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Abstract: An economic dispatch problem for power system with
wind  power  is  discussed.  Using  discrete  scenario  to  describe
uncertain wind powers, a threshold is given to identify bad sce-
nario set. The bad-scenario-set robust economic dispatch model
is established to minimize the total penalties on bad scenarios. A
specialized hybrid particle swarm optimization (PSO) algorithm is
developed  through  hybridizing  simulated  annealing  (SA)  opera-
tors.  The  SA operators  are  performed according  to  a  scenario-
oriented  adaptive  search  rule  in  a  neighborhood  which  is  con-
structed  based  on  the  unit  commitment  constraints.  Finally,  an
experiment  is  conducted.  The  computational  results  show  that
the developed algorithm outperforms the existing algorithms.
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1. Introduction
Traditional  deterministic  economic  dispatch  problem
(EDP) does not consider the uncertainties of wind power.
However,  it  is  insufficient  for  real-world  power  system
reliability  [1−4].  Robust  optimization  is  becoming  a
promising  alternative  method  of  dealing  with  uncertain
EDP [5−7].

Using  scenarios  to  describe  the  uncertainty  of  wind
power  output,  the  min-max  (regret)  criterion  is  usually
used  to  establish  the  typical  robust  optimization  model
[8−12]. However, the obtained robust solutions are over-
conservative because of merely concerning single extreme-
point  scenarios.  In fact,  the degradation of  performances
of  power systems could occur  under  more bad scenarios
than  the  worst-case  extreme-point  scenario  [12].  To
hedge against the risk of the degradation of performances

under  bad scenarios,  Wang et  al.  [13]  proposed the bad-
scenario-set  robust  optimization  concept  for  machine
scheduling problems [14,15], in which the defect of min-
max (regret) robust solutions could be overcome [16].

The  bad-scenario-set  robust  optimization  has  been
applied into uncertain EDP with wind power fluctuations
and  uncertainties  [8−10].  For  the  robust  EDP with  com-
plex  objective  functions,  exact  algorithms  could  not  be
applicable especially for  larger-size instances [17].  Vari-
ous  meta-metaheuristic  algorithms  have  been  applied
[18−22].  Among  them,  the  particle  swarm  optimization
(PSO)  algorithm  was  used  frequently  because  of  the
advantages  of  simple  implementation  and  fast  conver-
gence  [19−21].  Hybrid  PSO  algorithms  of  incorporating
with local search are usually adopted to deal with the pos-
sible premature convergence of PSO [23−26].

This  paper  discusses the uncertain power system EDP
with  wind  power.  The  main  contributions  lie  in  the  fol-
lowing aspects. Firstly, uncertain wind power is modeled
by discrete scenarios. A threshold is given to identify bad
scenarios.  The  bad-scenario-set  robust  economic  dis-
patch  model  is  formulated  to  hedge  against  the  perfor-
mance deterioration caused by bad wind power scenarios.
The  simulated-annealing  hybrid  PSO  (SHPSO)  algo-
rithm,  which  combines  PSO  with  simulated  annealing
(SA) operators, is developed here to solve the formulated
problem.  Specifically,  the  SA  operator  is  designed  in  a
problem-specific  way.  Finally,  the  computational  results
testify that the developed SHPSO algorithm outperforms
possible alternative algorithms.

The paper is organized as follows. In Section 2, the bad-
scenario-set  model  is  formulated.  In  Section  3,  the
SHPSO  algorithm  is  developed  to  solve  the  formulated
problem.  An  experiment  is  conducted  to  investigate  the
developed  algorithm  in  Section  4.  The  conclusions  are
drawn in Section 5. 
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2. Robust EDP with wind power
In  order  to  guarantee  the  operational  security  of  power
system, it is important to handle uncertain wind power for
the economic dispatch problem. Robust dispatch methods
can  hedge  against  extreme  adverse  situations.  Here  the
bad-scenario-set robust optimization model is formulated
for  the  dispatch  problem  of  power  system  with  wind
power.  As  the  basis,  we  first  provide  the  description  of
the deterministic economic dispatch problem. 

