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Abstract: The threat sequencing of multiple unmanned combat
air vehicles (UCAVs) is a multi-attribute decision-making (MADM)
problem.  In  the  threat  sequencing  process  of  multiple  UCAVs,
due  to  the  strong  confrontation  and  high  dynamics  of  the  air
combat environment, the weight coefficients of the threat indica-
tors  are  usually  time-varying.  Moreover,  the  air  combat  data  is
difficult  to  be  obtained  accurately.  In  this  study,  a  threat  se-
quencing  method  of  multiple  UCAVs  is  proposed  based  on
game theory by considering the incomplete information. Firstly, a
zero-sum  game  model  of  decision  maker  ( )  and  nature  ( )
with fuzzy payoffs is established to obtain the uncertain parame-
ters  which  are  the  weight  coefficient  parameters  of  the  threat
indicators and the interval parameters of the threat matrix. Then,
the  established  zero-sum  game  with  fuzzy  payoffs  is  trans-
formed into a zero-sum game with crisp payoffs (matrix game) to
solve.  Moreover,  a  decision  rule  is  addressed  for  the  threat
sequencing  problem  of  multiple  UCAVs  based  on  the  obtained
uncertain  parameters.  Finally,  numerical  simulation  results  are
presented to show the effectiveness of the proposed approach.
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theory, incomplete information.

DOI: 10.23919/JSEE.2022.000095
 

1. Introduction
With  the  rapid  development  of  information  technology
and the gradual deepening of the world’s military revolu-
tion, the unmanned combat air vehicle (UCAV) has grad-
ually  become  an  important  entity  in  modern  air  combat
[1,2].  Compared with manned aircraft,  UCAV has many
combat  advantages,  such  as  flexible  use,  rapid  response,
low cost, and zero casualties [3]. Since multiple UCAVs
coordinated operations have greater offensive advantages,
they often participate  in  combat  as  a  swarm [4,5].  How-
ever, when the UCAVs are hired by the enemy, the large-

scale scattered UCAV targets will bring great challenges
to  our  attack  and  defense.  We  know  that  a  reasonable
threat sequencing of multiple UCAVs is a prerequisite for
the attack-defense decision-making problem. Therefore, it
is crucial to study an efficient threat sequencing approach
for multiple UCAVs.

In  fact,  the  threat  sequencing  problem  of  multiple
UCAVs  means  to  convert  several  threat  attribute  values
into the comprehensive ones, so as to sequence the threat
targets  based  on  the  comprehensive  threats  [6,7].  Essen-
tially, the threat sequencing of multiple UCAVs is a multi-
attribute  decision-making  (MADM)  problem.  However,
due to the high complexity and strong dynamics of the air
combat environment, it is difficult to obtain the complete
information  needed  for  threat  sequencing.  In  the  threat
sequencing  problem,  the  incomplete  information  is
mainly  manifested  in  two  aspects:  (i)  the  time-varying
weight  coefficients  of  different  threat  indicators;  (ii)  the
inaccurate air  combat data.  The incompleteness of infor-
mation  brings  great  challenges  to  the  threat  sequencing
problem, which is seldom considered in the existing liter-
ature  [8].  Therefore,  it  is  of  far-reaching  significance  to
develop  an  effective  method  for  the  threat  sequencing
problem  of  multiple  UCAVs  under  incomplete  informa-
tion conditions [9,10].

In  the  existing  literature,  the  methods  to  obtain  the
weights of an MADM problem can be classified into the
subjective  weighting  methods,  the  objective  weighting
methods, and the combined weighting methods. The sub-
jective  weighting  methods  have  a  long  history,  but  their
subjective randomness is greater. Commonly used subjec-
tive  weighting  methods  include  the  language  measure-
ment method [11],  the Delphi method [12],  and the ana-
lytic hierarchy process (AHP) [13]. The objective weight-
ing  methods  have  a  stronger  mathematical  theoretical
basis  than  the  subjective  weighting  methods,  and  their
calculation process is relatively complicated. However, as
entirely  data-based  approaches,  they  do  not  take  into
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account the perception of the decision maker. Commonly
used  objective  weighting  methods  include  the  entropy
method  [14],  the  dispersion  maximization  method  [15],
the  principal  component  analysis  method  [16],  and  the
multiple  targets  programming  method  [17].  Compared
with  the  previous  two methods,  the  combined weighting
method can both take into account the importance of the
decision maker’s perception and the numerical rules con-
tained  in  decision  data.  Essentially,  the  combination
weighting  method  is  the  fusion  of  multiple  individual
weights  obtained  by  different  subjective  and  objective
weightings [18]. Although many methods have been pro-
posed  to  determine  the  weights  of  an  MADM  problem
with  inaccurate  data,  their  strong  subjectivity  and  poor
flexibility  cannot  be  well  applied  to  the  actual  threat
sequencing of multiple UCAVs in the high dynamics and
strong confrontation environment.

