Journal of Systems Engineering and Electronics
Vol. 33, No. 4, August 2022, pp.916 — 923

Intelligent optimization methods of
phase-modulation waveform

SUN Jianwei"?, WANG Chao"*", SHI Qingzhan"?, REN Wenbo'"?,
YAO Zekun"?, and YUAN Naichang"?

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China;

2. State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National
University of Defense Technology, Changsha 410073, China

Abstract: With the continuous improvement of radar intelli-
gence, it is difficult for traditional countermeasures to achieve
ideal results. In order to deal with complex, changeable, and
unknown threat signals in the complex electromagnetic environ-
ment, a waveform intelligent optimization model based on intelli-
gent optimization algorithm is proposed. By virtue of the univer-
sality and fast running speed of the intelligent optimization algo-
rithm, the model can optimize the parameters used to synthe-
size the countermeasure waveform according to different exter-
nal signals, so as to improve the countermeasure performance.
Genetic algorithm (GA) and particle swarm optimization (PSO)
are used to simulate the intelligent optimization of interrupted-
sampling and phase-modulation repeater waveform. The experi-
mental results under different radar signal conditions show that
the scheme is feasible. The performance comparison between
the algorithms and some problems in the experimental results
also provide a certain reference for the follow-up work.
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1. Introduction

With the continuous development of artificial intelli-
gence, the intelligent level of radar is constantly improv-
ing, and various new radars [1—3] are constantly emerg-
ing. In response to these new radars, radar countermea-
sures equipment is also developing towards intelligence.
Since 2010, the US military has carried out a series of
research and development projects, aiming at realizing
radar countermeasure equipment with cognitive ability,
such as the behavioral learning for adaptive electronic
(BLADE) warfare program [4] based on dynamic coun-
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termeasure capability of adaptive communication threat,
and the adaptive radar countermeasures (ARC) program
[5] for countermeasureing new, unknown, and adaptive
radars. Other countries have also carried out related
research. However, few details have been published.
Traditional radar countermeasure equipment selects
waveform parameters based on a look-up table, and does
not have the ability to optimize waveforms. How to intel-
ligently optimize the radar countermeasure waveform in
response to complex, changeable, and unknown external
threats is a direction that is seldom involved in existing
research, but it is also a direction that cannot be ignored.
Judging from the literature in similar fields, we find that
intelligent optimization algorithms may be a solution.
The intelligent optimization algorithm is a modern algo-
rithm to solve similar optimization problems. Compared
with traditional optimization methods, the intelligent opti-
mization algorithm has strong universality and lower
requirements on target function and constraint conditions.
Compared with the exhaustive method, it has a faster
search speed. Therefore, it is feasible to solve the opti-
mization problem with strict time requirement in the field
of radar-to-radar countermeasure [6]. In the field of radar,
tasks scheduling of multi-functional phased array radar
and sub-array selection of distributed multi-input multi-
output radar system can be realized by using the intelli-
gent optimization algorithm [7—10]. In addition, [11] and
[12] used the intelligent optimization algorithm to solve
the problem of parameter optimization of missile-borne
sythetic apertune radar (SAR) system and waveform
design of cognitive radar in Stackelberg game respec-
tively. In the field of radar countermeasures, the intelli-
gent optimization algorithm is used in system resource
allocation, aircraft path planning, etc [13—17]. Literature
[18] also proposed an intelligent range gate pull-off strat-



SUN Jianwei et al.: Intelligent optimization methods of phase-modulation waveform 917

egy based on the intelligent optimization algorithm,
which achieves better effect. Jiang et al. transformed the
controllability of multiplephase sectionalized modulation
signal’s antagonistic effect into an optimization problem
of antagonistic effect, and a solution is proposed based on
the intelligent optimization algorithm [19-21].

