Journal of Systems Engineering and Electronics
Vol. 33, No. 5, October 2022, pp.1123 — 1134

Review on artificial intelligence techniques for improving
representative air traffic management capability

1

2, 1

TANG Jun , LIU Gang | , and PAN Qingtao

1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China; 2. School of Information
Science and Engineering, Hunan Institute of Science and Technology, Yueyang 414000, China

Abstract: The use of artificial intelligence (Al) has increased
since the middle of the 20th century, as evidenced by its appli-
cations to a wide range of engineering and science problems. Air
traffic management (ATM) is becoming increasingly automated
and autonomous, making it lucrative for Al applications. This
paper presents a systematic review of studies that employ Al
techniques for improving ATM capability. A brief account of the
history, structure, and advantages of these methods is provided,
followed by the description of their applications to several repre-
sentative ATM tasks, such as air traffic services (ATS), airspace
management (AM), air traffic flow management (ATFM), and
flight operations (FO). The major contribution of the current
review is the professional survey of the Al application to ATM
alongside with the description of their specific advantages:
() these methods provide alternative approaches to conven-
tional physical modeling techniques, (i) these methods do not
require knowing relevant internal system parameters, (i) these
methods are computationally more efficient, and (iv) these me-
thods offer compact solutions to multivariable problems. In addi-
tion, this review offers a fresh outlook on future research. One is
providing a clear rationale for the model type and structure
selection for a given ATM mission. Another is to understand
what makes a specific architecture or algorithm effective for a
given ATM mission. These are among the most important issues
that will continue to attract the attention of the Al research com-
munity and ATM work teams in the future.
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1. Introduction

The modern field of artificial intelligence (AI) spans
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many sub-fields [1—4]. Most of these sub-fields handle
issues pertaining to the understanding and abstraction of
various human behavioral traits and patterns that are
commonly considered as indications of intelligence
[5-10], attempting to realize the same behavioral pat-
terns in machines [11]. The term “AI” was coined during
the Dartmouth College conferences in 1956 [12], which
were organized for developing ideas about machines that
could think. These conferences are widely considered as
the headstream of the field. Recently, in the fields of air
traffic management (ATM), attention has been focused
on the development of Al methods for performing vari-
ous air and ground functions, especially in air traffic ser-
vices (ATS), airspace management (AM), air traffic flow
management (ATFM), and flight operations (FO). These
functions ensure the safe and efficient movement of air-
craft during all phases of operations [13—16].

The Al technique is a novel technology continuously
developed based on modern information techno-
logy. The basic principle is to use computers to simulate
various ways of expressing human thoughts, thereby
transforming them into various thinking processing
modes used by traditional professional computers for
information processing and simulation work [1]. Al
mainly includes the following techniques [6—9]: machine
learning, building data auto-discovery patterns and gene-
rally dealing with more data, the more accurate predic-
tions will be; computer vision, applying image process-
ing operations and machine learning technologies to
decompose tasks to facilitate management; natural lan-
guage processing, making computers have the ability to
process text similar to humans; robotics, such as drones,
medical robots, and working robots; biometric identifica-
tion, using the inherent biological characteristics of the
human body for personal identification.

This paper provides a systematic review of studies that
employ Al techniques for improving ATM capability.
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The remainder of the paper is structured as follows. Sec-
tions 2—6 discuss the applications of Al to ATM, ATS,
AM, ATFM, and FO, respectively. Section 7 summarizes
the conclusions and Section 8 discusses potential future
research issues.

2. Al for ATM

Previously, Al techniques have been shown to outper-
form state-of-the-art calculation methods and models in
several fields, with ATM being one of the most promi-
nent cases. Several operational challenges underscore the
requirements for increased automation for improving the
level of ATM, and there seems to be little doubt that Al
will be a key enabler of advanced functionality and
increased automation in future ATM systems. Since the
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beginning of the 21st century, the Internet has promoted
the continuous innovation and practical usage of Al
methods, which has also promoted their application to the
ATM field. Fig. 1 shows the search results of “Al applied
for ATM ” according to Google Scholar, for the time
period of 2001 to 2020. The overall trend is upward and
relatively flat. Starting in 2015, there has been a signifi-
cant increase in the application of Al methods to ATM,
which may be owing to the widespread emergence of
open-source machine learning platforms such as Tensor
Flow [17], continuous publication of Al achievements
such as DeepMind papers [18], and a gradual outbreak of
the remotely piloted aircraft (RPA) market [19,20]. The
defeat of the Go champion by AlphaGo further stimu-
lates the interest in Al applications [21-23].
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Fig.1 Google trends indicator of AI for ATM from 2001 to 2020