Game theory is an effective mathematical tool to study
the strategic interaction of two or more decision makers.
Since  Von  Neumann  et  al.  [19]  started  the  study  of  the
game  theory,  it  has  been  applied  in  the  fields  of  eco-
nomics,  political  science,  international  relations,  engi-
neering, computer science, military, biological evolution,
etc  [20– 22].  In  [23],  a  matrix  game  model  was  estab-
lished  to  generate  maneuvering  decisions  for  low-flying
aircraft  during  one-on-one  air  combat  over  hilly  terrain.
The  maneuvering  decisions  were  made  by  comparing
scores  of  two  aircrafts ’  orientation,  range,  velocity,  and
terrain clearance. In [24], a two-person cooperative game
was  presented  to  achieve  user  cooperation  diversity  for
time division multiple access (TDMA) based commercial
cooperative communication networks. It  was proved that
the  game  is  indeed  a  two-person  bargaining  problem,
which had a unique Nash equilibrium solution. In [25], a
stochastic  differential  game  approach  was  proposed  to
model the duopolistic competition with sticky prices, and
its  feedback  Nash  equilibrium  was  analytically  derived.
In [26], a zero-sum game approach was proposed, which
was an innovative approach for MADM problems.
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In  this  study,  borrowing  the  idea  from  [26],  we  con-
struct a virtual person Nature ( ) to determine the uncer-
tain parameters (the weight coefficient parameters of the
threat indicators and the interval parameters of the threat
matrix),  which  acts  as  an  “intelligent  enemy ”  for  deci-
sion maker ( ).  This is based on the following conside-
ration: in a system with a lack of prior knowledge,  has
no knowledge of the uncertain parameters at all, so these
parameters are considered to be determined by . More-
over, the threat sequencing process is modeled as a zero-
sum game of  and ,  where  chooses  a  probability
distribution over the threat targets to maximize its payoff,

N D

D

and  chooses an uncertain parameter to minimize ’s
payoff. Nash equilibrium, a widely adopted solution con-
cept  in  the  game  theory,  is  used  to  represent  the  uncer-
tain parameters and the decisions of .

Note that in [26], it was assumed that the real values of
different  threat  indicators  are  determined  by  the  same
interval  parameter.  However,  in  air  combat,  these  threat
indicators  are  independent  of  each  other.  Moreover,  the
uncertainty  of  threat  data  comes  from  the  measurement
errors of the sensors, electronic countermeasures, electro-
magnetic  interference,  etc.  As  a  consequence,  the  inter-
val parameters of these threat indicators have no correla-
tion.  On  this  account,  we  assume  that  the  real  values  of
different  threat  indicators  are  determined  by  different
interval parameters, which is more in line with the actual
air combat. Then, the established zero-sum game is trans-
formed  into  a  matrix  game  to  solve.  Finally,  the  threat
sequencing result is given based on the solved Nash equi-
librium.

The main contributions of  this  study are  stated as  fol-
lows:

(i)  A  threat  sequencing  method  of  multiple  UCAVs
that  considers  incomplete  information  (the  time-varying
weight  coefficients  of  different  threat  indicators,  and the
inaccurate air combat data) is proposed.

D N

D
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D

(ii)  A  zero-sum game  model  of  and  with  fuzzy
payoffs is addressed for the threat sequencing problem of
multiple  UCAVs with incomplete  information,  where 
chooses  a  probability  distribution  over  the  threat  targets
to  maximize  its  threat,  and  chooses  the  incomplete
information parameters to minimize ’s threat.

(iii)  The  established  zero-sum  game  with  fuzzy  pay-
offs  is  solved  by  transforming  it  into  a  zero-sum  game
with  crisp  payoffs  (matrix  game).  Therefore,  the  threat
sequencing  result  of  multiple  UCAVs  is  obtained  under
incomplete information conditions.

The  following  sections  of  this  study  are  organized  as
follows:  In  Section  2,  the  threat  sequencing  problem  of
multiple UCAVs is first described, then some basic con-
cepts  of  interval  numbers  and  zero-sum  games  are
reviewed.  In  Section  3,  a  zero-sum  game  model  with
fuzzy  payoffs  is  established  for  our  threat  sequencing
problem,  and  a  solution  method  is  subsequently  pro-
posed  for  the  established  game.  In  Section  4,  the  effec-
tiveness of the proposed method is verified by numerical
simulations. Section 5 presents the conclusions. 

2. Problem formulation and preliminaries
 

2.1    Problem description

Consider  the  following  scenario:  suppose  that  in  the  air
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combat, the Red has m UCAVs denoted as R1, R2, ···, Rm ;
the Blue has n UCAVs denoted as B1, B2, ···, Bn. For the
Red, the threats of the Blue UCAVs can be characterized
by five threat indicators: angle threat, speed threat, height
threat,  distance  threat,  and  air  combat  capability  threat.
These  threat  indicators  can  be  calculated  by  the  appr-
oaches in [27–30], and the detailed expressions are omit-
ted here to simplify the related descriptions.