2.1    Deterministic economic dispatch

F(P)

In the deterministic economic dispatch problem, only the
cost  of  thermal  generators  is  taken  into  account  as  the
generation cost of the power system. Here the EDP with
wind power does not consider the starting-up and shutting-
down states  of  the  units  [22],  but  the  valve-point  effects
are  concerned  in  the  total  generation  cost  of  all
thermal generators as follows:

min F(P) =
T∑

t=1

I∑
i=1

{
aiP2

i,t +biPi,t + ci +∣∣∣ei · sin
[
fi · (Pi,min−Pi,t)

]∣∣∣} (1)

s.t.
I∑

i=1

Pi,t +Pw
t = Pd

t (2)

Pi,min ⩽ Pi,t ⩽ Pi,max (3)

Pi,t −Pi,t−1 ⩽ ∆Pu,i (4)

Pi,t−1−Pi,t ⩽ ∆Pd,i (5)

I∑
i=1

min(Pi,max−Pi,t,∆Pu,i) ⩾ PSRt (6)

I∑
i=1

min(Pi,t −Pi,min,∆Pd,i) ⩾ PSRt (7)

P = {Pi,t | i = 1,2, · · · , I; t = 1,2, · · · ,T }

ai bi ci

ei fi

Pi,min

Pi,t

Pw
t Pd

t

PSRt

Pi,max

where  is  a  power
output  vector  representing  a  set  of  power  output  of  all
generators  in  all  time  periods. T  is  the  total  number  of
time  periods, t  is  the  index  of  each  time  period, I  is  the
total  number of  thermal generators,  and i  is  the index of
each  generator. ,  and   are  the  cost  coefficients  of
generator i.   and  are the cost  coefficients  of  genera-
tor i  reflecting  valve-point  effects.  In  the  constraints
(2)−(7),  for  time  period t,   is  the  minimum  power
output of the ith generator,  is the power output of the
ith generator,  denotes the forecasted wind power, 
denotes the load power,  denotes the rotation reserve
capacity  of  the  system.  denotes  the  maximum

∆Pu,i ∆Pd,ipower output of the ith generator.  and  respec-
tively  represent  the  ramp-up  and  ramp-down  limits  for
generator i.

Pw
tWe assume that the wind power  is forecasted to be

deterministic input parameters. 

2.2    Bad-scenario-set robust economic dispatch model

We discuss the uncertain power system dispatch problem,
in which the uncertainty of wind power causes the fluctu-
ation of the power output as well as the generation costs
of thermal generators.

Λ

λ ∈ Λ λ = {λt | t = 1,
2, · · · ,T } λt

Pw
t

λ

Uncertain wind power is described by a set of discrete
scenarios.  Let  be the scenario set  of  all  possible  wind
power  scenarios.  For  any  scenario , 

,  where  is  a  possible  wind  power  fluctuation
deviating from the normal  value of  wind power  dur-
ing time period t under scenario . We call the uncertain
economic  dispatch  problem  with  wind  power  described
by scenarios the scenario EDP (SEDP).

F( P|λ)

λ F( P|λ)

F( P|λ)

Let  denote the generation cost of thermal gen-
erators  with  dispatch  solution P  under  wind  power  sce-
nario . Under some scenarios, the values of  are
getting  particularly  big.  Given  a  threshold B ,  those  sce-
narios,  under  which the  generation  costs  are  not
lower than B, are called bad scenarios. The set of bad sce-
narios is identified for dispatch solution P as follows:

ΛB(P) = {λ|F( P|λ) ⩾ B,λ ∈ Λ}. (8)

F( P|λ)
ΛB(P)

ΛB(P)

The  bad-scenario-set  robust  economic  dispatch  model
is  formulated  by  minimizing  the  total  penalties  on  those
bad scenarios.  The penalty  on individual  bad scenario  is
calculated  by  the  square  of  deviation  between  the  gene-
ration  cost  and  the  value  of B .  For  the  dispatch
solution P, the total penalties with respect to  is the
sum of the penalties on all individual scenarios of .
The  bad-scenario-set  robust-optimization  (BR)  criterion
is formulated as follows:

min BR(P) =
∑
λ∈ΛB(P)