In light of the above discussion, we focus on four most
important vocational works, ATS/AM/ATFM/FO, with
respect to their core function and applicability to ATM.
The current coverage is by no means exhaustive. For
example, although hardware plays an important role in
ATM, it is not reviewed in this paper, because it is pre-
dominantly related to device management and quality.
This review targets the community of Al algorithm deve-
lopers and researchers, as well as the community of avia-
tion specialists and general air traffic managers who are
interested in the state-of-the-art AI methods for ATM
tasks. Example areas of interest include flight-planning
requirements, dynamic use of airspace, conflict detection
and resolution, situational awareness, optimization of tra-

ffic flows, and pilot procedures. The advantages of using
Al methods for ATM are as follows: (i) these methods pro-
vide alternative approaches to conventional physical mode-
ling techniques, (ii) these methods do not require know-
ing relevant internal system parameters, (iii) these meth-
ods are computationally more efficient, and (iv) these me-
thods offer compact solutions to multivariable problems.

3. Al for ATS

ATS refers to managing and controlling the air activities
of aircraft [24]. It includes air traffic control (ATC) ser-
vices, flight information (FI) services, and alerting (AL)
services. The ATC services aim to: (i) avoid collisions
between aircraft and between aircraft and obstacles, and



TANG Jun et al.: Review on artificial intelligence techniques for improving representative air traffic management capability 1125

(ii) accelerate and maintain safe and orderly operation of
air traffic. FI services provide suggestions and informa-
tion to aircraft in flight that is conducive to safe and
effective implementation of flights. AL services give
notices to relevant organizations to search and rescue air-
craft, and coordinate organizations and/or the relevant
work, according to the situational needs.

Traditionally, as the major component of ATS, ATC
tasks have been performed by human air traffic con-
trollers (ATCOs). According to the scheduled flight plan
and the pilot’s position report in flight, the controller can
grasp the position and the altitude of the aircraft to ensure

its orderly and safe flight [24]. After 1945, primary and
secondary surveillance radars were introduced. Radar
controllers determine the exact location of all aircraft in
the radar wave coverage area, according to the radar dis-
play. However, the number of flights has been continu-
ously increasing, which strains the system. As a result,
the Federal Aviation Administration turned to computer-
based equipment during the 1980s to help controllers in
performing certain ATC functions. Automation has been
introduced into air traffic control. Thus, the history of air
traffic control can be divided into several periods, as
shown in Table 1.

Table 1 History of air traffic control
Time Control technology Flight characteristic Navigation characteristic
1929-1934 Visual flight rules Fewer planes, shorter voyages and slower speeds Flag and gun
1934-1945  Procedure control system More aircraft, faster speed, mainly military flights Air traffic control center, tower, terminal
1945-1980s Radar control Fast speed, long voyages, more flights Primary radar, secondary surveillance radar
1980s—  Air-ground cooperative ATC Airway/airport congestion, developed airborne equipment Satellite technology