An intelligent optimization model of radar counter-
measure waveform based on intelligent optimization
algorithm is proposed in this paper. The general idea is to
add the waveform optimization module to the traditional
radar countermeasure system. The module can establish a
virtual radar in the system content based on the received
radar signals, which can simulate the receiving process
of the opposite radar, and evaluate the effectiveness of
the countermeasure waveform synthesized by the current
parameters. At the same time, under the guidance of the
assessment result, using the intelligent optimization algo-
rithm to optimize the parameters of the waveform, en-
hanced combat performance is achieved. Based on this
model, GA and PSO are used to simulate the optimiza-
tion of intermittent sampling and phase modulation
repeater waveform, and some analysis and comparison
are made.

2. Phase-modulation waveform
2.1 Interrupted-sampling

Interrupted-sampling is a widely used sampling method
to solve the isolation problem of transceiver antennas. In-
terrupted-sampling repeater signals can generate multiple
symmetrically distributed false targets in the distant di-

rection [22]. Assume that the interrupted-sampling func-
tion is a rectangular envelope pulse train as shown in
Fig. 1. The interrupted-sampling function p(f) can be ex-
pressed as

+ oo

pt) = rect(%)@ Z 8(t—nT,) (1)
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where 7 is the sampling time and 7 is the sampling pe-
riod.
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Fig. 1 Interrupted-sampling pulse signals

If the external signal x(#) is sampled interruptedly, the
sampled signal x,(¢) can be expressed as

x,(1) = x(1) - p(2). (2)

2.2 Periodic repeater

Different effects can be produced by repeating the sam-
pled signal in different ways [23]. The common repeat-
ing methods include the direct repeater and the periodic
repeater. The periodic repeater means that sampled sig-
nals are transmitted several times after one sampling is
completed. Its working process is shown in Fig. 2. The
direct repeater can be regarded as a special case of the
periodic repeater, where the number of transmissions is 1.

Sampling| Transmit | Transmit | Transmit
1 1-1 1-2 1-3

Sampling| Transmit | Transmit | Transmit

2 2-1 2-2 2-3

Fig. 2 Schematic diagram of periodic repeater

Assume that the number of transmissions in a sam-
pling period is M. The transmitted signal x; () can be ex-
pressed as

x/ () =x O+ x(t -1+ +

M-1

X, (= (M= 1)7) = D x, (1= o). 3)

r=0
2.3 Phase modulation

By phase modulation of the sampled signal, the suppres-
sion effect along the distance direction can be formed
[24—28]. Pseudo-random sequences is a common modu-

lation signal, and its signal can be expressed as

P-1
u(t) = rect(%)@ ;‘ end(t—qT.) @)

where T, is the code width, P is the length of the pseudo-
random sequence, and c,, is the code value. For binary
pseudo-random sequences, the value of c,, is only +1.

Multiply x;'(¢) and u(t), the signal x;(#) modulated by a
pseudo-random sequence can be obtained, and its expres-
sion is

x;(1) = x; (1) - u(). ®)
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2.4 Output of the radar matched filter

According to [22], the result y,(#) of interrupted-sam-
pling direct repeater signal output by radar matched filter
is

i) = D 7o sine (anfoy (s, —nf) (6)
where f, is the sampling frequency, and y(7,¢) is the
ambiguity function of the radar signal. It is the same as
the output result of the radar signal whose Doppler fre-
quency shift is & through the radar matched filter. There-
fore, the output result of the interrupted-sampling direct
repeater signal after the radar matched filtering can be
regarded as the weighted synthesis of the matched filter-
ing output signal of the target echo with different Doppler

M-1 +oc0

frequency shift f, = nf;.