Bi

(i = 1,2, · · · ,n)
Bi = (b̃i1, b̃i2, · · · , b̃i5) b̃i j = [bL

i j,b
U
i j ]

Bi

n×5

In air combat, the threat data is usually in the form of
interval  numbers  due  to  the  measurement  errors  of  vari-
ous sensors,  electronic countermeasures,  electromagnetic
interference,  etc.  Therefore,  the  threat  of  UCAV 

 can  be  characterized  by  a  5-dimensional
vector: ,  where  is  an
interval  number,  representing  the  threat  degree  of ’s
jth  threat  indicator.  In  consequence,  an  interval  threat
matrix with  dimension [26] is obtained as follows :

B̃ =

B1

B2

...
Bn


b̃11 b̃12 · · · b̃15

b̃21 b̃22 · · · b̃25

...
...
. . .

...
b̃n1 b̃n2 · · · b̃n5

 . (1)

BL = (bL
i j)n×5 BU = (bU

i j )n×5Here, we denote , ,  which are
called the threat lower bound matrix and the threat upper
bound matrix, respectively.

B1,B2, · · · ,Bn

Bi

b̃i j

j λ j ( j = 1,2, · · · ,5)

We  consider  the  threat  sequencing  problem  of
 with  time-varying  weight  coefficients  of

different  threat  indicators  and  interval  threat  data.  The
real threat value of the jth attribute of  is considered to
be  a  value  in  interval .  As  discussed  above,  the  real
values of different threat indicators are determined by dif-
ferent  interval  parameters.  If  we  denote  the  interval
parameter  of  attribute  as  ,  then  the
threat matrix has the following form:

Bλ = (bλ j

i j )n×5 =

B1

B2

...
Bn


λ1bL

11+ (1−λ1)bU
11 λ2bL

12+ (1−λ2)bU
12 · · · λ5bL

15+ (1−λ5)bU
15

λ1bL
21+ (1−λ1)bU

21 λ2bL
22+ (1−λ2)bU

22 · · · λ5bL
25+ (1−λ5)bU

25
...

...
. . .

...
λ1bL

n1+ (1−λ1)bU
n1 λ2bL

n2+ (1−λ2)bU
n2 · · · λ5bL

n5+ (1−λ5)bU
n5

 (2)

λ = (λ1,λ2, · · · ,λ5) λ j ∈ [0,1] ( j = 1,2, · · · ,5)where ,  .
B1,

B2, · · · ,Bn

ω λ

Our  goal  is  to  give  the  threat  sequencing  of 
 by  obtaining  the  time-varying  weight  coeffi-

cient  parameter  and  the  interval  parameter  of  the
threat matrix.

c̃ = [cL,cU] d̃ = [dL,dU]
g

m

To facilitate the following discussion, we first give the
operation  rules  of  interval  numbers.  If  we  denote

 and  as two interval numbers, and
 is  a  function,  then  the  four  arithmetic,  the  measure

operator ,  and the function operations of interval num-
bers [31,32] are given as follows:

c̃+ d̃ =
[
cL+dL,cU +dU

]
, (3)

c̃− d̃ =
[
cL−dU ,cU −dL

]
, (4)

c̃ · d̃ = [min{cLdL,cLdU ,cUdL,cUdU},
max{cLdL,cLdU ,cUdL,cUdU}], (5)

c̃
d̃
=

[
min
{

cL

dL
,

cL

dU
,
cU

dL
,

cU

dU

}
,

max
{

cL

dL
,

cL

dU
,
cU

dL
,

cU

dU

}]
, (6)

m(c̃, d̃) =
√

(cL−dL)2+ (cU −dU)2, (7)

g(c̃) =
[
min{g(cL),g(cU)},max{g(cL),g(cU)}

]
. (8)

 

2.2    Review  of  basic  concepts  and  theories  of  two-
person zero-sum games

In  this  part,  the  basic  concepts  of  two-person  zero-sum
games  are  introduced,  then  the  solution  algorithm  and
some properties of zero-sum games are reviewed [33,34].

D N
n×q

As a class of non-cooperative games, two-person zero-
sum games (also called matrix games) are widely used in
various  decision-making  scenarios  [35].  Usually,  a  two-
person zero-sum game of  and  [33] can be expressed
by a  matrix:

B =


b11 b12 · · · b1q

b21 b22 · · · b2q

...
...
. . .

...
bn1 bn2 · · · bnq

 (9)

bik (i = 1,2, · · · ,n; k = 1,2, · · · ,q) D
D N

N −bik

where   is ’s payoff
when  chooses  its ith  pure  strategy  and  choose  its
kth pure strategy, and ’s payoff is  under the same
strategies choice.

γ = (γ1,γ2, · · · ,γn) ∈ Rn

D
n∑

i=1

γi = 1 γi ⩾ 0

(i = 1,2, · · · ,n) π = (π1,π2, · · · ,

In  a  two-person  zero-sum  game,  the  players  usually
choose  their  strategies  not  deterministically,  but  in  the
form  of  the  probability  distribution  (called  mixed  stra-
tegy). Formally, a vector  is called

as a mixed strategy of ,  if  it  satisfies , 

.  Similarly,  a vector 
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πq) ∈ Rq N
q∑

k=1

πk = 1 πk ⩾ 0 (k = 1,2, · · · ,q)

 is  defined  as  a  mixed strategy  of ,  if  it  satis-

fies ,  .

