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Abstract: The paper designs a peripheral maximum gray differ-
ence (PMGD) image segmentation method, a connected-compo-
nent labeling (CCL) algorithm based on dynamic run length
(DRL), and a real-time implementation streaming processor for
DRL-CCL. And it verifies the function and performance in space
target monitoring scene by the carrying experiment of Tianzhou-3
cargo spacecraft (TZ-3). The PMGD image segmentation method
can segment the image into highly discrete and simple point tar-
gets quickly, which reduces the generation of equivalences
greatly and improves the real-time performance for DRL-CCL.
Through parallel pipeline design, the storage of the streaming
processor is optimized by 55% with no need for external me-
mory, the logic is optimized by 60%, and the energy efficiency
ratio is 12 times than that of the graphics processing unit, 62
times than that of the digital signal proccessing, and 147 times
than that of personal computers. Analyzing the results of 8756
images completed on-orbit, the speed is up to 5.88 FPS and the
target detection rate is 100%. Our algorithm and implementation
method meet the requirements of lightweight, high real-time,
strong robustness, full-time, and stable operation in space irradia-
tion environment.

Keywords: Tianzhou-3 cargo spacecraft (TZ-3), connected-
component labeling (CCL) algorithms, parallel pipeline process-
ing, on-orbit space target detection, streaming processor.

DOI: 10.23919/JSEE.2022.000107

1. Introduction

Binary image has a strong expression on the spatial rela-
tionship of pixels because of its simple mode, and plays
an important role in image analysis and recognition [1].
Much image information analysis is transformed into
binary image analysis in practical application finally, and
binarization plus morphology can solve the problems of
target extraction in many scenes [2,3]. The most impor-
tant method of binary image analysis is connected-com-
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ponent labeling (CCL) by marking the pixel “1” in the
binary image that each individually connected region
forms an identified block, and further obtains the geome-
tric parameters of these blocks, such as contour, circum-
scribed rectangle centroid, moment invariants and so on,
so as to extract the interest targets [4—6].

As a basic graphic processing method, image segmen-
tation includes threshold segmentation [7,8], region
growth segmentation [9,10], edge segmentation [11],
graph theory segmentation [12], and machine learning
segmentation [13,14], for different methods have differ-
ent segmentation effects. Therefore, it is necessary to
select and optimize the method according to the specific
scene and meeting the design requirements.

CCL is the basic algorithm for military target de-
tection and tracking, industrial product monitoring, traf-
fic intersection monitoring and other application scena-
rios [15—17]. After decades of development, scholars
have conducted a lot of research and achieved rich find-
ings at home and abroad. At present, the existing fast
CCL algorithms can be roughly divided into two cate-
gories: (i) Methods based on equivalence. This kind of
method needs to search the image at least twice from left
to right and from top to bottom, which record and sort out
the equal relationship between temporary labels. Accord-
ing to different scanning units, such methods can be
divided into the run length scanning method [18,19], the
pixel scanning method [20], and the block scanning
method [21]. The improvement of such algorithms
mainly focuses on improving the efficiency of label equal
relationship process and image access [22—24]. (ii) Meth-
ods based on region growth [25,26]. This kind of method
does not record and sort out the equal relationship bet-
ween temporary labels, which only needs one scan to com-
plete CCL and does not have regularity for image scan-
ning, so it is difficult to realize in parallel or hardware
acceleration [27—29].
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In the aspect of algorithm engineering, it is mainly
realized by embedded platforms such as graphic process-
ing unit (GPU), digital signal processing (DSP), field pro-
gram gate array (FPGA), application specific integrated
circuit (ASIC), or system-on-a-chip (SoC). Papers [30,31]
used GPU to realize the CCL algorithm and achieved
good acceleration effect that is the friendly development
environment based on compute unified device architec-
ture (CUDA), which is convenient for algorithm imple-
mentation and parallel acceleration. However, GPU has
high power consumption and poor energy efficiency,
which is difficult to meet the requirements of full-time
stable work in space irradiation environment. The TI DSP
DM6437 was used [32] to realize the CCL algorithm,
which has the characteristics of simple programming and
high development efficiency that is a typical embedded
implementation method. Limited by the computing power
of DSP, it is difficult to ensure the real-time effect of
realizing complex algorithms. ASIC or SoC has been
used to realize the CCL algorithm [33—35], which has the
characteristics of high operation efficiency and good
energy efficiency ratio. However, high cost and high cus-
tomization limit their application range.