Reference [23] pointed out that the output of the perio-
dic repeater signal x; () through the radar matched filter
can be regarded as the delayed superposition of the out-
put of the direct repeater signal x;(#). Thus, the output
v () of the radar matched filter can be expressed as

M-1

i)=Y ye=ro). ()

r=0

The output of the interrupted-sampling direct repeater
signal phase-modulated by a binary pseudo-random se-
quence through the radar matched filter is given by [24].
Combine (7) and the output of the phase-modulation sig-
nal through the radar matched filter. The result is

y,(t)—zz ax(t-rr, nf)+Zb,,,X( re,—nf, - PZT) ®)

r=0 n=—

where

= % -sinc (nnf,t) - 6(f)
©
bnl =

1 .
-sinc (mn f,T) - sinc (%)

It can be seen that the output result of the interrupted-
sampling and phase-modulation repeater signal through
the radar matched filtering can be regarded as the time-
delay superposition of the equally spaced false targets
generated by the interrupted-sampling direct repeater sig-
nal and the dense false targets generated by the pseudo-
random sequence phase modulation generated around the
false target generated in the first item.

2.5 Suppression effect

Relevant reception and constant false alarm (CFAR) de-
tection are commonly used radar signal processing tech-
niques, which can improve the signal to noise ratio (SNR)
of the received signal and adaptively adjust the target
detection threshold [29—32]. Pseudo-random sequence
phase modulation waveform can produce dense false tar-
gets and achieve suppression effect. This paper measures
the suppression effect based on the CFAR threshold.
Since the energy of the target echo is basically concen-
trated in the detection unit where the target is located, the
threshold height is mainly determined by the phase modu-
lation signal in the average unit on both sides of the tar-
get. Under self-defense conditions, the delay time of the
phase modulation signal relative to the target echo signal
is the interrupted sampling time 7. Assume that the

l¢0

arrival time of the target echo is 0. The expressions of the
output signal x.,(#) of the target echo x,(f) and the out-
put signal x;,(f) of the phase-modulation signal ux;(#)
through the radar matched filter are respectively
Xepe(1) = X (D ® X" (1), (10)
Xipe(D) = x;(t—T) @ X" (—1). (11)
At this time, ¢ = 0 is the target location. Suppose the
radar signal bandwidth is B, then the width of each detec-
tion unit is 1/B. With ¢ = 0 as the center position of one
detection unit, the detection units are divided into two
sides respectively, and the average value of the phase
modulation signal power in the rth unit on the right is
recorded as Pj,.(r). Assume that the number of the single-
side protection units and the average units are N, and N,

respectively. The expression of the threshold Z of the
detection unit where the target is located is

_ —(N,+1) Ny+N,
Z_(Pfa A _1).[ Z Pjo(r) + Z Py (1) (12)

r=—(N,+N,) r=N;+1

where P;, is the false alarm probability.

Calculate the difference between the average threshold
of N detection units near the target and the target echo
pulse pressure peak value. This value can be used as a
parameter to measure the suppression effect. If it is taken
as the target function, the signal suppression effect can be
improved by increasing the target function. The expres-
sion of the target function is
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1
target = EN: [101gZ] - 201g[xepe(O)].  (13)

3. Optimization model

In the analysis in Section 2, we find that the target func-
tion is very complex. When the expression of the radar
signal is unknown, the target function cannot even get a
specific expression, so traditional optimization methods
can not be used. The exhaustive method is extremely time-
consuming when the feasible range is large, and it cannot
meet the real-time or quasi-real-time requirements in the
confrontation environment. Thus, a waveform optimi-
zation method based on the intelligent optimization algo-
rithm is proposed

Through analysis and research, it is found that many
intelligent optimization algorithms, such as GA [33] and
PSO [34-36], have a similar overall structure. Based on
this, an optimized model is established. The process of
the entire optimization model is as follows:

Pre-step Sample the radar signal. When the sam-
plingofaradarsignalcycleiscompleted,thewaveformoptimi-
zation starts. During the sampling period, the counter-
measure waveform is generated according to the preset
parameters.

Step 1 Generate a set of initial populations accord-
ing to the preset method. This method can be a combina-
tion of optimal parameters under a variety of conditions
obtained in advance, but it is better to maintain a uniform
distribution in the feasible region.

