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Abstract: In this paper, the optimal control of non-linear switch-
ing system is investigated without knowing the system dyna-
mics. First, the Hamilton-Jacobi-Bellman (HJB) equation is
derived with the consideration of hybrid action space. Then, a
novel data-based hybrid Q-learning (HQL) algorithm is proposed
to find the optimal solution in an iterative manner. In addition, the
theoretical analysis is provided to illustrate the convergence and
optimality of the proposed algorithm. Finally, the algorithm is
implemented with the actor-critic (AC) structure, and two linear-
in-parameter neural networks are utilized to approximate the
functions. Simulation results validate the effectiveness of the
data-driven method.
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1. Introduction

In contrast to the conventional non-linear system, the
dynamics of switching system can be described by an
interaction of a discrete switching policy and several con-
tinuous subsystems [1]. The properties of stability, con-
trollability, and observability have been well studied in
existing literatures [2,3]. Besides stability, optimality is
more preferred for designing controller of real-world
applications. The optimal control problem aims to find an
admissible policy that can stabilize the controlled system
as well as optimizing the predefined performance [4]. In
general, the optimal solution can be obtained by solving
the corresponding Hamilton-Jacobi-Bellman (HJB) equa-
tion. The family of classical methods includes the classi-
cal variational method, Pontryagin’s maximum principle,
and dynamic programming [5]. In particular, as for dis-

Manuscript received January 13, 2021.

*Corresponding author.

This work was supported by the National Key R&D Program of
China (2018AAA0101400), the Natural Science Foundation of Jiangsu
Province of China (BK20202006), and the National Natural Science
Foundation of China (61921004;62173251).

crete-time dynamics systems, dynamic programming
method has been successfully applied in many fields of
engineering. However, it suffers from the “curse of
dimensionality” problem so that the computation cost is
very high with the increasing of system dimensions [6].

In recent years, the optimal control problem of switch-
ing systems has attained much attention since many real-
world applications from aerospace systems to traffic sig-
nal control system can be addressed as switching orga-
nisms [7—10]. In general, the related work can be divided
into two categories. The switching system with autono-
mous subsystems has attained much attention from resear-
chers. Without considering the control input, the task is
simplified to find the optimal switching scheduling. A
kind of gradient projection-based methods is proposed for
general continuous-time non-linear hybrid systems. The
local minima of cost function is found along the direc-
tion of the gradient [11,12]. In [13], researchers consi-
dered the optimal scheduling problem of linear switching
systems with pre-specified mode sequence. The optimal
switching time instances are determined by using calcu-
lus of variations method. Note that it is required to fix
and know the active mode sequence for these non-linear
programming-based methods. So the planning process
should be re-computed if the initial state is changed.

As for the switching system with controlled subsys-
tems, it is required to co-design the switching policy and
the control policies of subsystems to optimize the perfor-
mance function. In [14], a direct search scheme based on
the Luus-Jakola optimization technique was proposed to
address the optimal control of general switched linear
quadratic systems. Also, the sequence of active mode is
pre-fixed which simplifies the control problem of non-
autonomous switching systems. In addition, a two point
boundary value differential algebraic equation (DAE) is
solved to explore the optimal solutions numerically [15].
In [16—18], discretization-based algorithms were pro-
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posed which divides the state and input space with a
finite number of options. However, the above planning
based algorithms also suffer from high computation cost
and limited range of initial state.

Recently, the reinforcement learning (RL) method has
been utilized to learn the optimal policy of Markov deci-
sion process (MDP) by interacting with the environment
[19-21]. The actor-critic (AC) structure is commonly
employed to implement the algorithm, where the critic
network approximates the value function and the actor
network approximates the control policy [22—-24]. Value
iteration [25] and policy iteration [26] are two typical
classes of model-based methods which require to know
the accurate system dynamics. In [27], researchers pro-
posed a model-free algorithm for the optimal control of
unknown non-linear system by pre-training a model net-
work. In addition, a series of data-based schemes were
proposed to learn the optimal policy completely based on
interactive data [28—31]. Considering its adaptive pro-
perty and feedback formulation, a novel RL scheme is
proposed to determine the optimal scheduling for switch-
ing systems which achieves good performance. In [32],
the problem of multi therapeutic human immunodefi-
ciency virus treatment was formulated as to find the opti-
mal solution of a finite-horizon autonomous switching
system. The optimal value function was learned by using
the value iteration (VI) based method. Then, the decision
can be made by simply comparing several scalar values.
Moreover, researchers extended this work to general
autonomous nonlinear switching systems with rigorous
convergence proof [33]. In addition, switching cost
penalty and minimum dwell time constraint were consi-
dered [34,35]. Note that the systems in [32-35] all take
the finite-horizon objective functions with terminal state
constraints. However, the controlled switching system is
rarely studied for RL control design. In [36], researchers
proposed a model-based algorithm to co-design the opti-
mal policy of the non-linear switching system with con-
trol constraint. In [37], a neural network was first trained
to learn the model and an iterative algorithm was designed
to generate a sequence of Q-functions which finally con-
verges to the optimal solution.