The high flexibility and moderate energy efficiency
ratio of FPGA is an important technical way for the
implementation of complex algorithms, which has attra-
cted extensive attention of scholars at home and abroad.
Acceleration of the design of FPGA hardware for exist-
ing or new CCL algorithms has been proposed [36—40]
but there exist some deficiencies and limitations. The
algorithm in [36] and its FPGA design can label high-
speed video images for specific scenes quickly but not
universal. The traditional two scanning method was
accelerated in [37] with FPGA hardware, but it requires
large memory to buffer the intermediate image and twice
the pixel clock to process the equal relationship. The One
Scan CCL algorithm based on FPGA hardware accelera-
tion proposed in [38] must use the line blanking time in
the image scanning process to deal with the equal rela-
tionship of temporary labels, which is not applicable to
the image scanning method without line blanking. A real-
time embedded hardware CCL method based on linked
list run was proposed in [39], which occupies less than
25% of hardware resources than similar methods. How-
ever, it is difficult for the algorithm to gurantee the calcu-
lation cycle and it can not meet strong real-time applica-
tion scenarios. A CCL algorithm based on run length and
FPGA implementation method was proposed in [40],
which is not suitable for real-time processing by image
transmission due to its strong serialization structure.
Therefore, it is an effective way to solve the real-time
problem to meet the application requirements of specific
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scenarios, customize the optimization algorithm, and
accelerate the real-time implementation through parallel
and pipeline.

At present, there is little research on the application
scenario of space target extraction in the scene of large
size, huge amount of point targets, high complexity,
strong dispersion, and low signal to noise ratio (SNR).
The on-orbit deploy algorithm needs to meet the require-
ments of strong real-time, high reliability, and full-time
work under the conditions of space irradiation environ-
ment and resource constraints, which poses a great chal-
lenge to the implementation method.

To solve the above mentioned problems, this paper
starts from three aspects as follows: Firstly, a dynamic
run length (DRL)-CCL algorithm customized and opti-
mized for the scene of space target monitoring is pro-
posed, which can reduce the reading, writing, and com-
parison operations of data greatly and achieve good real-
time performance. Secondly, the peripheral maximum
grey difference (PMGD) image segmentation method is
optimized according to the imaging characteristics of
space targets and the subsequent processing flow of space
target detection and tracking. It reduces the generation of
equivalences greatly, and further improves the real-time
performance for DRL-CCL algorithm. Thirdly, the real-
time implementation method based on stream processor is
proposed according to the particularity of the on-orbit
operation environment, and the functional correctness and
performance advantages are proved by analyzing the on-
orbit processing results from the on-orbit verification of
Tianzhou-3 cargo spacecraft (TZ-3) carrying experiment.

The DRL-CCL algorithm designed in this paper is
implemented in Virtex7-690T FPGA of Xilinx, with a
running clock of 150 MHz. Through the carrying experi-
ment of TZ-3, 8 756 images whose integration time is dis-
tributed in the range of 150—500 ms with a resolution of
4096x4096x16 bit are processed, and the telemetry
results are analyzed. The minimum processing time of
single frame image is 115.448 ms, the maximum process-
ing time is 169.872 ms, the processing speed is 5.88 FPS,
and the data rate of load is 4 FPS, which meets the real-
time requirements of data processing.

2. Algorithm principle
2.1 Basic method of CCL

In this paper, the basic flow of CCL algorithm is based on
run length, which is mainly divided into three steps.

The first step is to record the runs, form a sequence of
continuous white pixels in each line, which is called a
run, and record its count (num_run), start pixel column
coordinate position (start run), end column coordinate
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position (end run), and row coordinate position (row_
run).

As shown in Fig. 1, in the first row, get two runs that
corresponding to (run,start run,end run,row_run) as (1,2,
3,1) and (2,6,6,1). In the second row, get two runs
(3,3,3,2) and (4,5,6,2). In the third row, get one run
(5,4,4,3). In the fourth row, get three runs (6,1,2,4),
(7,4,4,4), and (8,6,7,4). In the fifth row, get one run
(9,5,5,5). After all the images are traversed, all runs are
obtained.

Search direction

(run,sart_run,end_run,row_run)
(1,2,3,1), (2,6,6,1)

(3,3,3,2), (4,5,6,2)

(5.,4,4,3)

(6,1,2,4), (7,4,4,4), (8,6,7,4)
9,5,5,5)

Fig. 1 Finding and recording runs

The second step is to label runs and generate equiva-
lences. For the run in all rows except the first row, if it
does not overlap with all the runs in the previous row,
give it a new label; if it only overlaps with one run in the
previous row, assign the label of that run in the previous
row to it; if it overlaps with more than two runs in the
previous line, assign the current run the minimum label of
the connected run, and write the marks of these runs in
the previous line into the equivalence, indicating that they
belong to the same class.