Step 2 Calculate the fitness function corresponding
to the initial population. The fitness function is generally
obtained by transforming the target function according to
the characteristics of the algorithm. If several algorithms
used in this article are the minimum value algorithms, the
fitness function can be

fitness = —target. (14)

Step 3 Update the population. Update the existing
population according to the population update method
of the algorithm used. If there is a better-quality individ-
ual in the new generation of population, the parameter
combination corresponding to the individual is used to re-
place the previous optimal parameter combination, and
to guide the generation of the subsequent countermea-
sure waveform.

Step 4 Terminate judgment. When the radar signal
changes, the algorithm falls into the local optimum or
other preset termination conditions, the current optimiza-
tion process is stopped and a new round of optimization
is started; otherwise Step 3 is repeated.

Externally, the optimization model has a certain degree

of intelligence, which can optimize the waveform accord-
ing to different external environments; internally, the
optimization model has a certain universality, that is, it
can meet different restrictions and desired effects by
changing the constraints of the feasible region and the
target function.

4. Simulation experiment
4.1 Optimization parameters

This section mainly conducts simulation experiments on
the optimization of the interrupted-sampling and phase-
modulation repeater waveform. The selected optimiza-
tion parameters include the code width of the pseudo-ran-
dom sequence, the sampling time of the interrupted sam-
pling, the number of periodic repeater, and the time when
the transmitted signal is ahead of the target’s echo. The
constraints set are shown in Table 1.

Table 1 Constraints on optimization parameters

us
Parameter Lower limit Upper limit Precision
Code width 0.1 4 0.1
Sampling time 1 10 0.5
Forwarding time 1 7 1
Lead time 0 10 0.5
Other constraints T. <047

4.2 Other parameters

The simulation experiment also needs to set the remain-
ing parameters, as shown in Table 2.

Table 2 Remaining parameter settings

Parameter Detailed parameter

Radar signal 1 LFM (1 MHz, 64 ps)

Radar signal 2 LFM (1 MHz, 128 ps)

Radar signal 3 LFM (8 MHz, 64 ps)

Radar signal 4 PCM (2 MHz, 127 x 0.5 ps)
Radar signal 5 NLFM (8 MHz, 64 ps)
o -3
False alarm probability 10
Protection unit 4
Average unit 16

Pseudo-random sequence M sequence (511-bit)

4.3 Optimization algorithm

Two typical algorithms, GA and PSO, are mainly used.
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And each algorithm is implemented by real number and
Gray code encoding respectively. The initialization and
termination conditions of all algorithms are the same. The
initial population is set to 20, which is generated in a ran-
dom way. And the initial population used in each optimi-
zation is the same. The termination condition is set to 100
iterations or the optimal fitness function does not change
for 20 consecutive iterations. The difference lies in how
the population is updated. Through the previous compa-
rison of the performance of a variety of operator combi-
nations through simulation experiments, the final selec-
tion of the algorithm is as follows:

(i) Real-coded GA

Selection: ternary stochastic tournament model.

Crossover: BLX hybrid crossover with a crossover
range coefficient of 0.25 and a crossover rate of 1.

Mutation: single-point Gaussian mutation with a muta-
tion rate of 0.1.

Retention: generation from all individuals after remov-
ing duplicate individuals.

(i1) Gray-coded GA

Selection: ternary stochastic tournament model.

Crossover: single-point crossover, two-point crossover,
and random crossover with probabilities of 0.1, 0.2, and
0.7 respectively. And the crossover rate is 1.

Mutation: two-point mutation with a 0.2 mutation rate.

Retention: generation from all individuals after remov-

ing duplicate individuals.

(iii) Real-coded PSO

Velocity update: adaptive speed update strategy, in
which chaotic decreasing inertia weight strategy based on
population success rate and learning factor based on iner-
tia weight adjustment are adopted.

Position update: produced by adding the current posi-
tion to the current velocity.

(iv) Gray-coded PSO

Velocity update: inertial weight strategy based on lin-
ear decline and velocity mapping based on Sigma func-
tion.

Position update: produced by adding the current posi-
tion to the current velocity.