D γ
π

The expected payoff of  under the mixed strategies 
and  [33] is defined by

U ′(γ,π) ≜ γBπT =

n∑
i=1

q∑
k=1

γibikπk, (10)

N −U ′(γ,π)

[γ∗,π∗]

D
γ N π

and the expected payoff of  is defined as . In
the  game  theory,  Nash  equilibrium  is  a  widely  adopted
solution  concept.  Formally,  a  strategy  vector  is
called a Nash equilibrium of the matrix game in (9), if the
following  inequalities  hold  for  each ’s mixed  strategy

, and each ’s mixed strategy :

U ′(γ,π∗) ⩽ U ′(γ∗,π∗) ⩽ U ′(γ∗,π).

It  is  well  known  that  the  matrix  game  in  (9)  can  be
solved by solving a pair of dual linear programming, and
this fact is given by the following lemma:

B γ̄ = (γ̄1, γ̄2, · · · , γ̄n)
π̄ = (π̄1, π̄2, · · · , π̄q)

(γ∗,π∗)

v =

 n∑
i=1

γ̄i

−1

γ∗ = vγ̄ π∗ = vπ̄

Lemma 1 [34]  　Assume that  the elements  of  matrix
 are  positive  in  matrix  game  (9),  if 

and  are  the  optimal  solutions  of  the
dual linear programming (11) and (12), respectively, then

 is  a  Nash equilibrium of  the matrix game in (9),

where , , .

min
n∑

i=1

γi

s.t.


n∑

i=1

γibik ⩾ 1, k = 1,2, · · · ,q

γi ⩾ 0, i = 1,2, · · · ,n
(11)

max
q∑

k=1

πk

s.t.


q∑

k=1

πkbik ⩽ 1, i = 1,2, · · · ,n

πk ⩾ 0, k = 1,2, · · · ,q
(12)

B

B
B̂

B B̂

Remark  1 　The  above  lemma  requires  that  the  ele-
ments  of  the  payoff  matrix  are  positive.  If  there  is  a
non-positive situation, we can add an enough large posi-
tive constant for each element of  to guarantee the ele-
ments of the newly obtained matrix  positive. Then, the
Nash equilibria of  and  is exactly the same [36]. 

3. Threat sequencing of multiple UCAVs
In  this  section,  a  threat  sequencing  method  is  proposed
for  the  threat  sequencing  problem  of  multiple  UCAVs
with  incomplete  information.  First,  a  zero-sum  game

D Nmodel  of  and  with  fuzzy  payoffs  is  established  to
obtain the weight coefficient parameters of different indi-
cators  and  the  interval  parameters  of  the  threat  matrix.
Then, the established zero-sum game with fuzzy payoffs
is  transformed  into  a  zero-game  with  crisp  payoffs  (the
matrix  game)  to  solve.  Finally,  a  decision  rule  for  the
threat sequencing of multiple UCAVs is given. 

3.1    Zero-sum game model with fuzzy payoffs

N
D N

D
ω
λ D

N

B1,B2, · · · ,Bn

In  the  threat  sequencing  problem  of  multiple  UCAVs
with time-varying weight coefficient parameters of diffe-
rent threat indicators and interval parameters of the threat
matrix,  we  introduce  a  virtual  person: ,  which  is
regarded as an “intelligent enemy” of . The goal of 
is to minimize ’s threat by selecting the weight coeffi-
cient  parameter  of  different  threat  indicators,  and  the
interval  parameter  of  the  threat  matrix.  Since  is
uncertain about what parameters  will choose, one will
choose  a  probability  distribution  over  the  UCAVs

 to maximize the threat.

G = ⟨D,N ,Γ,Ω×Λ, B̃,U⟩
On  the  basis  of  [26],  we  establish  a  zero-sum  game

 for the threat sequencing prob-
lem of multiple UCAVs, where

D
γ

B1,B2, · · · ,Bn

(i)  is  the  maximizing  player.  It  chooses  a  probabi-
lity  distribution  over  the  set  of  its  threat  targets

 to maximize its payoff.
N

ω
λ D

(ii)  is  the minimizing player.  It  chooses the weight
coefficient parameter  of different threat indicators and
interval parameter  of the threat matrix to minimize ’s
payoff.

Γ D
B1,B2, · · · ,Bn Γ

(iii)  is the strategy set of . It is the set of all proba-
bility distributions over its threat targets . 
can be written as follows:

Γ ≜

γ ∈ Rn|
n∑

i=1

γi = 1,0 ⩽ γi ⩽ 1

 (13)

Ω×Λ N Ω×Λ
ω j = 0 λ j = 0

(iv)  is the strategy set of . It is a set of 
with the restriction: if , then , where

Ω =

ω ∈ R5 |ω j ⩾ 0,
n∑

j=1

ω j = 1


is the set of all weight coefficients of the five threat indi-
cators, and

Λ =
{
λ = (λ1,λ2, · · · ,λ5) |0 ⩽ λ j ⩽ 1

}
B̃

is  the  set  of  all  possible  interval  parameters  of  threat
matrix .