[F( P|λ)−B]2. (9)

For the SEDP, the power balance constraint, expressed
by (2), should be modified as follows:

I∑
i=1

Pi,t +Pw
t +λt = Pd

t , (10)

Pw
t,min ⩽ Pw

t +λt ⩽ Pw
t,max, (11)

Pw
t,min Pw

t,maxwhere  and   denote  the  minimum  and  maxi-
mum wind power during time period t, respectively. Con-
straint  (11)  expresses  the  fluctuation  range  of  wind
power. 
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3. SHPSO algorithm
The  SEDP  is  of  non-differentiability,  high  dimensions
and multiple  constraints.  The SHPSO algorithm is  deve-
loped to solve it.

Basically,  the  PSO  algorithm  searches  the  solution
space using a group of particles. Each particle represents
a  possible  solution,  and  the  quality  of  each  particle  is
evaluated by the fitness function. In each iteration, a par-
ticle  moves  toward  the  optimum  position  based  on  its
present  velocity,  its  best  previous  position  and  the  best
previous position of its neighbors. After a number of ite-
rations, the obtained solution is accepted.

To  overcome  the  premature  convergence  of  PSO,  the
PSO  algorithm  is  incorporated  with  SA  operators.  Here
we adopt  a  problem-specific  technique  to  design  the  SA
operator.  We  utilize  the  constraints  of  power  output  of
generators to construct a neighborhood structure, and per-
form  the  SA  operators  according  to  an  elaborately
designed scenario-oriented adaptive search rule. In such a
local search process, partial constraints are handled while
improving the search efficiency of local search. 

3.1    Framework of SHPSO algorithm

The  SHPSO  algorithm  adopts  the  real  number  encoding
scheme [20]. The initial position and velocity of each par-
ticle are generated randomly in the way of [19]. We apply
the  heuristic  constraint-handling  (HC)  technique  pro-
posed by Park et al. [19] to satisfy the constraints (2)−(5),
and adopt the constraint treatment (CT) method proposed
by Elsayed et al. [20] to handle the constraints (6)−(7).

ΛB(Pk
n)

Pk
n

Pk
Pbest,n

Pk
Gbest

Pk
Pbest,n Pk

Gbest

Pk
Pbest,n

Pk
Gbest

At iteration k, the bad scenario set  is identified
for  feasible  solution ,  which  is  expressed  by  current
position  of  particle n .  The  objective  function  expressed
by  (9)  is  taken  as  the  fitness  function.  Let  and

 be  the  best  previous  position  of  the  particle n  and
the  best  previous  position  in  the  swarm  respectively  at
iteration k .  The  calculation  of  and   can  be
referred  to  [20].  Based  on  the  positions  of  and

, the positions of particles are updated as follows:

Vk+1
n = ω ·Vk

n + c1 · r1 · (Pk
Pbest,n−Pk

n)+
c2 · r2 · (Pk

Gbest−Pk
n), (12)

Pk+1
n = Pk

n+Vk+1
n , (13)

Vk
n

ω c1 c2

r1 r2

ω

where  represents the velocity of particle n at iteration
k,  denotes  the  inertia  weight  factor,  and   are  the
acceleration coefficients,  and  are  the random num-
bers  between  0  and  1.  The  inertia  weight  factor 

decreases linearly [27].
Pk

Gbest

Pk
Gbest

It is shown in (12) that better value of  helps the
PSO to converge more rapidly. The scenario-oriented SA
operator (SSAO) is performed to obtain a better value of

 in the SHPSO algorithm.

k ⩾ K

The  termination  criterion  of  SHPSO  is  set  to  be  the
maximum iteration number K. When the number of itera-
tion , the algorithm is terminated.

In summary, the framework of the SHPSO algorithm is
presented in Fig. 1.

 
 

Modify the position of each particle to satisfy 

the constraints

Calculate the fitness values of particles in the swarm, 

update Pk

Pbest, n and Pk

Gbest

Perform SSAO for Pk

Gbest to update P k

Gbest

k≥K?