4.4 Optimization result

Four algorithms are used to optimize the phase modula-
tion waveform under five signal conditions from 1 to 5,
and 100 repeated experiments are performed under each
condition. Reorder the obtained experimental data
according to the numerical order, and then plot them, as
shown in Fig. 3 — Fig. 7. Different colored curves repre-
sent the results of different algorithms, and “*” on each
curve represents the average value of the data on the
curve. Table 3 shows the optimal value of the initial pop-
ulation under each condition and the global optimal value
calculated by the exhaustive method.
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From the number of iterations, the real-coded PSO

requires the smallest number of iterations when it reaches

dB
Signal Initial optimal Global optimal
Signal 1 5.83 8.54
Signal 2 5.12 7.04
Signal 3 2.94 7.00
Signal 4 —2.83 2.76
Signal 5 4.59 7.06

the termination condition. The real-coded GA is slightly
higher than the others, but it is not much different from
the two algorithms of gray code encoding. The average
number of iterations of the four algorithms under differ-
ent conditions is less than 40, which is about 1.3% of the
feasible solutions. The required target function calcula-

From the optimization results, all the four algorithms
can optimize the waveform on the basis of the initial popu-
lation. They all get the global optimal, but they do not get
the global optimal in every experiment. Consider the opti-
mization results under five conditions. Although the GA
and PSO encoded by gray code may not perform the best
under every condition, their overall performance is rela-
tively stable.

tion is much smaller than the exhaustive method.

The distribution of running time is basically the same
as the distribution of the number of iterations. It can be
seen that the main time consumption lies in the calcula-
tion of the target function. At the same time, the running
time varies greatly under different signal conditions,
which indicates that the calculation amount of the target
function set in this paper is greatly affected by the signal
characteristics.
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5. Conclusions

This paper proposes an intelligent optimization model for
radar countermeasure waveforms based on intelligent
optimization algorithms. Four algorithms are used to opti-
mize the intermittent sampling and phase modulation
repeater waveform, and the performance of different al-
gorithms under different signal conditions is explored.
The experimental results show that the optimization mo-
del achieves the optimization of radar countermeasure
waveforms under different parameters and different styles
of radar signal conditions, and improves the countermea-
sure effect. The feasibility of the scheme is verified pre-
liminarily.

The experimental results also illustrate some existing
problems, such as the excessive calculation of the target
function under some conditions, and the unstable per-
formance of the algorithm under different conditions.
These problems need to be improved in the follow-up
study and research.

References

[1T YAO Y, ZHAO J H, WU L N. Waveform optimization for
target estimation by cognitive radar with multiple antennas.
Sensors, 2018, 18(6): 1743.

[2] WEI Z H, LIU Z, PENG B, et al. ECCM scheme against
interrupted sampling repeater jammer based on parameter-
adjusted waveform design. Sensors, 2018, 18(4): 1141.

[3] ZHAO Z X, YUAN J L, LI M X. Research on adaptive
waveform optimization design of anti-jamming radar. Jour-
nal of Physics: Conference Series, 2020, 1650(2): 022111.

[4] Defense Advanced Research Projects Agency. Behavioral
learning for adaptive electronic warfare (BLADE) program
homepage. http://www.darpa.mil.

[5] Defense Advanced Research Projects Agency. Adaptive
radar countermeasures (ARC) program homepage. http://
www.darpa.mil.

[6] WANG S F, BAO Y F, LI Y. The architecture and technol-
ogy of cognitive electronic warfare. Scientia Sinica Informa-
tions, 2018, 48(12): 1603-1613, 1709. (in Chinese)

[71] ZHANG H W, XIE J W, LU W L, et al. A scheduling me-
thod based on a hybrid genetic particle swarm algorithm for
multifunction phased array radar. Frontiers of Information
Technology and Electronic Engineering, 2017, 18(11):
1806-1816.

[8] WANG Y K, ZHENG S Y. Research on radar task schedul-
ing with power constraint. The Journal of Engineering, 2019,
2019(19): 5990-5993.