As shown in Fig. 2, the two runs recorded in the first
line are marked as 1 and 2. The two runs recorded in the
second row have overlapping areas with the run in the
previous line, so they are marked with the run in the pre-
vious row, i.e., 1 and 2. A group in the third row over-
laps with the two groups in the previous row, so give it
the smallest of the two, that is 1, and then write (1,2) into
the equivalence. The fourth row records three runs, the
first run has no overlapping area with the previous row,
which is marked as 3. Similarly, the second run is marked
as 1 and the third run is marked as 4. In the fifth row, a
run of records overlaps with the two runs in the previous
row, so give it the smallest of the two, that is 1, and then
write (1,4) into the equivalence. After this step, mark the
run number recorded in the first step to get a new label,
and get a list of equivalences at the same time.

Run_labels=
(1,2,1,2,1,3,1,4,1)

|:“> Run_labels=
(1,1,1,1,1,2,1,1,1)
Equivalences=

{(1,2), (1.4}

Fig.2 Label runs and generate equivalences
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The third step is to combine equivalences and generate
the final label result. To convert equivalences into equiv-
alent sequences, each sequence needs to be given the
same label because they are equivalent. Starting from 1,
give each equivalent sequence a label. Traverse the tags
of the starting group, find the equivalent sequence, and
give them new labels. Fill the tag of each run into the
marking image to get the final label result.

The equivalences {(1,2),(1,4)} are transformed into
equivalent sequence: 1—2—4 so that the maximum num-
ber of label tags, denoted as maxlabel, is 4. As shown in
Fig. 3, points 1—4 are regarded as the nodes of the graph,
and the equivalence (1,2) shows that there is a path
between node 1 and node 2, and the resulting graph is an
undirected graph, that is (1,2) actually contains (2,1).
Therefore, we need to traverse the graph to find all con-
nected graphs. The principle of image depth first traver-
sal is adopted to find the equivalent sequence. Starting
from node 1, it has two paths 1—2 and 1—4. There is no
path after 2 and 4, and only 3 is left, which has never
appeared in the equivalence that forms a separate se-
quence.

O
@0

Fig. 3 Equivalences search graph (example)

Take the following equivalences as examples to better
illustrate the depth first traversal algorithm (see Fig. 4):
(1,2), (1,6), (3,7), (9,3), (8,1), (11,5), (10,8), (8,11),
(12,11), (11,13). The above equivalences can be trans-
formed into equivalent sequences:

(1) List 1: 1 52—55—56—58—10—11—12—13;

(ii) List 2: 3—57—-9;

(iii) List 3: 4.

Take 1—13 points as the nodes of the graph: Starting
from node 1, which has three paths 1—2, 1—6, and 1—8.
There are no paths behind 2 and 6, and 8 has two paths to
10 and 11, while 10 has no subsequent path, 11 has three
paths to 5, 12, and 13. The equivalence sequence 1 is
searched, the second equivalence sequence starts from 3,
and then only two paths lead to 7 and 9. There is no path
behind 7 and 9, and the equivalence sequence 2 is
searched. Finally, only node 4 is left, which has not
appeared in the equivalence so a separate sequence is
formed (the maximum label of the clique in the second
step is preset as 13), and the equivalence sequence is
searched.
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Equivalences list 1

Equivalences list2  Equivalences list 3

Fig. 4 Equivalences search graph (another example)

2.2 Optimization of CCL

In the engineering process of the CCL algorithm involved
in this paper, the first two steps can form a fully parallel
pipeline, and the processing time is fixed, which is not
affected by the complexity of labeling graphics. In the
third step, the image depth first traversal (DFS) method is
used to realize the combined processing of equivalences.
The processing time is related to depth and complexity
of equivalences and the equivalent sequence. Moreover,
this step is difficult to be accelerated by parallel and
pipeline processing, which has become the bottleneck of
the real-time performance of CCL algorithm.

The field of space target monitoring has the feature of
wide imaging area, large size, huge amount of data, and
the imaging characteristics of the target existing in the
form of points. It shows the characteristics of high disper-
sion, complex edges, and low SNR, which is easy to form
equivalence after segmentation. At the same time, the
maximum number of clique tags maxlabel is relatively
large, which means that more cyclic comparisons and
more time will be spent in the process of equivalences
combine.

The image in the field of space target monitoring con-
tains a large number of zeros, which indicates that there is
no matching equivalences and does not need cyclic judg-
ment. Therefore, a method of dynamically adjusting the
priority traversal depth is proposed based on the charac-
teristics of high dispersion and large number of point tar-
gets. Before the equivalences combine operation of each
image, the priority traversal depth parameters are ob-
tained in advance to dynamically adjust the number of
cyclic comparisons, rather than making cyclic judgment
according to the maximum number of labels, so as to

reduce the number of calculations and improve the real-
time performance of the algorithm effectively.