Considering the complex dynamics of controlled
switching system, it is rather difficult to obtain the exact
system dynamics. While the model can be identified by
training a model network, the model error can not be
neglected. In this paper, a novel hybrid RL algorithm is
proposed to learn the optimal policy of non-linear switch-
ing systems. The main contributions are as follows.

(1) Considering the hybrid policy of discrete switching
signal and continuous control input, the corresponding
HIJB equation is constructed based on the Bellman’s opti-
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mality principle.

(i1) An iterative RL algorithm is proposed to find the
optimal hybrid policy without knowing the system
dynamics or pre-training the model network.

(iii) The convergence proof of iterative Q-functions is
provided.

The rest of this paper is organized as follows. In Sec-
tion 2, we first analyse the hybrid nature of action space
and derive the transformed HJB equation. Section 3 pro-
poses the design of hybrid RL algorithm as well as the
detailed implementation steps with AC structure. The
convergence proof is given in Section 4. In Section 5, two
numerical examples are provided to demonstrated the
performance of the proposed method. Finally, conclu-
sions are provided in Section 6.

2. Problem formulation

Consider the general non-linear switching system with
the following dynamics:

X1 = Jo (e 1) (D

where x;, € 2, CR" and u, € , CR" denote the system
states and control parameters, respectively. The subscript
k denotes the index of time step. Both 2, and @, are
compact and connected sets. The notation v denotes the
index of subsystem and there are a number of P subsys-
tems. The notation P ={1,2,---,P} denotes the set of
available subsystems. It is assumed that f, : 2, x 2, — 2,
is Lipschitz continuous with f£,(0,0) = 0.

In contrast to the conventional non-linear systems, the
controller of switching system need to co-design the
switching signal and control input. Consequently, the
control signal at each time step is a tuple of (v,u,) where
the subscript of u, denotes the coupling between active
mode and control input. Then, the action space can be
formulated by

A=Uep{(v,u)lveP,uc,hl 2)

Afterwards, the performance function is defined as fol-
lows:

J= Z Uxy, v, ) (3)
k=0
where the cost function is defined by U(x,v,u) = x*Q,x+
u"R,u where Q, € R™"and R, € R™" are positive defi-
nite matrices.

Let #z,(x) and =, (x) denote the policies of discrete
action and its corresponding continuous parameters,
respectively. For notation clarity, we utilize z(x) to repre-
sent the hybrid control policy, i.e., z(x) = (7,(x), 7, (X)).
In order to derive the algorithm, we first introduce a
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Q-function with respect to any given policy z(x)as follows:

Q" (X Vo) = Uxi, o) + Y UG, (), 7, (x1)). (4)
I=k+1

That is to say, the Q-function denotes the accumulated

costs if the system starts in state x and takes an arbitrary

hybrid action (v,u), and then taking hybrid actions gene-
rated by the hybrid policy n(x) thereafter.

Afterwards, based on the Bellman’s optimality princi-

ple [38], the corresponding HIB equation can be obtained:

O (xp, viowy) = U(xy, vi, uy) +Hg?lglf O (xp1,v,u)  (5)
Ve 13

where Q*(x,v,u) denotes the optimal Q-function of z*(x).
For notation simplicity, we let x, v, and u# denote the cur-
rent state, discrete action, and continuous parameters
while x’, v/, and u’ denote the state, discrete action, and
continuous parameters at the next time step, respectively.

3. Hybrid Q-learning algorithm and its
convergence analysis

In order to co-design the policies of switching signal and
control input, a novel hybrid Q-learning (HQL) algo-
rithm is proposed in this section. In addition, the imple-
mentation details of AC structure is provided by using
linear-in-parameter (LIP) neural network (NN) as func-
tion approximator.