B̃ D
B̃
(v)  is the interval payoff matrix of . The elements

of  are all interval numbers, as expressed in (1).
U D D

γ ∈ Γ N
(vi)  is the expected payoff function of . When 

chooses  a  strategy ,  and  chooses  a  strategy
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(ω,λ) ∈ Ω×Λ U(γ,ω,λ) D,  the  expected  payoff  of  is
defined as

U(γ,ω,λ) = γBλωT =

n∑
i=1

5∑
j=1

γib
λ j

i jω j =

n∑
i=1

5∑
j=1

γi[λ jbL
i j+ (1−λ j)bU

i j ]ω j (14)

Bλ

λ B̃
N D

N (γ,ω,λ)
−U(γ,ω,λ)

where  is  the  crisp  payoff  matrix  determined  by  the
parameter  and the  interval  payoff  matrix ,  as  shown
in  (2).  Since  is  the  “intelligent  enemy ”  of ,  the
expected  payoff  of  under  strategy  vector  is
defined as .

D
N D

Remark 2　The goal  of  is  to  maximize  its  threat,
and  the  goal  of  is  to  minimize ’s threat,  so  the
“threat” is treated as the “payoff” in the game model.

N
Ω×Λ ω j = 0
λ j = 0

ω j = 0 N j
j

ω j = 0 λ j = 0

Remark  3　The  strategy  set  of  is  not  defined  as
,  but  we  impose  a  restriction  on  it:  if ,  then
. This is for the convenience of proving the conclu-

sion later. In fact, this restriction is reasonable, because if
,  then  thinks  that  the  index  has  no  value,  so

there is no need to materialize the data of index . There-
fore,  when ,  setting  has  no  effect  on  the
threat sequencing problem.

D

D N
(γ∗,ω∗,λ∗)

G
U(γ∗,ω∗,λ∗) ⩾ U(γ∗,ω∗,λ∗)

D
U(γ∗,ω∗,λ∗)

(ω∗,λ∗)

Remark 4　In this paper, Nash equilibrium is used as
the uncertainty parameters and the decision of . In fact,
for  the  considered  threat  sequencing  problem,  the  Nash
equilibrium solution is optimal for both  and , which
can be illustrated as follows: if  is a Nash equi-
librium  of  the  game ,  by  definition,  one  can  have

.  In  other  words,  this
approach can ensure that the payoff of  is not less than

,  regardless  of  whether  the  uncertainty
parameter is  or not.

G
N

ω λ

G G′

The  zero-sum  game  established  above  is  special,
where the energy strategy of  consists  of two parame-
ters,  and . Therefore, it cannot be solved by the tradi-
tional zero-sum game solving algorithm. In the following
subsection,  is  transformed  into  a  matrix  game  to
solve. 

3.2    Model transformation and solution

G′

G
G G′ G

G′

In  this  subsection,  the  matrix  game  is  constructed
based on , and the relationship between the Nash equi-
libria of  and  is established. Thus,  can be solved
by solving .

G′ = ⟨D,N ,Γ,Π, B̄,U ′⟩ G
In  the  following,  we  construct  a  matrix  game

 based on , where
D G(i)  is the maximizing player, as defined in .
N G(ii)  is the minimizing player, as defined in .
Γ D D(iii)  is  the  strategy  set  of .  It  is  the  same as ’s

Gstrategy set defined in , as shown in (13).
Π N(iv)  is the strategy set of . It is a set of probability

distributions, given as follows:

Π ≜

π ∈ R10|0 ⩽ πk ⩽ 1,
10∑

k=1

πk = 1

 . (15)

B̄ D n×10
BL BU

(v)  is the payoff matrix of . It is an  matrix
composed of  and , which has the following form:

B̄ ≜


bL

11 bL
12 · · · bL

15 bU
11 bU

12 · · · bU
15

bL
21 bL

22 · · · bL
25 bU

21 bU
22 · · · bU

25
...

...
. . .

...
...

...
. . .

...
bL

n1 bL
n2 · · · bL

n5 bU
n1 bU

n2 · · · bU
n5

 . (16)

U ′ D
D (γ,π)

(vi)  is the expected payoff function of . The pay-
off of  under the strategy vector  is given by

U ′(γ,π) = γB̄πT =

n∑
i=1

5∑
j=1

γibL
i jπ j+

n∑
i=1

5∑
j=1

γibU
i jπ j+5, (17)

N (γ,π) −U ′(γ,π)and the payoff of  under  is defined as .
G′

G G′

G G′

Obviously,  can  be  solved  by  the  traditional  zero-
sum  game  solving  algorithm.  In  the  following,  the  rela-
tionship  between  the  Nash  equilibria  of  and  is
established, so as to solve  by solving .

f Ω×Λ ΠFirstly,  we  define  a  mapping  from  to  as
follows:

f (ω,λ) ≜ (λ1ω1,λ2ω2, · · · ,λ5ω5,

(1−λ1)ω1, (1−λ2)ω2, · · · , (1−λ5)ω5) (18)