2.3 PMGD image segmentation method

Image segmentation is the key step of target extraction,
and a good segmentation method can remove the redun-
dant information of the image greatly and facilitate the
subsequent algorithm to extract effective information.
Considering actual needs, the paper adopts the segmenta-
tion method based on threshold, which usually includes
global threshold and regional threshold. According to the
threshold acquisition method, it is divided into constant
threshold processing and adaptive threshold processing,
and adaptive threshold processing can be divided into
empirical statistics, histogram statistical, maximum inter
class variance segmentation, etc. Generally, appropriate
image segmentation methods are selected according to
different application scenarios.

The PMGD image segmentation method is proposed
for the needs of space target detection, tracking, and posi-
tioning. Through the morphological plus mathematical
processing method, the graphics complexity of the seg-
mented binary image and the formation of equivalences
are reduced, which is convenient for the subsequent tar-
get labeling.

The method flow is as follows: the original image
S im is segmented to obtain a binary image according to
the following formula:

S binary =
(S_im==S_dilation)& [(S_im—S_erosion) > a]. (1)

S dilation in (1) is the dilation processing results of
image S_im and obtained by the following formula:

S_dilation = { z|[(B).NS_im] € S_im} )

where B is the structural element with the size of z, and
the size ofz is based on the pixel value correlation
between the objects of interest. If z is too large, the adja-
cent objects will be merged, resulting in missed detection.
Ifz is too small, it will affect the effect of dim target
detection. Therefore, z is determined jointly according to
the SNR of the camera image and the detection effect of
the actual objects of interest, designed as seven in this
paper.

S _erosion in (1) is the erosion processing results of
image S_im and obtained by the following formula:

S_erosion = { z|[(B),NS_im“] € S_im} 3)

where S_imC is the complement of S_im.
In (1),  is the dynamic threshold and obtained by the
following formula:
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bt width _ |

Z (ﬁzoum(i) - fmean)2
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where bit width is the effective bit width of the image
with S pixels, generally ranging from 1 to 16. Therefore,
pbitwidh rapoes from 2 to 65 536. fiou (2) is the pixel i his-
togram statistical value of S_im, f; .., is the global mean
of S_im, and N and M represent the size value of S_im.

The original image obtained by TZ-3 is shown in Fig. 5.
The segmented histogram statistics segmentation result is
shown in Fig. 6, where the number of connected compo-
nent is 100, and the number of equavalences is 9.

Fig. 5 Original image

Fig. 6 Segmented histogram statistics image segmentation result

The segmentation result of PMGD is shown in Fig. 7
where the number of connected component is 70 and the
number of equivalences is 3. The PMGD image segmen-
tation method designed in the paper can greatly reduce
the complexity of the segmented binary image and the
generation of equivalences as can be seen from the com-
parison of the results, which retains a large amount of
effective target information, and reduces the reading,
writing, and judgment times of equivalences combine
fundamentally.
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Fig. 7 Image segmentation result of PMGD

3. Algorithm implementation
3.1 Streaming processor design

This paper proposes a design method of streaming pro-
cessor based on parallel pipeline processing architecture
in order to meet the requirements of space time-sensitive
target detection and tracking, which adopts data-driven
parallel computing mode and can realize the function of
fast CCL in the space target monitoring image of large
size, strong real time, high dispersion and complexity,
and large scale point targets.

As shown in Fig. 8, the streaming processor is mainly
composed of “binarization module ” “run search and
record module” “quad port random memory read-write
control module” “run label and equivalences generation
module” and “equivalences combine and label result out-
put module”. According to the application requirements,
different memories such as first input first output (FIFO),
quad port random access memory (QPRAM), and double
port random access memory (DPRAM) are used to cache
and process data to meet the high-speed processing
requirements.

The*“binarization module” realizes the dynamic bit width
adaptive adjustment of the input data and completes a
3x3 module median filter for the input image. The
median filter of the template removes the noise in the
image, then, completes the morphological expansion and
corrosion processing on the denoised data in parallel,
finally, compares the gray value with the pixel corre-
sponding to the original data. When the pixel value at the
corresponding position of the original image data and the
expanded image data is equal, and the image data after
subtracting the corrosion from the original image data is
greater than or equal to the threshold, then the binary data
corresponding to this position is “1”, otherwise the binary
data is “0”.

The “run search and record module” mainly completes
the preliminary positioning and recording of the run. The
start line number and column number, and the end line
number and column number with the value of “1” in the
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input binary image are the preliminary position of the
group.

The “run label and equivalences generation module
mainly completes the run merging between rows, records
the run number that intersects with the two runs in the
previous row as an equivalence, and determines the start
line number and column number and the end line number

2
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and column number of the run by row. If the run in row n
intersects with the run in row n—1 (n=2), then the run
number in row n—1 is given to row #; if the clique of row
n intersects with the two cliques of row n—1, then the
smallest clique number in row n—1 is assigned to row n,
and the marks of the two cliques of row n—1 are written
into the equivalences.