The development of computer technology and Al tech-
niques positively affect ATC. Nguyen et al. [25] pio-
neered the application of Al techniques to ATC. Nguyen
et al. tried to automate the function of the entire con-
troller instead of focusing on one aspect of the controller’s
work. Cross [26] combined techniques from the fields of
qualitative physics and Al research to develop an under-
standing of the effects of aircraft performance on the con-
troller’s ATC actions. Using Al methods for ATC can
facilitate human-machine interaction. This resulted in the
development of expert systems for ATC. Some research
groups studied distributed expert systems for planning
and control, such as the Lincoln Laboratory Group [27],
and the Rand Corporation research team [28,29]. Gosling
[30] developed an expert system and used it in aircraft
gates for cost assignments. Gosling [30] pointed out that
the using decision support systems with expert systems
may be suitable for some problems relevant to the opera-
tion of airline stations. Li et al. [31] proposed an ATM
expert system, serving as an accessory tool to help
ATCOs with rescheduling. The use of Al methods in
automated ATC systems has been promising. Krishnan
[32] introduced entropy-based efficiency calculations and
explored how these calculations, combined with Al meth-
ods, can be used for ATC. Modern ATC systems are inti-
mately based on large distributed information technology
(IT) applications and consist of many different compo-

nents. Findler et al. [33] proposed distributed planning
and problem solving as a reliable and effective ATC
method. This includes design and implementation of a
distributed planning system, that is, a location-centered
collaborative planning system for a distributed ATC sys-
tem. A runtime analysis and knowledge-based automated
IT management method [34] was proposed and applied to
ATC. Combining ontology and its inference ability in the
Semantic Web with complex event-processing methods, a
novel analysis method was proposed, which solves the
problem of temporal modeling and state space explosion,
without relying on the exclusive use of ontology.

When potential conflicts are detected, ATCOs must
provide conflict resolution. Many mathematical models
have been proposed for use as the ATCOs’ conflict reso-
lution tools [35—37]. Although these models have found
several uses, they have some common limitations. For
example, these mathematical models do not have good
self-learning capabilities. Thus, some automated conflict
resolution approaches were presented. Recently, Al has
been widely proposed for supporting decision-making in
ATC. Isaacson et al. [38] proposed a knowledge-based
conflict resolution process that allows predictive con-
flicts to be resolved in a manner consistent with con-
troller practices: including prioritization of resolution
strategies and multiple degrees of freedom blending to
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achieve separation. Tran et al. [39] built an Al system as
a digital assistant to support ATCOs in resolving poten-
tial conflicts. The proposed system consisted of two core
components: one was an intelligent interaction conflict
solution that acquired ATCOs’ preferences, the other was
an Al agent that used reinforcement learning (RL). The
resulting system successfully proposed conflict resolu-
tion strategies. Kulkarni et al. [40] used artificial neural
networks for ATC automation. Namely, a back-propaga-
tion network was used for making intelligent decisions.
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To solve the problem of the runway direction selection in
airports, a self-enforcing network (SEN) [41] was pro-
posed. The measured data for different time periods for
forecasting wind conditions was given to the SEN, which
provided suggestions for choosing suitable operation
directions. Some researchers used multi-agent-based
models to represent the tasks that had to be performed or
physical resources for ATC (control centers, airports, and
runways) [42]. The studies that applied Al techniques to
ATC, and the applied techniques, are listed in Table 2.

Table 2 Al methods in ATC

Machine learning/

Method Expert system Knowledge engineering Agent-model deep learning Mathematical Others (distributed, IT, etc.) Year
Gosling [30] N S - - - v 1990
Lietal [31] N S - - - - 1997

Krishnan et al. [32] - - - v - v 2012
Findler et al. [33] - N - - - N 1991
Mever et al. [34] - \ - - - v 2013
Kuchar et al. [35] - - - - \ - 2000

Radanovic et al. [36] - - - - v - 2018
Jilkov et al. [37] - - - - \ - 2018
Isaacson et al. [38] N \ - - - \ 2001
Tran et al. [39] - - v - - N 2019

Kulkani et al. [40] - - - v - v 2015
Kliiver et al. [41] - - - N - N 2017
The current ATC system was developed over time to 4, AI for AM

meet the users’ needs with respect to modern technology,
and it has performed remarkably well [43,44]. However,
with the rapid increase in the number of flights and with
increasing shortage of airspace resources, the demand for
high-performance ATC systems has been increasing.
Presently, the emergence of Al techniques has been very
promising for rapid and efficient development of avia-
tion technology. Using Al methods, we can build intelli-
gent ATC systems that permit a richer analysis of exist-
ing air traffic problems. At the same time, Al techniques
can help to develop intelligent conflict detection and reso-
lution module systems for detection of flight conflicts,
which will result in safer flights. However, Al techniques
also put forward higher requirements on the input data of
the ATC system, and require system users to have more
professional domain knowledge.