(ω,λ) ∈ Ω×Λ, ω = (ω1,ω2, · · · ,ω5) , λ = (λ1,λ2, · · · ,
λ5)
where   

.
D G G′

f
The  payoffs  of  in  and  are  equal  under  the

action of mapping , which is summarized as the follow-
ing theorem:

f
f Ω×Λ

Π

Theorem 1　Consider the mapping  defined in (18),
then we have that  is a one-to-one mapping from 
to , and the following equations hold:

U(γ,ω,λ) = U ′(γ, f (ω,λ)), (19)

U ′(γ,π) = U(γ, f −1(π)). (20)

f
Ω×Λ Π

Proof　We first prove that  is a one-to-one mapping
from  to , then we prove that (19) and (20) hold.

f
Step 1　We prove the first conclusion by showing that

 is both injective and surjective.
f f (ωa,λa) = f (ωb,λb)

(ωa,λa) = (ωb,λb) f
(i)  is  injective.  If  there  is ,  we

prove  that .  From  the  definition  of ,
we obtain

f (ωa,λa) = (λa
1ω

a
1,λ

a
2ω

a
2, · · · ,λa

5ω
a
5,

(1−λa
1)ωa

1, (1−λa
2)ωa

2, · · · , (1−λa
5)ωa

5),
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f (ωb,λb) = (λb
1ω

b
1,λ

b
2ω

b
2, · · · ,λb

5ω
b
5,

(1−λb
1)ωb

1, (1−λb
2)ωb

2, · · · , (1−λb
5)ωb

5).

f (ωa,λa) = f (ωb,λb)Since , we have

λa
jω

a
j = λ

b
jω

b
j , (21)

(1−λa
j)ω

a
j = (1−λb

j)ω
b
j . (22)

ωa
j = ω

b
j ( j = 1,

2, · · · ,5) ωa
j = ω

b
j = 0 Ω×Λ

λa
j = λ

b
j = 0 ωa

j = ω
b
j , 0

λa
j = λ

b
j (ωa,λa) =

(ωb,λb)

From  (21)  and  (22),  it  holds  that  
.  If ,  by  the  definition  of ,  one

can  have ;  if ,  according  to  (21),
there  is .  Therefore,  it  is  proved  that 

.
f π̂ = (π̂1, π̂2, · · · , π̂10) ∈ Π

(ω̂, λ̂) ∈ Ω×Λ f (ω̂, λ̂) = π̂
ω̂ = (ω̂1, ω̂2, · · · , ω̂5) λ̂ = (λ̂1, λ̂2, · · · , λ̂5)

(ii)  is surjective. For , we find
,  such  that .  We  construct

, and  as follows:

ω̂ j ≜ π̂ j+ π̂ j+5, (23)

λ̂ j ≜


0, π̂ j+ π̂ j+5 = 0

π̂ j

π̂ j+ π̂ j+5
, π̂ j+ π̂ j+5 , 0

, (24)

(ω̂, λ̂) ∈ Ω×Λ
f

and it  is  easy to know that .  By the defini-
tion of , we have

f (ω̂, λ̂) = (λ̂1ω̂1, λ̂2ω̂2, · · · , λ̂5ω̂5,

(1− λ̂1)ω̂1, (1− λ̂2)ω̂2, · · · , (1− λ̂5)ω̂5). (25)

ω̂ j = π̂ j+ π̂ j+5 = 0 π̂ j ⩾ 0 π̂ j+5 ⩾ 0
π̂ j = π̂ j+5 = 0 λ̂ jω̂ j = 0 = π̂ j (1− λ̂ j)ω̂ j = 0 = π̂ j+5

ω̂ j = π̂ j+ π̂ j+5 , 0 λ̂ jω̂ j = π̂ j (1− λ̂ j)ω̂ j = π̂ j+5

f (ω̂, λ̂) = π̂

If ,  since , ,  we  have
, thereby , ;

if , , .  As  a
result, we obtain .

D
(γ,ω,λ)

Step 2　According to (14), the payoff of  under the
strategy vector  is

U(γ,ω,λ) =
n∑

i=1

5∑
j=1

γi

[
λ jbL

i j+ (1−λ j)bU
i j

]
ω j. (26)

D
[γ, f (ω,λ)]

By  (17),  the  payoff  of  under  the  strategy  vector
 is

U ′(γ, f (ω,λ)) = γB̄ f (ω,λ)T =
n∑

i=1

5∑
j=1

γibL
i jλ jω j+

n∑
i=1

5∑
j=1

γibU
i j (1−λ j)ω j. (27)

It  is  obvious that  (26) is  equal  to (27),  thereby (19) is
proved. In addition, one can have

U(γ, f −1(π)) = U ′(γ, f ( f −1(π))) = U ′(γ,π) (28)

□which proves that (20) holds. 　　　　　　　　　 