16-bit image input

Image segmentation method of
maximum gray difference around

Run search and record

1 - 3 . 3 S_binary ! ’ M FIFO = 3
(15:;/[) Pixt | Pixo |2 > —»| Dilation S*dﬂatl(gl at . ~>| Start_run 16 Kx 18 bit g E‘ |
| 8 | S_binary | FIFO = '

1 323 _ S_erode | g 14 > End run H 16 Kx16 bit g & E —
median —p rode — -2 | MS_binary, 8 & o
Final label result ; filtering § : 4}" Row_run M 161121><F1(2) bit g g 5 ‘
[label, start run, 1 FIFO S | & |!|sinary! q 2 Sl
end_run, row_run] 1 _>32 Kx16 bit - ; *ﬂ Num run h Delay>4 H 5]
3 DPRAM &— Equ:l;:jllaeerrl: ° start run | QPRAM start_run 3
e I — 16 Kx16 bit ;
3 j Equivalences row- ; 3
| ; Pquiva]ences coordinate Run TOW_run QPRAM ’ row_run er:::] d([))r(r)ll‘t :
l < i label and 16 Kx16 bit |
i DPRAM | combine . . |

! 4 Kx32 bit[¢ and OUPUL |t coonsnues AUIVaIenCES r:;:lmvsr?t]e <
! ¢ N label (—————=| generation end run QPRAM end run o :
| | result Equivalences module 16 Kx16 bit contro :
. i value en module .
; DPRAM 2: ’ abel :
: 4 Kx16 bit [¢ Idxlabel_result label QPRAM. PR — '
: ¢ ; ) 16 Kx16 bit ;

Fig. 8 Architecture of streaming processor

The “quad port random memory read-write control
module” mainly completes the control of a large number
of read-write operations involved in the generation of run
tags and equivalences, simplifies the logic control,
improves the parallelism of run tags and shortens the pro-
cessing time.

The “equivalences combine and label result output
module” is the key to label the connected component in
the space target monitoring scene, which can reduce the
tag retrieval times of sparse targets effectively and rea-
lize the combine of equivalences quickly by calculating
the maximum value of the coordinate difference between
the row and column of the equivalences as the depth
value of the optimal traversal algorithm. Then the final
label result is output.

3.2 Local pipeline optimization

It can be seen from the Subsection 3.1 that the streaming
processor designed in this paper only has “run label and
equivalences generation module” and “equivalences com-
bine and label result output module”, which is not fully
parallel pipelined architecture, and local pipelining opti-
mization is needed to improve the degree of parallelism
and efficiency of computing.

In the “run label and equivalences generation module”,
four quad port read-write bus rams are used to store
start_run, end run, row_run, and label result. The write

operation of ram reuses one bus and the other write bus
controls its invalidity at the enable end according to the
characteristics of group label calculation, so as to save
power consumption and ensure that there is no conflict
between data write operations. The two read buses are
controlled independently. They can read the data of two
addresses at the same time in the same clock cycle.
Therefore, they double the efficiency of read operation,
simplify the control strategy, and optimize the calcula-
tion process, improving the parallelism of calculation and
efficiency.

In the “equivalences combine and label result output
module”, the core loop parameters are optimized by con-
structing the equivalence combine processing flow of
local pipeline architecture. At the same time, the image
binary segmentation algorithm is simplified according to
the requirements of application scenarios and the number
of equivalences is reduced at the source greatly, so as to
improve the real-time processing performance.

3.3 Engineering realization

This paper designs a streaming processor, which com-
piles and synthesizes in the development platform
Vivado2016.4. The hardware carrier is XC7VX690-
TFFG1761-2, and the working frequency is 150 MHz.

As shown in Fig. 9, the core power consumption of the
streaming processor combined with the application sce-
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nario is no more than 1.538 W (excluding the power con-
sumption of high-speed serial data transmission bus),
occupies 2.89 Mbit of Block RAM (BRAM), and needs
no external memory. It reduces the input/output (I/O)
access of high power consumption greatly, and saves at
least 5 W of power consumption (estimated according to
two groups of 64 bit DDR3 memory and 800 MHz access
clock). The mixed-mode clock manager (MMCM) power
consumption is 0.333 W. The bit width of input image
data adopts dynamic adaptive design, which can be up to
16 bit, and the maximum number of connected compo-
nent is 65 536.