Output Pk

Gbest

Yes

No

Update k, ω, the position and velocity of 

each particle

Initialize the algorithm parameters, generate an initial 

swarm of m particles, let k=1

Identify Λ
B
(Pk

n
)  for Pk

n

Fig. 1    Framework of SHPSO algorithm
  

3.2    SSAO

The SA operator searches a constructed neighborhood for
current solution and determines whether or not to accept a
new  solution  according  to  the  metropolis  criterion.  The
SA operator usually accepts a better solution than the cur-
rent  solution,  but  occasionally  accepts  an  inferior  solu-
tion with a certain probability. Thus the SA operator has
the chances to jump out of local minima and furtherly to
find the global optimum.

The  problem-specific  consideration  is  made  for  the
SSAO  through  constructing  a  neighborhood,  which  is
constructed  based  on  the  constraint  intervals  of  thermal
generators.  The cooling function of  SSAO adopts  the  li-
near cooling method. 
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3.2.1    Constructing a neighborhood for SSAO

To consider the ramp rate limits and power output limits
constraints  of  conventional  generators  at  the  same  time,
constraints (3)−(5) can be rewritten as an inequality con-
straint as follows:

max(Pi,min,Pi,t−1−∆Pd,i) ⩽ Pi,t ⩽min(Pi,max,Pi,t−1+∆Pu,i).
(14)

P−i,t
Pi,t P+i,t Pi,t

Pi,t ∈ [P−i,t,P
+
i,t]

Pi,t

[P−i,t,P
+
i,t]

[P−i,t,P
+
i,t]

Pi,t

For simplification,  let  denotes  the  minimum value
of ,  and  denotes  the  maximum value  of ,  then

.  Constraint  (14)  indicates  that  any  current
value  of  the  power  output  of  generator i  could  be
adjusted to generate new solutions only within the inter-
val , otherwise, new solutions will not be able to
satisfy  the  constrains  (3)−(5).  In  fact,  the  interval

 can be taken as a neighborhood for current solu-
tion . When the SA operator is performed in the neigh-
borhood,  all  evaluated  candidate  solutions  could  satisfy
constrains (3)−(5).

Based on the constructed neighborhood, the search rule
of SSAO is also a problem-specific consideration because
the characteristics of discrete scenarios of uncertain wind
power are utilized to design a scenario-oriented adaptive
search rule for the SSAO so that the efficiency of the SA
operator could be improved. 

3.2.2    Designing scenario-oriented adaptive search rule

In  the  scenario-oriented  adaptive  search  rule,  the  search
direction is guided by the current value of the wind power
scenario  and  the  size  of  search  step  is  dynamically
adjusted based on the scenarios and the constraints.

[P−i,t,P
+
i,t] Pi,t

Pi,t

The scenario-oriented adaptive search rule is shown in
Fig. 2. The line segment AC represents the neighborhood

 for  current  solution .  Point B  indicates  the
current  solution ,  point A  is  the  left  boundary  of  the
neighborhood,  and  point C  is  the  right  boundary  of  the
neighborhood.
  

A (λ
t
>0) B (λ

t
<0) C

P −
i, t

P
i, t P +

i, t

Fig. 2    Scenario-oriented adaptive search rule
 

Pw
t

λt > 0

Pw
t λt < 0

According to (10) and (11), if the real-time wind power
in  time  period t  is  bigger  than  the  forecasted  value ,
then ,  and the power output  of  the  units  should be
reduced  to  maintain  the  power  balance  of  the  system.  A
better solution should be closer to point A. Therefore, the
search  direction  is  from point A  to  point B .  On the  con-
trary,  if  the  real-time  wind  power  in  time  period t  is
smaller than the forecasted value , then , and the

power  output  of  the  units  should  be  increased.  A  better
solution should be closer to point C, thus the search direc-
tion is from point C to point B.