f −1 Π→Ω×Λ f
From the proof process of Theorem 1, we can give the

inverse mapping :  of  as follows:

f −1(π) ≜ (ω,λ) (29)

where

ω j = π j+π j+5, (30)

λ j =


0, π j+π j+5 = 0

π j

π j+π j+5
, π j+π j+5 , 0

. (31)

G G′The relationship of the Nash equilibria in  and  is
established by the following theorem:

(γ∗,ω∗,λ∗) G
(γ∗, f (ω∗,λ∗)) G′

(γ∗,π∗) G′

(γ∗, f −1(π∗)) G

Theorem 2　If  is a Nash equilibrium of ,
then  is  a  Nash  equilibrium  of ;  con-
versely,  if  is  a  Nash  equilibrium  of ,  then

 is a Nash equilibrium of .
(γ∗,ω∗,λ∗) GProof　 If  is  a  Nash  equilibrium  of ,  it

holds that

U(γ∗,ω∗,λ∗) ⩾ U(γ,ω∗,λ∗),

U(γ∗,ω∗,λ∗) ⩽ U(γ∗,ω,λ).

Invoking Theorem 1, we obtain
U ′(γ∗, f (ω∗,λ∗)) = U(γ∗,ω∗,λ∗) ⩾

U(γ,ω∗,λ∗) = U ′(γ, f (ω∗,λ∗)),

U ′(γ∗, f (ω∗,λ∗)) = U(γ∗,ω∗,λ∗) ⩽
U(γ∗, f −1(π)) = U ′(γ∗, f ( f −1(π))) = U ′(γ∗,π).

In other words, one has

U ′(γ∗, f (ω∗,λ∗)) ⩾ U ′(γ, f (ω∗,λ∗)),

U ′(γ∗, f (ω∗,λ∗)) ⩽ U ′(γ∗,π).

(γ∗, f (ω∗,λ∗))
G′

Thus,  we proved that  is  a Nash equilib-
rium of .

(γ∗,π∗) G′On the contrary, if  is a Nash equilibrium of ,
there is

U ′(γ∗,π∗) ⩾ U ′(γ,π∗),

U ′(γ∗,π∗) ⩽ U ′(γ∗,π).

Applying Theorem 1, we have

U(γ∗, f −1(π∗)) = U ′(γ∗,π∗) ⩾ U ′(γ,π∗) = U(γ, f −1(π∗)),
U(γ∗, f −1(π∗)) = U ′(γ∗,π∗) ⩽ U ′(γ∗, f (ω,λ) = U(γ∗,ω,λ).

Thus, one can have

U(γ∗, f −1(π∗)) ⩾ U(γ, f −1(π∗)),

U(γ∗, f −1(π∗)) ⩽ U(γ∗,ω,λ).

(γ∗, f −1(π∗))
G □

Namely, we proved that  is a Nash equilib-
rium of . 　　　　　　　　　　　　　　　　　   

ω∗

λ∗

In the above discussion, the weight coefficient parame-
ters  of different threat indicators and interval parame-
ters  of  the threat  matrix are calculated by solving the
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established game model. In the following, a decision rule
is  given  for  the  threat  sequencing  problem  of  multiple
UCAVs based on the calculated parameters. 

3.3    Decision rule

In  this  subsection,  a  decision  rule  is  presented  for  the
threat sequencing of multiple UCAVs.

(γ∗,ω∗,λ∗) G
γ∗ = (γ∗1,γ

∗
2, · · · ,γ∗n) ω∗ = (ω∗1,ω

∗
2, · · · ,ω∗5) λ∗ =

(λ∗1,λ
∗
2 · · · ,λ∗5) T (Bi) Bi

Given  that  is  a  Nash  equilibrium  of ,
where , , 

,  the  threat  degree  of  target  [26]
can be defined as

T (Bi) ≜ γ∗i
5∑

j=1

ω∗jb
λ∗j
i j =

γ∗i

5∑
j=1

ω∗j
[
λ∗jb

L
i j+ (1−λ∗j)bU

i j

]
(32)

b
λ∗j
i j Bλ∗where  is an element of , as defined in (2).

Bi

Bi D N
Remark 5　The threat of  is defined as the expected

threat  of  when  and  choose  their  Nash  equilib-
rium strategies, respectively.

T (Bi)
Bi

Based on the threat degree equation, all threat degrees
of the threat targets can be obtained. It is obvious that the
higher  the  threat  degree ,  the  greater  the  threat  of

.  As  a  consequence,  the  threat  sequencing  result  is
given according to the threat degrees of these targets.

B1,B1, · · · ,Bn

The  flowchart  of  the  proposed  threat  sequencing
method  is  shown  in Fig.  1,  and  the  procedure  of  threat
sequencing  for  air  targets  is  given  as  fol-
lows:

B̃
Step 1　Based on the interval air combat data obtained

by various sensors, calculate the interval threat matrix 
in (1) according to the threat indicator calculation formu-
las in [27–29].

B̄
B̃

Step  2　Construct  the  matrix  based  on  the  threat
matrix , as shown in (16).

(γ∗,π∗) G′Step 3　Calculate the Nash equilibrium  of 
by Lemma 1.