Al aims to create intelligent machines that are likely to be
very useful for different industrial applications; conse-
quently, Al methods have become a very essential part of
ATM. In the AM area, Al methods can be applied to per-
formance trade-off, such as identifying the reasons under-
lying en-route flight inefficiencies. They can also be used
for modeling airline route choices. In addition, Al me-
thods are expected to be highly accurate for trajectory
prediction. Al methods are also capable of providing low-
cost solutions that can be adapted for speed recognition
tools for use at other airports.

The studies that applied Al techniques to AM are listed
in Table 3.
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Table 3 Al methods in AM
[Multi-agent, . Collaboration o [Time Intelligent Multilevel grid [Multi-agent,
i [Centralized, . . Multi-objective . Lo . .
Method machine . with airspace . uncertainty, small  optimization spatiotemporal machine Year
. decentralized] optimization . . . .
learning] users training set] algorithm index learning]
Jarvis et al.
[45] V.- V.- v - [~ v - -1 2010
Schefers et
ape 7 [, -] - v N - - [~ 2018
Wu et al.
[47] -] [V. -] - v [ - v - -1 2018
Cao et al.
148] (=] [V, -] - - (=] - - [~V 2018
Miao et al.
[49] [~ V.- - - [~ - N -1 2019
Agogino et
o DA [ - - [--] - - NN 2012
McCrea et
apy (V.- - - [~ -] - - [~-1 2008
Cruciol et
apszy OV [V, -] - - [~ - - [N 2015
Yuetal.
(53] (=] =] - - [~ - - [N 2019
Wang et al.
oy [, -] - - -] - - - 2017
Schirmer et
aps) ) V.- - - [~ v - -1 2018
Gerdes et
al. [56] 5. [, - - =] v - - -] 2018
Insaurralde
etal. [57] [~ =] - - [=-] v - -1 2017
Kravaris et
e e - - [~ -] - - - 2017
Cai et al.
o B 0 - - -] v - [~ 2012

Jarvis et al. [45] proposed a method for resolving the
demand and capacity imbalances in the US national
airspace with close collaboration with airspace users.
This method utilized a software negotiation framework,
and achieved the safety standard with high user satisfac-
tion. Schefers et al. [46] introduced a method that used
constraint programming enabled by Al and fostered
adherence of the airspace users’ trajectory, and intro-
duced a novel mechanism for improving flight departure
scheduling under temporal uncertainty. Wu et al. [47]
proposed a multi-objective optimization model for
addressing the problem of collaborative optimization of
global flight flows in the airspace sector network; their
model utilized a dynamic adaptive non-dominated sort-
ing genetic algorithm (NSGA). Cao et al. [48] proposed a
framework for knowledge mining in small training sets;
thus, their proposed system used a small training set and de-
monstrated promising performance on complexity evalua-
tion. Miao et al. [49] presented a multi-level grid spa-
tiotemporal index-based conflict detection method, which
exhibited high computational efficiency. Agogino etal. [50]
proposed a multi-agent algorithm that used RL for reduc-
ing congestion; the proposed method significantly
improved the traffic flow, and provided adaptive and

robust solutions to the flow management problem.
Mccrea et al. [51] used k-means clustering to conduct an
economic benefit analysis and applied it to a large-scale
airspace environment management. Cruciol et al. [52]
proposed a decision support system using multi-agent
systems, to organize and optimize the solutions for hand-
ling traffic flows in the airspace. They modeled the air-
holding problem using RL. Yu et al. [53] integrated the
underlying physics of aircraft dynamic systems into
machine learning models, to reduce training costs, and for
accurate prediction of flight trajectories. Wang et al. [54]
introduced a method that mapped the raw sensory data of
unmanned aerial vehicle (UAV) into control signals,
which enabled the UAVs to autonomously generate suit-
able trajectories in virtual large-scale complex environ-
ments. Schirmer et al. [55] introduced current certifica-
tion practices in unmanned aviation, supported by
autonomous systems and Al, and demonstrated that it is
possible to use specific operation assessment as an
enabler for hard-to-certify techniques. Gerdes et al. [56]
used evolutionary algorithms for optimization of the
airspace, which led to the flexible use of the airspace.
Insaurralde et al. [57] discussed challenges and opportu-
nities associated with implementation of knowledge tech-
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nology solutions for the management of shared multi-avi-
ation airspaces. Kravaris et al. [58] proposed collabora-
tive RL methods for resolving demand-capacity imbal-
ances under pre-tactical ATM, which is likely to be feasi-
ble even for extremely difficult scenarios. Cai et al. [59]
used a memetic algorithm with a pull-push operator to
solve the crossing waypoint’s location problem.