λt λt > 0

∆Pλi,t
Pi,t λ

λt λt < 0
∆Pλi,t

Furthermore, for a bigger value of  ( ), a better
solution  is  closer  to  the  point A ,  and  the  smaller  search
step should be set. Let  denote the size of search step
for  current  solution  under  scenario .  For  a  smaller
value of ( ), a better solution is closer to point C,
and a smaller value of  should be set.

λ ∆Pλi,t

Here  the  search  direction  and  the  step  size  are  adap-
tively  and  dynamically  adjusted  as  the  wind  power  sce-
nario  changes.  Let  the  maximum  search  number  in  the
neighborhood be J. Under scenario , the value of  is
set as follows:

∆Pλi,t =


(
1− λt

Pw
t,max−Pw

t

)
·

Pi,t −P−i,t
J
, λt ⩾ 0(

1− λt

Pw
t,min−Pw

t

)
·

P+i,t −Pi,t

J
, λt < 0

, (15)

P j+1
i,t =

P−i,t + j ·∆Pλi,t, λt ⩾ 0
P+i,t − j ·∆Pλi,t, λt < 0

, (16)

P j
i,t

P j + 1
i,t

where  corresponds to the power output of the ith gene-
rator in time period t at iteration j, and  is a new can-
didate  solution  obtained  by  the  scenario-oriented  adap-
tive search rule.

For  the  current  position  of  each  particle,  a  neighbor-
hood  is  constructed  in  the  way  that  is  described  in  Sub-
section  3.2.1,  and  the  SSAO  is  performed  according  to
the scenario-oriented adaptive search rule. 

4. Computation results and analysis
An experiment is conducted to verify the effectiveness of
the  developed  algorithm  in  this  section.  All  the  algo-
rithms are coded in Matlab 2014A, and the experiment is
conducted  on  the  desktop  computer  with  AMD  Ryzen5
1600 3.2G CPU with 12.0G RAM.

|Λ| = 50

9.539×105

4.268×105 29.11×105

The  developed  SHPSO  algorithm  is  tested  on  the
instances  of  10-unit  system,  13-unit  system  and  40-unit
system,  which  are  incorporated  with  wind  power.  The
dispatch  of  24  time  periods  is  one  cycle,  and  each  time
period is 1 h. The 10-unit system and the 13-unit system
data  are  derived  from [28].  The  relevant  data  of  40-unit
system  can  be  referred  to  [19].  The  forecasted  data  of
wind  power  comes  from  [29].  wind  power  sce-
narios are generated by Latin hypercube sampling (LHS)
for  each  instance  [30].  The  value  of B  is  given  in
advance.  The  values  of B  are  given  to  be ,

 and  for the BR criterion in the 10-
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unit, 13-unit and 40-unit instances respectively.

ω

T0 = 100 T f = 1 ξ = 0.8

For the SHPSO algorithm, set the population size to be
20.  Let  the  maximum  iteration  number  be  300.  Let  the
maximum and minimum values of inertia weight factor 
be 0.9 and 0.4 respectively. Let , , . 

4.1    Tuning the parameter of SHPSO

The maximum search  number J  used  in  the  SSAO is  an
important parameter for the developed SHPSO algorithm.
In order to set appropriate values of J for different SEDP
instances, the tuning test is performed for the instances of
10-unit  system,  13-unit  system  and  40-unit  system
respectively. The value of J varies from 90 to 10 with the
step size of 20. Total 40 runs are executed independently.

The  computational  results  are  presented  in Fig.3  for
different instances. It is shown that as the value of J gets
bigger,  the BR performance of solutions obtained by the
SHPSO gets better  while CPU time spent gets  larger for
all instances. However, when the value of J increases to a
certain  extent,  the  qualities  of  solutions  obtained  do  not
vary  again.  To  take  a  tradeoff  between  solution  quality
and CPU time, the values of J are set to be 50, 30 and 50
respectively for the 10-unit, 13-unit and 40-unit systems.
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(c) The 40-unit system
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Fig. 3     Curves of performances obtained by the SHPSO at differ-
ent J values for the systems with 10, 13 and 40 units
  
4.2    Comparing five algorithms

To test the efficiency of the SHPSO algorithm, we com-
pare  the  SHPSO  with  four  alternative  algorithms.  The
first  algorithm  is  the  general  PSO  algorithm  [19].  The
second  algorithm  is  the  hybrid  PSO  algorithm  with  the
conventional  neighborhood  and  the  conventional  search
rule  (HPSOCC)  [20].  The  third  algorithm  is  the  hybrid
PSO algorithm with the neighborhood based on the con-
straints  but  a  conventional  search  rule  (HPSONC)  [21].
The fourth algorithm is the PSO algorithm with modified
inertia weight (MIW-PSO) [23].