3.1 HQL algorithm

The algorithm starts with the initial Q-functions, i.e.,
0 =0,Yv eP. For each v € P, its corresponding conti-
nuous parameters policy can be obtained by taking the
infimum over Q,:

T (x) = arg lglg 0V (x,v,u). (6)
Then, the Q-function can be updated by
OV (x,v,u) = U(x,v,u)+ min o0 v, 2. (7)
Fori=1,2,---, one iterates between
7, (x) = arg inf O)'(x,v,u), (8)
and
oY (x,v,u) = U(x,v,u)+ rvng)l 0V (x, Vv, (x). (9)

Consequently, the HQL algorithm generates a sequ-
ence of Q-function {Q?}, that will converge to the opti-
mal solution of (5). Once the optimal Q-function is
obtained, the optimal continuous policy can be computed
by substituting Q¢ into (8) while the optimal discrete
action can be simply determined be comparing the value

of different Q-functions. The convergence proof is given
in Section 4.

3.2 Implementation with the AC structure

Consider the continuous state space, and LIP NNs are emp-
loyed as function approximators. Specifically, for each
mode, there exists a corresponding actor network and
critic network.

Let Q,(x,v,u;W,,) denote the output of the critic net-
work so that

O,(x,v,u; W) = W ¢,(x,u) (10)

and let u,(x;W,,) denote the output of the actor network
so that

w(x;W,,) = Wi o, (x) (11)

where W, and W,, denote the weights of the critic and
actor networks, respectively. In addition, ¢, (-) and o, (-)
represent the activation function of the critic and actor
networks, respectively.

Let O denote a data buffer with memory size M. To
begin with, the HQL algorithm needs to sample a few tran-
sitions from the state and hybrid action spaces and stores
them into D. Specifically, according to uniform random
distribution, we sample M states from £, and M parame-
ters from 2,. By substituting (x,v,u) into (1), one can
receive the corresponding cost function U, and next state
X4+1. Then, the tuple of transitions {(x,, v, s, Ug, X401) Yo,
are stored into 9. Note that although with the same x,
and u,, by selecting different v,, one can obtain different
U, and x,,, so that all subsystems can be explored suffi-
ciently.

First, the critic networks are initialized with Q®(x,
v,u;W.,)=0. For each mode, a batch of transitions
{(xp, Vi uty, Uy, xp1))E_, are randomly sampled from D,
where B denotes the batch size. According to (8), for any
iteration i, the target value of actor network is

H(x) = arg inf o (x,v,u). (12)
Define
o, =[o,(x)),0,(x,),--,0(xp)],
and
1 =[0G, ) (o), )|

Then, by using the least square method (LSM), the
weights of actor network can be computed by

W, = (oo, ). (13)

Afterwards, the target value of critic network can be
obtained by
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YD = U(xy, vp,up) +Igipn(Wﬁff,)Tq)‘,(x,,H,yff)(xb+.)). (14)
Define

¢v = [¢v(x1’ul)a ¢v(x2’u2)" o ’¢v(xBa uB)]

and

yf;iﬂ) = I:yif+1)(xl aul)3y£ri+2)(x2a u2)9 e ayfziﬂ)(xB, uB)] .

Consequently, by using LSM, the weights of actor net-
work can be computed by

WD =8,y (15)
Remark 1 By using the LIP NNs with linear inde-
pendent polynomial basis functions, the weights can be
updated as the one shot solution based on the LSM at
each iteration step. Since the training is an iterative pro-
cess, this can significantly accelerate the convergence
procedure. In addition, it is worth noting that the pro-
posed algorithm is not limited to LIP NNs, one can uti-
lize multilayer perceptrons or even deep NNs, for
improving the approximation capability of the NN.
Motivated by [20], the target networks are utilized to
stabilize the training process. The detailed implementa-
tion steps of HQL algorithm are given in Algorithm 1.

Algorithm 1 HQL algorithm

1. Initialize the normalized Q networks of discrete action
v with QO(x,v,u; W,,);

2. Initialize the target networks Q' (x,v,u;W.,,) with
Weo « W,

3. Initialize the data buffer D «@;

4. Randomly sample {x,}}’, from @ and {u,}), from
Q,, respectively;

5.Forv=1,2,---,P do

6. Execute hybrid action {(v,u,)}}, and receive {U,}),
and {x.1};L,, Where Xgi1 = f,(X4,14);

7. Store the collected transitions {(x,,v,us, Uys, X4,
into the D;

End For

8. Fori=1,2,---,1 do

9. Forv=1,2,---,P do

10. Sample a batch of B transitions
Xpalvy = W)}y, from D;

11. Update the actor network according to (13);

12. Update the critic network according to (15);

13. End For

14. Update the weights of target networks by W0l «
web ’

15. End For

{(xb,Vb,uv,), U,,

4. Convergence analysis

The convergence proof derived by extending the theoreti-
cal analysis in [36]. Before proceeding, the following de-
finition and assumption are given.