In summary, it is necessary to further automate traffic
management systems, as the number of air vehicles is
continually increasing along with their level of automa-
tion. Automation is likely to help to offload certain tasks,
thus allowing air traffic managers to focus on the airspace
safety issues. However, most of the applications of the
above-mentioned artificial intelligence technology in AM
are centralized, and discretization is of more practical
value; and the training data set is generally large in scale,
and the scale and quality of data collection are relatively
high. Therefore, significant amount of research is still
needed to ensure that automated systems with Al can
meet high safety standards and security requirements on
aviation systems.

5. Al for ATFM

ATFM has several stakeholders, such as airlines, pilots,
local flow administration centers, and the national flow
administration center. Superior techniques and proficient
traffic controllers are pertinent to ATFM [60,61].
Weather situations, aircraft operational restrictions, and
controllers > skills have enormous implications on the
proper functioning of ATFM systems.

In the domain of ATFM, the related work mostly falls
into two different categories: (i) principles-based model-
ing performed by domain experts [62—65] and (ii) algo-
rithmic approaches, pursued by the community of agents
[66—68]. Al-based approaches mostly belong to the sec-
ond category. A survey of recent literature on this topic
reveals application of several Al methods to ATFM:
automata theory, intelligent agent-based approaches,
swarm theory methods, and multi-agent approach with
RL. Indeed, the most mainstream direction is the multi-
agent approach with RL. Table 4 lists the Al methods that
have been used for ATFM.

Table 4 Al methods in ATFM

Method

Reinforcement learning Automata theory Intelligent agents Swarm theory [Environment, Human] Capacity Delay Cost Year

Pechoucek et al. [69] N - - [V, V] - - 2006
Tumer et al. [70] N - - - -] N - = 2007
Wolfe et al. [71] N - - [ V] - - = 2009

Lietal. [72] v - - v, -1 - N - 2010

Crespo et al. [73] N - - - -1 N N 2017
Cruciol et al. [74] N - - [ V] N - 2013
Bayen et al. [75] - R - [, -] N N 2003
Wolfe et al. [76] - - - - -] - NN 2007
Torres et al. [77] - - N [V, -] - NN 2012

In the context of flow management of decision pro-
cesses, pilots, central, and local controllers can be consi-
dered as agents in ATFM applications. An adaptive multi-
agent approach is appropriate for modeling complex
interactions between agents, such as collaboration, nego-
tiation, and coordination. To assess the agents’ learning
performance, an appropriate reward mechanism is
required for an adaptive multi-agent system. As a con-
stituent multi-agent system, RL can implement this, cap-
turing the experience and the level of knowledge of con-
trollers. Furthermore, it could also support control activi-
ties. The reward function in RL plays a critical role in
artificial intelligent ATFM systems. Intelligent agents use
the reward function to assess the effect of a certain action
on other agents, and generate ATFM actions/measures
based on that reasoning. Different reward structures dif-
ferentially affect the underlying system performance.
Pechoucek et al. [69] proposed an agent-reward structure,