The parameters of the compared four algorithms are set
according  to  the  SHPSO.  Five  algorithms are  performed
respectively to solve the SEDP instances respectively.  A
total  of  40  runs  are  performed  for  each  instance.  The
maximum, the minimum and the mean values of BR cri-
terion among 40 runs are recorded for the obtained solu-
tions. The comparisons of solutions obtained are reported
in Table 1. It is shown that the advantage of SHPSO over
four alternative algorithms is  obvious in terms of almost
all the maximum, minimum and mean values of BR in all
instances.  The  CPU  time  consumed  by  the  SHPSO  is
relatively  less.  Compared  with  the  PSO,  the  HPSOCC
obtains  much  better  results.  It  indicates  that  the  effi-
ciency  of  HPSOCC  is  improved  by  cooperating  with
the  SA operators.  However,  the  CPU time consumed by
the  HPSOCC  is  greatly  bigger.  Compared  with  the
HPSONC,  the  SHPSO  obtains  better  solutions  in  four
test  systems.  It  indicates that  the scenario-oriented adap-
tive  search  rule  could  make  the  local  search  of  SHPSO
largely  intensified  and  the  CPU  time  consumed
decreased.
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Table 1    Comparison of solutions obtained by five algorithms for the SEDP instances

Instance type Algorithm
BR(×105)

CPU time/s
Maximum value Minimum value Mean value

10-unit system

PSO 1031 201.7 357.2 23.00

HPSOCC 980.6 179.4 296.6 84.00

HPSONC 784.5 174.5 287.4 71.00

MIW-PSO 680.4 170.6 273.7 43.00

SHPSO 631.0 157.1 256.4 55.00

13-unit system

PSO 95.81 16.58 40.25 9.000

HPSOCC 85.90 13.58 38.26 65.00

HPSONC 82.84 11.83 37.22 45.00

MIW-PSO 82.05 10.91 35.95 27.00

MIW-PSO 79.79 9.819 35.53 30.00

40-unit system

PSO 151.7 35.50 69.54 120.0

HPSOCC 103.3 29.23 60.05 456.0

HPSONC 99.64 27.46 58.18 389.0

MIW-PSO 97.43 24.58 56.95 280.0

SHPSO 95.93 23.82 56.83 304.0
 

Specifically,  the  convergence  characteristics  of  five
algorithms in 10-unit system are illustrated in Fig. 4. It is
observed  that  the  SHPSO  outperforms  four  alternative
algorithms  in  terms  of  convergence  speed.  The  conver-
gence of SHPSO is obviously improved due to the syner-
gistic effects of the SSAO.
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Fig. 4    Comparison of convergence curves of five algorithms in the
10-unit system
  

5. Conclusions
In  the  SEDP  discussed  here,  describing  uncertain  wind
power  by  discrete  scenarios,  we  provide  a  threshold  of

performance  to  identify  bad  scenarios.  The  BR criterion
based bad-scenario set is used to formulate the EDP with
wind power.

To  solve  the  formulated  problem,  the  SHPSO  algo-
rithm is developed by combining PSO with SA operators
using  a  problem-specific  technique.  In  the  SA  operator,
the  unit  commitment  constraint  of  power  output  of  each
generator  is  utilized  to  construct  a  neighborhood,  in
which  the  SA operator  is  performed  according  to  a  sce-
nario-oriented  adaptive  search  rule.  The  computational
results  testify  the  SHPSO  algorithm  developed  in  this
paper outperforms other alternative algorithms.
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