[9] ZHANG H W, XIE J] W, GE J A, et al. Finite sensor selec-

tion algorithm in distributed MIMO radar for joint target

tracking and detection. Journal of Systems Engineering and

Electronics, 2020, 31(2): 290-302.

XUE H, ZHANG T, WANG R, et al. Application of intelli-

gent optimization technology in radar system. Modern Radar,

2020, 42(2): 1-6. (in Chinese)

GUO Y, SUO ZY, WANG T T, et al. Parameter optimization

design method of missile-borne SAR system. Systems Engine-

ering and Electronics, 2020, 42(7): 1478-1483. (in Chinese)

[10]

(1]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

(24]

(25]

[26]

[27]

Journal of Systems Engineering and Electronics Vol. 33, No. 4, August 2022

LI K, JIU B, LIU H W, et al. Waveform design for cognitive
radar in presence of jammer using Stackelberg game. The
Journal of Engineering, 2019, 2019(21): 7581-7584.

JIANG H Q, ZHANG Y R, XU H Y. Optimal allocation of
cooperative jamming resource based on hybrid quantum-
behaved particle swarm optimisation and genetic algorithm.
IET Radar Sonar & Navigation, 2017, 11(1): 185-192.
ZHANG L, SHI G Q, GENG X T. Blanket jamming targets
assignment based on adaptive genetic algorithm. Proc. of the
IEEE International Conference on Cybernetics and Intelli-
gent Systems, 2019: 171-175.

LUO Z Y, DENG M, YAO Z Q, et al. Distributed blanket
jamming resource scheduling for satellite navigation based
on particle swarm optimization and genetic algorithm. Proc.
of the IEEE 20th International Conference on Communica-
tion Technology, 2020: 611-616.

SHIN J J, BANG H. UAV path planning under dynamic
threats using an improved PSO algorithm. International Jour-
nal of Aerospace Engineering, 2020, 2020(10): 1-17.

QI F, HONG C S, GAO R Z. Path planning of stand-off jam-
ming electronic warfare aircraft. Proc. of the 39th Chinese
Control Conference, 2020: 6917-6922.

JIA R, ZHANG T X, WANG Y H, et al. An intelligent range
gate pull-off (RGPO) jamming method. Proc. of the Interna-
tional Conference on UK-China Emerging Technologies,
2020. DOI: 10.1109/UCET51115.2020.9205386.

JIANG J W, WANG HY, WU Y H, et al. Intermittent samp-
ling repeater jamming based on multiple phases sectional-
ized modulation. Systems Engineering and Electronics, 2019,
41(7): 1450-1458. (in Chinese)

JIANGJ W, WU Y H, WANG H Y, et al. Optimization algo-
rithm for multiple phases sectionalized modulation jamming
based on particle swarm optimization. Electronics, 2019,
8(2): 160-185.

JIANG J] W, WANG H Y, WU Y H, et al. Optimization
method for multiple phases sectionalized modulation jam-
ming against linear frequency modulation radar based on a
genetic algorithm. IEEE Access, 2020, 8: 88777-88792.
WANG X S, LIU J C, ZHANG W M, et al. Mathematic prin-
ciples of interrupted-sampling repeater jamming (ISRJ). Sci-
ence in China Series F: Information Sciences, 2007, 50(1):
113-123.

LIU Z. Jamming technique for countering LFM pulse com-
pression radar based on digital radio frequency memory.
Changsha, China: National University of Defense Techno-
logy, 2006. (in Chinese)

TAI N, PAN Y J, ZHANG D P, et al. Quasi-coherent noise
jamming based on interrupted-sampling and pseudo-random
serials phase-modulation. Proc. of the Progress in Electro-
magnetics Research Symposium, 2014: 1001-1005.

SHI Q Z, WU S, HUANG J J, et al. A novel jamming me-
thod against LFM radar using pseudo-random code phase
modulation. Proc. of the IEEE International Conference on
Signal Processing, Communications and Computing, 2017.
DOI: 10.1109/ICSPCC2017.8242394.