Definition 1[36] The hybrid policy (z,(x), 7, (x)) is
defined to be admissible within €, if there exists an
upper bound Z(x) for its performance function

J00) = )" Um0, m, (20) < Z(x0).
k=0

Assumption 1 For the controlled switching system,
there exists at least one admissible hybrid policy (7,(x),
m,(x)) within Q..

Lemma 1 Let {Q"}7, denote the Q-function
sequence and {7}, denote the sequence of continuous
parameter policy generated by (8) and (9), respectively.
Given an arbitrary hybrid policy (w,(x),w, (x)), the cor-
responding sequence {II?”}7, satisfies

I (x,v,u) = Ux,v,0) +110(x', @ (x'),, @) (x) (16)

where x' = f,(x,u). If 1 = 0 = 0 holds for any v € P,
there is 777 (x,v,u) > OV (x,v,u),Vi.

Proof Because (7\’(x),7)’(x)) minimize the right-
hand side of (9) while (@, (x),w, (x)) is arbitrarily cho-
sen, and because /79 = Q¥ =0,¥v e P, it is straightfor-
ward to know that I79(x,v,u) > Q¥ (x,v,u),Vi by induc-
tion. O

Lemma 2 Let {Q"}7, denote the Q-function
sequence and {7’} denote the sequence of continuous
parameter policy generated by (8) and (9) with 0 =0,
respectively. If Assumption 1 holds, there exists a finite
upper bound Z(x) satisfying

0 (x,v,u) < Z(x), VYveeP. (17)

Proof Let (¢,(x),?, (x)) denote an arbitrary admissi-
ble hybrid policy and let @9 (x,v,u) = QO (x,v,u) =0,
where @™ (x,v,u) is generated by

0"V (x,v,u) = U(x,v,u) + 0V (x',9,(x'),9,(x')). (18)

Motivated by the Lemma 2 in [35], we can obtain

00 (x,v,u) S UGx,v,u)+ Y UK, 8,(x),8,(x). (19)

=1

Because (J,(x),9, (x)) is an admissible hybrid policy,
there is

0 (x,v,u) < Z(x). (20)

According to Lemma 1, we have
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07(x,v,u) < 0 (x,v,u) < Z(x). @D

O
Theorem 1 Let {Q%}>, denote the Q-function
sequence and {7}, denote the sequence of continuous
parameter policy generated by (8) and (9) with Q© =0,
respectively. If Assumption 1 holds, the generated
Q-function sequence is non-decreasing, i.e., 0" (x,v,u) >
09 (x,v,u),YveP.
Proof Let (¢,(x),¢,(x)) denote an arbitrary hybrid
policy. Starting with @© =Q© =0, its corresponding
Q-function @ is defined by

D (x,v,u) = Ux,v,u) + DV (x,0,(x'), 0, (X))  (22)

where the subscript v/ = @,(x’).

Then, it follows from Lemma 1 that Q¥ < @Y, Vi
holds. Afterwards, assume that ¢,(x)=7""(x) and
@, (x) =7*V(x), we have

DD (x,v,u) = Ux,v,u) + DV (x',0,(x), 0, (X)), (23)

By using mathematical induction method, the inequa-
lity Q%D > @ can be proved to hold for any i. To begin
with, for i = 0, there is

OV (x,v,u)— DV(x,v,u) = U(x,v,u) >0.  (24)

If i>1, assume that Q¥ > @Y holds for Vi-1.
Then, by subtracting @ from Q%" one has

QE;H—I)(x’ V,u) - ¢v(x9 v, u) = ijﬂ)(xa V9u) - @v(x’ V,u) > 0.
(25)

Moreover, one knows Q9 (x,v,u) < &P (x,v,u) accor-
ding to Lemma 1. Consequently, it follows that

09 (x,v,u) < Q" (x,v,u). (26)

0O
Theorem 2 Let {Q}>, denote the Q-function
sequence and {7}, denote the sequence of continuous
parameter policy generated by (8) and (9) with Q© =0,
respectively. If Assumption 1 holds, then, there exists a
limit function of {Q"}2,, i.e., O =1lim Q¥. In addition,
0 is the solution of (5) and the égauence of {7z},
converges to 7, .
Proof According to Theorem 1 and Lemma 2, it can be
known that {Q?”}%, is non-decreasing and upper bounded

by a finite function. Therefore, one knows that
OV (x,v,u) < OV (x,v,u). 27)

Let (w,(x),w, (x)) denotes an arbitrary hybrid policy.
From Lemma 1, one knows that

OV, u) < Ulx,v,u) + QU (¥, w,(x), w,, (X)) (28)

where v/ = w,(x’). Then, it follows from Theorem 1 that

Q"D (x,v,u) < U(x,v,u) + 0% (x, w,(x), w, (x)). (29)