[GTH: 3T51W  (71%)
[IDynamic: 1086 W  (219%) —
28% [ Clocks: 0306 W  (28%)
[T Signals: 0.121W (119
1% 11% £ ) (11%)
6% [ Logic: 0.068W  (6%)
B BRAM: 0251 W (23%)
B MMCM: 0333 W (31%)
fvo: 0.005W  (19)
XADC: 0.002W  (0%)
21%
[T Static: 0.452 W (8%) —
8% 100% | [ PL static: 0452 W (100%)

Fig. 9 Power consumption report
4. Experimental results
4.1 TZ-3 carrying experiment

The CCL streaming processor designed in this paper is

deployed on the space target monitor processing FPGA of
TZ-3 carrying experiment. The processing architecture is
shown in Fig.10, and the streaming processor works in
the FPGA that cooperates with TMS320C6678 to realize
real-time detection and tracking of space targets, which
obtains an excellent effect. V7-690T controls the camera
through recommended standard 422 (RS422) interface,
receives plane array camera data through camera link
interface, and sends the processing results to DSPA and
DSPB through serial bus and external bus after complet-
ing such as image segmentation and labeling by lable
streaming processor. The DSPA and DSPB cooperate to
complete target extraction and track association.

Camera | FPGA-virtex7-690T
link |
s Image. data
1| receive
RS422 !
RS422 ’E Parameter SRIO
i1 controller controller

[ DSPA |[DSPB SRIO|! /[ DSPA | [DSPA SRIO i
i| EMIFB controller E E EMIFB controller ||
e B s
| Image Image | :‘ Target |}
il correction [ correction ! i extraction |;

DSPA-TMS320C6678

DSPB-TMS320C6678

Fig. 10 TZ-3 experiment for space target detection

As shown in Table 1, the minimum processing time of
single frame image is 115.448 ms, the maximum is
169.872 ms, the average processing speed reaches
5.88 FPS, and the maximum data rate of load is 4 FPS.
The real-time performance meets the requirements of
load data processing.

Table 1 Processing results of TZ-3 space target monitoring equipment

Data set . . Nums of runs Nums of equivalences Label time/ms
CCD integral time/ms - — - — - .
(4096x4096) Maximum Minimum Average Maximum Minimum Average Maximum Minimum Average
Se.tl 150 18504 12567 14752 19 0 7 129.12 112.05 115.76
(2388 images)
t2
Se. 200 19531 13214 16321 35 0 12 141.21 112.05 127.85
(1934 images)
Set 3
e' 250 25430 17654 22043 41 0 14 152.43 112.05 131.32
(1742 images)
Set 4
e. 300 32567 21734 27621 55 1 23 167.95 119.05 142.92
(1543 images)
Set 5
© 500 45768 32165 35982 148 9 61 241.13 124.05 198.32

(1149 images)

The target coordinates in the on-orbit processing result
information are inversely labeled into the image data
transmitted from TZ-3, and the effect is shown in Fig. 11.

The results show that the space target monitor has a
good effect on moving target detection and tracking.

Compared with the stand results, the target coordinate
position is consistent and the result is correct.

Among them, the integration time of CCD camera is
200 ms and the frame rate is 4 Hz. The image data of
other integration times are analyzed and compared with
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the ground processing results comprehensively. Although
some single frame data is subject to missing detection and
loss of dim targets, the detection rate of dim targets in
images with low SNR reaches 100% after the accumula-
tion of information in multiple frames (more than 16
frames), which proves that the PMGD image segmenta-
tion method has a good information retention rate.

(a) Result 1 (b) Result 2 (c) Result 3

Feviep2 v fEvsico2

(d) Result 4 (e) Result 5 () Result 6

YAC-D2 -

(g) Result 7 (1) Result 9

Fig. 11

(h) Result 8

TZ-3 process result

4.2 Performance analysis

Relying on the space target image data obtained by TZ-3
carrying equipment, the functions and performance of the
algorithm and implementation method are analyzed and
compared with the mainstream methods.

4.2.1 Performance of PMGD

As shown in Fig. 12, the image data (Fig. 12(a)—Fig. 12(c))
transmitted by the TZ-3 carrying equipment respectively
uses the image segmentation method in this paper that the
processing results are Fig. 12(d)—Fig. 12(f). Literature [7]
proposed an image segmentation method based on K-

means to calculate the segmentation threshold. The pro-
cessing results are shown in Fig.12 (g). Literature [10]
proposed an image segmentation method based on digital
elevation region growth. The processing results are
shown in Fig.12 (h). Literature [11] proposed an image
segmentation method based on edge detection and peri-
pheralcoding. Theprocessingresultsareshownin Fig.12(g)—
Fig. 12(i). As shown in Fig. 13, the image data transmit-
ted by the TZ-3 carrying equipment (Fig. 13(a), Fig. 13(d),
Fig. 13(g), Fig. 13(i)), uses the image segmentation
method in this paper. The processing results of [7,10,11]
are (Fig. 13(b), Fig. 13(e), Fig. 13(h), Fig. 13(k)). The la-
bel results are (Fig. 13(c), Fig. 13(f), Fig. 13(i), Fig. 13(1)).
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(a) Result 1 (b) Result 2 (c) Result 3
(d) Result 4 (e) Result 5 (f) Result 6
(g) Result 7 (h) Result 8 (i) Result 9