which enables agents to learn how to act better and
explore; the proposed system exhibited a good system-
level performance in an indirect environment. Tumer et
al. [70] proposed a multi-agent algorithm for optimiza-
tion of traffic flow management. In this algorithm, an
agent is related to a fix and its location includes setting
required separation among multiple airplanes crossing
that fix, where RL is applied to set the separation, follow-
ing which the traffic is accelerated or decelerated to dis-
pose of congestion. The study by Tumer used an air traf-
fic flow simulator, FACET, to test the algorithm. Wolfe
et al. [71] built an agent-based simulation system using
Brahms, which is a modeling and simulation environ-
ment for studying human work practices and program-
ming intelligent software agents with the purpose of sup-
porting work practices in organizations. Li et al. [72]
developed a distributed decision support system for tacti-
cal systems, for ATFM. Crespo et al. [73] presented an
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ATFM method developed using computational agents
based on RL, to determine delays upon departing sche-
dules of aircraft taking off from some terminal areas. The
goal was to reduce saturation and congestion in the air
traffic control departments on account of a potential
imbalance between capacity and demand. Cruciol et al. [74]
adopted two reward functions for agent-based RL, for
ATFM. The first function mostly concentrated on safety
separation and equity among multiple commercial enti-
ties in the ground holding problem. The second function
mostly focused on safety separation in the air holding
problem. Real-case studies in Brazil showed that the two
developed reward functions have satisfactory effective-
ness and efficiency during the decision procedure of
ATFM.

Other Al methods have been applied to ATFM. Bayen
et al. [75] used the hybrid automata theory to develop a
control theoretical model of sector-based air traffic flow,
and used a Lagrangian model to model the attributes of
the system along its tracks. A sub-model was used for
analyzing and predicting the air traffic congestion:
Firstly, the dynamic sector capacity was defined and
derived. Then the model was applied to forecast the
instance in which a certain portion of the airspace will
become overloaded. Wolfe [76] proposed assistive agents
to support better communication between collaboration
parties, thus improving the decision-making process. A
swarm intelligence-based approach was also appropriate
for the level of complexity associated with ATFM.
Advances in airborne technologies made swarm intelli-
gence methods more practical. Since it is not practical to
adopt technology of combinatorial optimization to deal
with the multi-target traffic flow optimal problem, and a
large number of variables and exceedingly large Pareto
fronts related to the solution domain would lead to a com-
binational explosion, Torres [77] presented a different
method for ATFM, which was based on the swarm the-
ory methods. This method regarded pilots as goal-seek-
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ing agents, who separately searched for solutions to the
optimization problem. The collective action of agents
basically converged to the Pareto optimal condition as a
result of emergent behavior. Several other complex air
traffic problems have also adopted particle swarm opti-
mization methods [78,79].

The main objectives here are to ensure safety, lower
delays, reduced environmental effects, and to balance
demand and capacity. In Table 4, different studies focus
on different objectives. Most of them have the advan-
tages that they can improve the capacity or decrease
delays, while they do not contribute to the reduction of
operating costs.

6. Al for FO

To ensure flight safety and to improve flight efficiency, it
is necessary to monitor and manage the entire flight pro-
cess, that is, the FO must be managed scientifically and
reasonably [80]. FOs mainly include system-level com-
munications, navigation, and surveillance (CNS), and
application-level pilot procedures such as air traffic inci-
dent reporting, communication failure procedures, ade-
quacy of distress, and emergency communication pro-
gram. By integrating the operations of CNS and pilot pro-
cedures, it is possible to maintain ATC-specified separa-
tion to ensure aviation flight safety.

In the field of aviation, the use of Al-based systems is
regarded as a viable solution to some problems, such as
reducing the flight cost, optimizing the airspace usage,
meeting ATC requirements, assisting the flight crew with
decisions, improving data management, and assisting
with maintenance. With the rapid development of infor-
mation technology and Al technology, increasing atten-
tion has been paid to the prospect of intelligent avionics
systems. The CNS system is the most important compo-
nent of any avionics system. It is used primarily for air-
craft taxiing, take-off, cruise, and landing [81]. The appli-
cations of Al to FO are listed in Table 5.