Let i — oo, we have

0 (x,v,u) < U(x,v,u) + 0(x',w,(x"),w, (x")). (30)

Because (w,(x),w, (x)) is arbitrarily chosen, we have

QE’OO)(xIH Vlnuk) < U(xk’ vk’uk) + ml;l ln!f Q(m>(xk+l sV, u)
VEP uef,
€2y
On the other hand, from (9), we can obtain
QV(x,v,u) = U(x,v,u)+min inf 0V(x',v,u). (32)
VEP u'e,

Then, it follows from Theorem 1 that

0 (x,v,u) > U(x,v,u)+13/1€i;1ui,1€1!1; 0"V, v,u). (33)
Let i — oo, one gets

0 (x,v,u) > U(x,v,u) +r‘n€11r)1u1161£ o' v.,u). (34)

Based on (31) and (34), it is straightforward to know
that

O (x,v,u) = U(x,v,u) +min inf 0 ',v,u').  (35)

Therefore, one knows that O is the solution of the
HJB equation. Once Q! is known, according to (8), the
optimal policy 7, can be obtained. O

5. Numerical analysis

Two simulation examples are provided to evaluate the
performance of the HQL algorithm. The code is run on
Matlab 2018a with Intel Core 17 3.2 GHz processor.

(1) Example 1

First, the HQL algorithm is applied to a linear switch-
ing system with two modes:

101 2 + 1 -1
Xir1 = 1 1 X 0 U, V=

_[froos) [0 _2'
Xir1 = 0 1.1 X 1 U, V=

The domains of interest are selected as 2, = {x € R*:
|x;| <5,¥i} and Q,={ueR: |u|<5}. The cost function
is defined as U(x,v,u) = 6 X (x? +x3) +u*. The LIP NNs
are employed to implement the algorithm with the fol-
lowing activation functions:

(36)

&.(x, 1) = [x7,%,%,,%,u,%5,%,u,u’]",

o,(x) = [x,x,]".
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To begin with, for each subsystem, 500 transitions are
randomly sampled from the state and action spaces. Dur-
ing the iteration process, a batch of 300 samples are ran-
domly selected from the data buffer to train the networks.
The maximum iteration number is 100 and the training
process will be completed if |[WY" - W, <107, Vv e
{1,2} is satisfied.

The evolution process of the critic network weights are
shown in Fig. 1 and Fig. 2 which verifies the conver-
gence proof. It is shown that the elements converge after
five iteration steps. The training process takes 0.619 9 s.

40
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= 30k
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0123456 728910I1112131415
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Fig. 1 Evolution process of critic network weight W ;
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Fig. 2 Evolution process of critic network weight W, ,

Let the initial state be x, = [5,—5]". The trajectories of
system states and hybrid control input under the trained
policy are given in Fig. 3—Fig. 5, respectively. The states
converge to the origin after six time steps.

i S R NV
T T T

State
=}

0123456 728 9101112131415
Time step
- IX) e X

Fig. 3 Trajectory of system state with x¢=[5,—5]T

4

w
T
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T

—_
T

(=]
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0123456 78 9101112131415
Time step

Fig. 4 Trajectory of continuous parameter with xy=[5,-5]"

NS}
t
'
'

P — - -

S —
—————
-

[
T

Discrete action

0123 456 7 8 9101112131415
Time step

Fig. 5 Trajectory of discrete action with xo=[5,—5]T

(i1) Example 2
Next, a non-linear scalar system [34] is selected:

f=f@ 4= ru, v=2 D

{x =fix)+g(X)u=-x+u, v=1

The domains of interest are sclected as Q,={xeR:

x| <3}and Q,={ueR: |u<5}. In addition, the sys-

tem is discretized by using Euler method with Ar=

0.005s. The cost function is defined as U(x,v,u) =
x?+u?. The activation functions of the LIP NN are

&, (x,u) = [u, xu, x’u, x’u, x*u, x’u,u’, x,x*, x°, x*,x°, x°1",

2 3 4 5
o, (x)=[1,x,x,x° x* x’]".

To begin with, for each subsystem, 300 transitions are
randomly sampled from the state and action spaces. Dur-
ing the iteration process, a batch of 200 samples are ran-
domly selected from the data buffer to train the networks.
The maximum iteration number is 100 and the training
process will be completed if |[WY" — W, <107, Vv e
{1,2} is satisfied.

The evolution process of the critic network weights
are shown in Fig. 6 and Fig. 7 which verifies the con-
vergence proof. It is shown that the elements con-
verge after 150 iteration steps. The training process takes
1.729 1 s.
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