Fig. 12 Binary segmentation result

(a) Image-A

(b) Image-A result 1 (c) Image-A result 2

(e) Image-B result 1 (f) Image-B result 2

(h) Image-C result 1 (i) Image-C result 2

(d) Image-B

(g) Image-C

(k) Image-D result 1 (1) Image-D result 2
Fig. 13 Label result

(j) Image-D

For 1000 images, the resolution is 4096x4096x16 bit,
and the integration time of CCD camera is in the range of
150—500 ms. The real data of TZ-3 carrying equipment is
analyzed and compared, and the average values of key
parameters such as the number of clusters and equiva-
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lences, the retention rate of effective information are
compared and analyzed. The specific motion detection
method is to calculate the effective rate of target informa-
tion:

IRR = e (5)

num

where IRR is the effective information retention rate, N
is the number of moving targets after segmentation, and
N, 1s the number of moving targets before segmenta-
tion.

The effective information retention rate results of dif-
ferent integration time of CCD camera and different seg-
mentation methods are shown in Fig. 14.
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Fig. 14 IRR result of TZ-3 experiment

The number of runs with different integration time and
different segmentation methods are shown in Fig. 15.

>t —tm =1 = o

?

100 150 200 250 300 350 400 450 500 550
CCD integral time/ms

o: Method in [7]; =: Method in [10];

%: Method in [11]; +: Proposed method.

Number of runs (average)
N W R N
T
i
|
i
Lo
|
|
|

Fig. 15 Runs result of TZ-3 experiment

The equivalences results of different integration time
and different segmentation methods are shown in Fig. 16.
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Fig. 16 Equivalences results of TZ-3 experiment
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In this paper, the retention rate for effective informa-
tion (time sensitive target) of PMGD image segmenta-
tion algorithm reaches more than 95% in images with dif-
ferent integration time, ranking first among the four
methods, the number of runs ranked fourth, and the num-
ber of equivalences ranks third, and the comprehensive
effect is best, which greatly reduces the consumption of
resources such as calculation, memory and transmission
of subsequent algorithms.

At the same time, the target missed in a single frame
can be redetected through subsequent image frames. After
calculation, after the accumulation of 16 frames of data,
the detection rate of time-sensitive target can reach 100%.

4.2.2 Performance of the streaming processor

The performance analysis of streaming processor is
mainly divided into two parts: on-orbit experiment and
ground experiment.

Analyze the telemetry information of TZ-3, and obtain
the internal temperature analysis of FPGA mainly
through the X analog to digital converter (XADC) inter-
face. The working environment temperature of FPGA is
10 °C, and the temperature data of continuous operation
for 296 s is collected.

As shown in Fig. 17, Test 1 is the case that the load
dose not work and there is no image data input, and the
streaming processor is in the state of empty operation.
The temperature curve of FPGA is balanced at about
20 °C finally that the temperature rise is 10 °C. Test 2 is
shown that the load works normally and there is image
data input that the input data is 1 FPS 4096x4096x16
bit data and the temperature curve of FPGA is balance
at about 23 °C finally that the temperature rise is about
13 °C.

Temperature of FPGA/C

0 50 100 150 200 250 300
Work time/s
—: Test 1; —: Test 2.

Fig. 17 Work temperature of TZ-3 experiment

Through the comparative analysis of experimental
data, the streaming processor is a data-driven operation
mode, and the dynamic power consumption is small,
which is roughly estimated to be less than 300 mW. In
the space environment, through the protection of space
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heat dissipation measures, which can work stably for a
long time and achieve hot balance.

The streaming processor is deployed on Virtex7 series
FPGA for performance analysis. The experiment data is
processed by the PMGD segmentation algorithm, and
1000 binary images are obtained.

The methods of different platforms such as PC (Intel i7
3770), GPU (NVIDIA TX2) and DSP (TI TMS
320C6678) that compare with the main performance indi-
cators include time, power and energy efficiency ratio
(EER). The EER is obtained by comparing time with
power.

As shown in Table 2, the EER of streaming processor
method based on FPGA is 147 times than that of PC, 12
times than that of GPU and 62 times than that of DSP,
which is suitable for on-orbit processing and other high
EER requirements.

Table 2 Performance of different platform

Platform Time/Hz Power/W EER/(Hz/W)
PC 1.94 77 0.025
GPU 4.54 15 0.302
DSP 0.89 15 0.059
Proposed method 5.88 1.6 3.675

Compared with FPGA implementation methods, the
main performance indicators include the image size, the
maximum number of connected components, the occu-
pied logic and memory resources, and time.

