UAV target assignment and path planning based on
multi-agent reinforcement learning. IEEE Access, 2019, 7:
146264-146272.

HONG D, KIM M, PARK S. Study on reinforcement learn-
ing-based missile guidance law. Applied Sciences, 2020,
10(18): 6567.

CHENG L, LU H, LEI T, et al. Path planning for anti-ship
missile using tangent based dubins path. Proc. of the 2nd
International Conference on Intelligent Autonomous Sys-
tems, 2019: 175-180.

GUO H, FU W X, FU B, et al. Smart homing guidance stra-



LI Bohao et al.: Hierarchical reinforcement learning guidance with threat avoidance

[31]

(32]

[33]

(34]

[35]

[36]

tegy with control saturation against a cooperative target-
defender team. Journal of Systems Engineering and Electron-
ics, 2019, 30(2): 366-383.

YU W B, CHEN W C. Guidance law with circular no-fly
zone constraint. Nonlinear Dynamics, 2014, 78(3):
1953-1971.

WEISS M, SHIMA T. Linear quadratic optimal control-
based missile guidance law with obstacle avoidance. IEEE
Trans. on Aerospace and Electronic Systems, 2018, 55(1):
205-214.

FAN S P, QI Q, LU K F, et al. Autonomous collision avoi-
dance technique of cruise missiles based on modified artificial
potential method. Transaction of Beijing Institute of Techno-
logy, 2018, 38(8): 828-834.

CHAYSRI P, BLEKAS K, VLACHOS K. Multiple mini-
robots navigation using a collaborative multiagent reinforce-
ment learning framework. Advanced Robotics, 2020, 34(13):
902-916.

WANG C, WANG J, SHEN Y, et al. Autonomous naviga-
tion of UAVs in large-scale complex environments: a deep
reinforcement learning approach. IEEE Trans. on Vehicular
Technology, 2019, 68(3): 2124-2136.

LI B H, WU Y. Path planning for UAV ground target track-
ing via deep reinforcement learning. IEEE Access, 2020, 8:
29064-29074.

Biographies

LI Bohao was born in 1990. He received his B.E.
degree from Lanzhou University, Lanzhou,
China, in 2012, and M.S. degree in Lanzhou Uni-
versity of Technology, Lanzhou, China, in 2017.
He is currently pursuing his Ph.D. degree in navi-
gation, guidance and control with Beihang Uni-
versity, Beijing, China. His research interests
include deep learning, deep reinforcement learn-

ing, and guidance.
E-mail: libh08@buaa.edu.cn

1185

WU Yunjie was born in 1969. She received her
Ph.D. degree in navigation guidance and control
from Beihang University in 2006. Now, she is a
professor in the School of Automation Science
and Electrical Engineering, Beihang University,
Beijing, China. Her research interests include sys-
tem simulation, intelligent control, servo control,
aircraft guidance and control technology.

E-mail: wyjmip@ buaa.edu.cn

)
Astronautics, Northwestern Polytechnical University, Xi’an, China. His
research interests include cooperative guidance, servo system control,
and nonlinear control.

E-mail: liguofeil@126.com

LI Guofei was born in 1991. He received his
Ph.D. degree from the School of Automation Sci-
ence and Electrical Engineering, Beihang Univer-
sity, Beijing, China, in 2020. From 2020 to 2021,
he was a postdoctoral fellow of Zhuoyue Pro-
gram in the School of Cyber Science and Tech-
nology, Beihang University, Beijing, China. Now,
he is an associate professor in the School of