Table 5 Al methods in FO

Method [Machine learning, neural network] Agent Data fusion Others Airplane UAV Year
Apiecionek et al. [84] [, - - N N N - 2015
Sanchez-Lopez et al. [85] [ -] N - N - N 2016
Bouwmeester et al. [86] [-— - v - v v 2015
Sinopoli et al. [87] [-— - N - - N 2001
Khansari-Zadeh et al. [88] [V, V] - N - N - 2011
Wu et al. [89] [, - - N N - N 2005
Zhilenkov et al. [90] [ V] - N - - N 2018
Popova et al. [91] [ -] - N N - N 2016
Kochenderfer et al. [92] v, - - - - v - 2012
Durand et al. [93] [ V] - - - N - 2000
Sislak et al. [94] [~ — N - - N - 2011
Schetinin et al. [95] IV, -] — — N N — 2018
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The communication system mainly transmits informa-
tion from a transmitter to a recipient through a medium.
Modern aviation interconnection technology can be
mainly divided into air to ground communication [82]
and satellite communication [83]. A practical implemen-
tation scheme of the communication system architecture
for use on military airplanes was proposed in [84]. The
proposed system continuously accesses information
online using AI, which increases the pilots’ situational
awareness. UAVs have had a major impact on the avia-
tion industry. In most cases, each UAV is controlled by
the ground control station (GCS) at the same time. Some
basic infrastructure-based swarm capabilities have been
considered and are often conveniently available in the
GCS software [85]. One advantage of infrastructure-
based swarming is that the GCS can be optimized in real
time using high-performance computers that can be rea-
sonably operated on UAVs. Bouwmeester et al. [86]
developed and in-silico tested a system that allows an
RPA to autonomously communicate with ATCOs. With
the rapid development of UAVs, in autonomous multi-
UAYV systems, the flight plan will change as the environ-
ment or mission changes, and traditional centralized con-
trol is no longer applicable.

The aircraft navigation system determines the aircraft
position and guides its flight according to a predeter-
mined route. A machine vision-based UAV navigation
system has been proposed previously [87]. Khansari-
Zadeh et al. [88] developed a vision-based neural network-
based estimation and navigation algorithm that was vali-
dated for a navigation distance as long as 1800 m.
Wu et al. [89] presented an extended Kalman filter
approach for UAV visually aided inertial navigation
using only an inertial measurement unit (IMU), camera,
and magnetometer as navigation sensors. To realize
autonomous navigation systems of UAVs in difficult res-
cue areas, Zhilenkov et al. [90] used an artificial convolu-
tional neural network. Using image motion velocity fields
(i.e., optical flow), navigation based on computing the
camera path became highly demanded, especially for rel-
atively small and even micro-scale UAVs. Popov et al.
[91] proposed a method for integrating the optical flow
and inertial navigation systems for UAV navigation.

Surveillance is necessary for safe flying and ATM. At
present, the traditional airborne monitoring system
mainly includes the traffic collision avoidance system
(TCAS), the transponder, and the terrain avoidance and
warning system discrete devices. Among them, the TCAS
is widely used for effectively solving encounters, and it
has also been shown to initiate collision threats in hectic
air traffic. Recently, the aircraft collision avoidance prob-
lem has been described as a part of the observable
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Markov decision process, which promoted the develop-
ment of aircraft collision avoidance systems [92]. Durand
et al. [93] proposed a neural network based on unsuper-
vised learning, which could calculate almost optimal tra-
jectories, thus solving the problem of two aircraft colli-
sion avoidance with the highest reliability when calculat-
ing the headings with the resolution of a few millise-
conds. Sislak et al. [94] presented two agent-based coope-
rative decentralized aircraft collision avoidance algo-
rithms that worked with different levels of coordination
autonomy, making realistic assumptions about the accu-
racy of flight execution (integrating required navigation
performance), where planning interlaced with the planned
execution phase. Because the uncertainty in the data and
the model used for detection can lead to the TCAS alarm
errors, Schetinin et al. [95] proposed an uncertainty esti-
mation model for early warning systems based on
Bayesian learning. More accurate results can be obtained
using Bayesian model averaging, which estimates the
predicted posterior probability distribution.