Literature [35] proposed a method to realize CCL
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based on SoC architecture and verified the performance
on different types of FPGA. Literature [36] proposed a
method to realize the CCL of 4K video stream based on
FPGA parallel architecture, and verified the function and
performance by face detection. Literature [40] used
FPGA to realize a CCL method, which was applied to the
field of remote sensing image processing. Literature [41]
proposed a simplified architecture CCL for FPGA imple-
mentation, and analyzed the impact of image size and the
number of connected component on hardware resource
consumption. Literature [42] proposed a moving target
detection and CCL algorithm, which realized the detec-
tion of people in a single FPGA.

The detailed comparison between the performance of
the streaming processor and other methods is shown in
Table 3. CCL based on FPGA and other programmable
logic devices is the current mainstream engineering
method. The performance of CCL algorithm is related to
the scene such as the size, target and background com-
plexity of the input image strongly. When the number of
connected component and the size of input image is
small, the efficiency and resource utilization of different
CCL algorithms are all excellent. With the growth of con-
nected component number and the increase of image size,
the number of maximum connected component will
increase significantly, and the corresponding hardware
resources such as computing and memory that need to be
reserved will increase significantly. Different methods
have different emphases and optimization points that
should be needed to meet the application requirements.

Table 3 Performance of different algorithms

Algorithm FPGA Image size Num  SLICE RAM/kB External memory Time/ms
XC7Z020 640x480 64 481 0.375 DDR3 1.75
XC72020 640x480 128 699 0.875 DDR3 1.74
XC7Z020 640x480 256 1072 2 DDR3 1.94
XC7Z020 640x480 512 1699 45 DDR3 2.16
Algorithm in [35] XC72020 640x480 1024 3226 10 DDR3 2.44
XC7Z020 2048x2048 64 784 0.375 DDR3 21.55
XC7Z020 2048x2048 256 1439 2 DDR3 27.18
XC72020 2048x2048 1024 3688 10 DDR3 33.01
XC7VX1140T 2048x1536 8192 28886 104 DDR3 21.51
Algorithm in [36] ZCUl104 3840x2160 <1024 55040 70 DDR4 16.67
Algorithm in [40] VIRTEXII 1024x1024 4096 432 130 No need 305
XC7K325T 256%256 — 5943 108 No need —
Algorithm in [42] XC7K325T 640x480 — 8243 156 No need —
XC7K325T 7680x4320 — 24510 548 No need —
Algorithm in [43] XC4VLX160 640%x480 <1024 2510 76 Synchronous dynamic random access memory 28.5
Proposed algorithm ~ XC7VX690T  4096x4096 65536 25877 361 No need 170.07
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Different from other CCL processing scenarios, the
streaming processor needs to meet the application scena-
rios of high real-time, strong dispersion, local high com-
plexity and massive point target label processing, as well
as low power consumption and fast processing speed.
Therefore, it is optimized from the following aspects. No
external memory is used to reduce power consumption.
Pipeline processing architecture is adopted to reduce stor-
age resources, which is only 45% of that in [35]. Opti-
mize control logic and reduce logic resources, which is
only 40% of that in [36]. Through comparative analysis,
compared with other similar methods, it is suitable for the
scene of spatial massive point target processing with
superior performance and good effect.

5. Conclusions

Space-borne hardware resources are limited strongly,
which requires space target oriented on-orbit detection
and tracking algorithms to meet the requirements of
lightweight, high real-time performance, and strong
robustness. Space target imaging has the characteristics
of large size, huge number of point targets, strong disper-
sion, local high complexity, and low SNR. The algorithm
needs to meet the demanding requirements of full-time
and stable operation in space irradiation environment,
which poses a great challenge to the implementation
method.

Firstly, the PMGD image segmentation method by
studying the characteristics of space target imaging,
detection, and tracking tasks is proposed, which is simple
to be implemented and has a high effective information
retention rate. And it reduces the pressure of calculation,
storage, and transmission of subsequent algorithms
greatly. Secondly, the CCL algorithm is optimized, and
the cyclic comparison, read and write times are reduced
greatly and the real-time performance is improved.
Finally, an energy-efficient streaming processor that is
deployed on FPGA based on multi-level cache architec-
ture is constructed and the on-orbit verification is com-
pleted on TZ-3, which verifies the functional correctness
and performance superiority of the algorithm effectively.
By configuring the refresh function, FPGA verifies long-
term stable operation of the streaming processor in space
irradiation environment effectively.

The streaming processor can be designed as radiation
resistant ASIC or SoC by the needs of future work, which
will further improve the operation performance and can
be used in the fields of space target monitoring.
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