SHI Q Z, TAI N, WANG C. On deception jamming for coun-
tering LFM radar based on periodic 0-t phase modulation.
International Journal of Electronics and Communications,
2018, 83(1): 245-252.

SHI Q Z, WANG C, HUANG J J, et al. Multiple targets
deception jamming against ISAR based on periodic 0-m phase
modulation. I[EEE Access, 2018, 6: 3539-3548.



SUN Jianwei et al.: Intelligent optimization methods of phase-modulation waveform

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

SHI Q Z, HUANG J J, XIE T, et al. An active jamming
method against ISAR based on periodic binary phase modu-
lation. IEEE Sensors Journal, 2019, 19(18): 7950-7960.
AITF,SUY H, KOU M X. Study on the influence of inter-
mittent phase modulation on the spectrum shift characteris-
tics of radar signals. IOP Conference Series Earth and Envi-
ronmental Science, 2020, 440: 052088.

WU Z L, XIONG X, YU G W, et al. The suppression inter-
ference threshold of multi-false target under cell average con-
stant false alarm rate detector. Electronic Information War-
fare Technology, 2018, 33(1): 49-53.

LIU X, LI D S. Analysis of cooperative jamming against
pulse compression radar based on CFAR. Journal on
Advances in Signal Processing, 2018, 2018(1): 69.

XIA X Y, HAO D L, YAN L, et al. Optimal waveform
design for smart jamming focused on CA-CFAR. Proc. of the
International Conference on Computer Network, Electronic
and Automation, 2017: 374-378.

KATOCH S, CHAUHAN S S, KUMAR V. A review on
genetic algorithm: past, present, and future. Multimedia
Tools and Applications, 2021, 80(5): 8091-8126.

JAIN N K, NANGIA U, JAIN J. A review of particle swarm
optimization. Journal of The Institution of Engineers (India):
Series B, 2018, 99(4): 407-411.

YANG B W, QIAN W Y. Summary on improved inertia
weight strategies for particle swarm optimization algorithm.
Journal of Bohai University (Natural Science Edition), 2019,
40(3): 274-288. (in Chinese)

FREITAS D, LOPES L G, MORGADO-DIAS F. Particle
swarm optimisation: a historical review up to the current
developments. Entropy, 2020, 22(3): 362-397.

Biographies

SUN Jianwei was born in 1997. He received his
B.S. degree from the National University of
Defense Technology, Changsha, China, in 2019,
where he is currently pursuing his M.S degree.
His research interests are radio frequency and mi-
crowave technology.

E-mail: 1195085653 @qq.com

923

WANG Chao was born in 1977. He received his
Ph.D. degree from the National University of
Defense Technology (NUDT), Changsha, in
2007. He is currently an associate professor with
NUDT. His research interest is electronic system
design.

E-mail: sywangc@163. com

SHI Qingzhan was born in 1990. He received his
M.S. and Ph.D. degrees from the National Univer-
sity of Defense Technology (NUDT), Changsha,
in 2015 and 2019, respectively. He is currently a
lecturer with the NUDT. His research interest is
signal processing.

E-mail: qingzhan1990@163.com

REN Wenbo was born in 1995. He received his
B.S. degree from the Southwest University of Sci-
ence and Technology, Sichuan, China, in 2018.
He is currently pursuing his M.S. degree in
National University of Defense Technology. His
research interests are microwave and millimeter-
wave technology.

E-mail: 464735596(@qq.com

YAO Zekun was born in 1998. He received his
B.S. degree from the National University of
Defense Technology, Changsha, China, in 2020,
where he is currently pursuing his M.S. degree.
His research interests are radio frequency and
microwave technology.

E-mail: 13177654355@163.com

YUAN Naichang was born in 1965. He received
his M.S. and Ph.D. degrees in electronic science
and technology from the University of Electronic
Science and Technology of China in 1991 and
1994, respectively. He is currently a professor
with National University of Defense Technology.
His research interests include signal processing
and electronic system design.

E-mail: yncwww(@qq.com