Considering the unpredictable outbreak in the use of
air transport systems and the demand for higher levels of
automated operation, the abovementioned research lacks
attention to single-pilot operation which should require
higher cognitive efforts. Through literature collection and
sorting, we found that less relevant research discusses this
topic. Liu et al. [96] proposed a novel cognitive pilot-air-
craft interface concept, which uses knowledge-based
adaptive systems that play an important role in helping
individual pilots accomplish important missions and
safety-critical tasks for modern commercial transport air-
craft. An intelligent autopilot system (IAS) [97] was pro-
posed, which learns piloting skills by imitating and
observing human expert pilots. The IAS may allow to
solve some common problems associated with flight
uncertainties in automatic FO, and allows to manually
establish a control model. Lungu et al. [98] presented an
automatic structure that controls the aircraft’s lateral-
directional motion during its landing process. The system
uses a classical controller and a radio-navigation system
to control the lateral angular deviation of the aircraft’s
longitudinal axis relative to the runway.

7. Conclusions

ATM is widely studied in several different fields, owing
to its complexity and criticality to a variety of stakeholders
including passengers, airlines, regulatory agencies, and
ATCOs. The last two decades have seen a dramatic
increase in the development and proposal of various types
of Al techniques for ATM. We present a solid review of
applications of Al techniques for ATM, by discussing
several carefully selected literature studies. The studies
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are classified into four main categories, i.e., ATS, AM,
ATFM, and FO. The published studies discussed in the
present review suggest that Al-based approaches have
indeed exhibited superior performance for managing
rapidly growing air traffic. This review also highlights
several directions for future research.

Several literatures summarized in this paper provide
examples of the usefulness of Al technology in the ATM
field. In conclusion, despite the promising (and in some
cases impressive) results that have been presented by the
reviewed studies, significant challenges exist. One such
challenge is in providing a clear rationale for the model
type and structure selection for a given ATM mission.
Another outstanding challenge is in understand what
makes a specific architecture or algorithm effective for a
given ATM mission. These are the main issues that will
continue to attract the attention of the Al research com-
munity and ATM work teams in the future.

8. Future directions

Al methods are being developed and deployed world-
wide in different fields, owing to the superior capability
of Al to handle problems that are described by complex
input-output relationships. Below, we list some topics
(from auxiliary unit work to improving safety to reduc-
ing RPA impact) which we believe merit future research.

(1) Improving crew’s working efficiency. Using Al
techniques to construct the mission models, behavior
models, error models, and workload models for the flight
crew can help the crew break through their physiological
and mental bounds and is likely to significantly reduce
the associated workload. This is likely to become espe-
cially important in emergency situations, and is likely to
improve flight safety.

(i1) Establishing decision support systems. Combined
with stochastic models, Al methods are recommended for
establishing decision support systems for aircraft rotation
management, which contains schedule disruption mana-
gement functionality that would allow to handle unex-
pected schedule perturbations.

(ii1) Solving conflicts in high-density airspace. The
multi-agent approach with RL is the most promising one
for future ATFM. This method can solve the problem of
conflicts between air intersections and junctions in high-
density air traffic management. The future development
of this field should seek to coordinate the actions of
agents autonomously, reduce manual intervention, and
introduce novel evaluation functions that will affect or be
affected by restrictive measures in air traffic flow ma-
nagement procedures. Another important direction is to
improve the prediction of real-time traffic movements,
especially for identification and tracking of aircraft flows.

(iv) Realizing autonomous flight. With the rapid deve-

lopment of different aviation vehicles, it is necessary to
increase research on flying ad hoc network systems.
Mobile communication technology is essential for real-
time interconnection of aircraft in the air, information
interaction and task assignment. This will help realize
autonomous flight for intelligent ATM.

(v) Reducing RPA impacts. The exponential growth of
RPA is expected to pose its own challenges and have sig-
nificant impacts on ATM, with clear consequences for
both human-machine systems and infrastructure to sup-
port highly automated and trusted autonomous opera-
tions [99]. Considering the intelligent recognition charac-
teristics of Al, a cybersecure intensive future RPA CNS
architecture is required to support the RPA traffic ma-
nagement system in low-altitude airspace and the com-
mon airspace in which RPA coexist with manned aircraft.
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