(γ∗,ω∗,λ∗) G
Step  4　According  to  Theorem  2,  the  Nash  equilib-

rium  of  is given as follows:

(γ∗,ω∗,λ∗) = (γ∗, f −1(π∗))

f −1where  is given in (29)–(31). Thus the weight coeffi-

ω∗ λ∗cient  parameter  and  the  interval  parameter  are
obtained.

T (Bi)
Bi (i = 1,2, · · · ,n)

B1,B2, · · · ,Bn

Step 5　Calculate the threat  degrees  of  UCAV
  according to (32). In consequence, the

threat  sequencing  result  of  is  obtained
according to the threat degrees of these targets.
 
 

Invoke Lemma 1,

calculate nash

equlibrium (γ*, π*) of G′

Start

Interval air combat data

Interval threat matrix B

is obtained by threat assessment

According to Theorem 2, the Nash

equilibrium of G are calculated as

(γ*, ω*, λ*)

Weight coefficient parameter ω*

interval parameters λ*

According to (32), threat degrees of

threat targets are calulated as

T(B1), T(B2), ···, T(Bn)

The threat sequencing result is given

according to the calculated threat

degrees of different targets

End

Zero-sum game model of 
and  is modeled as

G′=<, , Γ, Ω×Λ, B, U>

Construct zero-sum game:

G′=<, , Γ, Π, B, U′>

Fig. 1    Flowchart of threat sequencing of multiple UCAVs 

4. Numerical  simulations  and  comparison
analyses

In  this  section,  an  example  of  one-to-four  UCAVs  air
combat is given to illustrate the proposed method. More-
over,  comparative  analyses  are  conducted  to  show  the
effectiveness of the proposed method. 

4.1    An example of threat sequencing

R0

B1,B2,B3,B4

Suppose  that  for  our  UCAV ,  there  are  four  enemy
UCAVs,  denoted  as ,  and  their  parameter
values are presented in Table 1.

 

Bi R0Table 1    Parameters of   and 

Symbol Description B1 B2 B3 B4 R0

pix /km X  coordinate of position [−14,−12] [21,23] [−17,−15] [17,19] 0

piy /km Y  coordinate of position [21,24] [−17,−14] [16,19] [−15,−12] 0

piz /km Z  coordinate of position [12,14] [21,23] [−4,−3] [22,24] 0

vix /(km·h−1) X  coordinate of speed [35,37] [−56,−52] [83,87] [53,58] [91,97]

viy /(km·h−1) Y  coordinate of speed [56,59] [93 98] [73,78] [84,87] [61,64]
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B1,B2,B3,B4The threat sequencing process of  is given
as follows:

B̃Step 1　The interval threat matrix  can be obtained

by  the  threat  indicators  calculation  formulas  in  [27−30],
and interval number calculation rules in (3)−(8), which is
given as

B̃ =


[0.3,0.4] [0.2,0.3] [0.1,0.1] [0.1,0.1] [0.1,0.2]
[0.4,0.5] [0.5,0.7] [0.2,0.6] [0.1,0.1] [0.2,0.5]
[0.5,0.6] [0.6,0.8] [0.1,0.1] [0.8,0.9] [0.1,0.5]
[0.3,0.4] [0.6,0.7] [0.2,0.4] [0.1,0.1] [0.1,0.2]

 (33)

Step 2　According to (16), which is also shown in Fig. 2, B̄construct matrix  as follows:

B̄ =


0.3 0.2 0.1 0.1 0.1 0.4 0.3 0.1 0.1 0.2
0.4 0.5 0.2 0.1 0.2 0.5 0.7 0.6 0.1 0.5
0.5 0.6 0.1 0.8 0.1 0.6 0.8 0.1 0.9 0.5
0.3 0.6 0.2 0.1 0.1 0.4 0.7 0.4 0.1 0.2


 

1.0

0.5

T
h
re

at
 d

eg
re

e

0

1

1

2

2
3

34
4

5 π6
7

8
9

10

γ

B̄ D G′Fig. 2    Threat matrix   of   in 
 

bi j B̄Step  3　Obviously,  the  elements  of  matrix  are
all  positive.  According  to  Lemma  1,  we  first  solve  the
following dual linear programming:

min
4∑

i=1

xi

s.t.


n∑

i=1

bi j xi ⩾ 1

xi ⩾ 0
, (34)

max
10∑
j=1

yi

s.t.


10∑
j=1

bi jyi ⩽ 1

yi ⩾ 0

. (35)

x̄ ȳWe can get that the following  and  are the optimal
solutions of (34) and (35), respectively:

x̄ = (0,3.261 2,0.548 4,2.351 7),

ȳ = (0,0,5.237 3,0.525 9,0.398 2,0,0,0,0,0).

Then, we have

γ∗ = vx̄ = (0,0.529 3,0.089,0.381 7), (36)

π∗ = vȳ = (0,0,0.85,0.085 3,0.064 6,0,0,0,0,0), (37)

G′ v =

 4∑
i=1

x̄i

−1

=

0.162 3

to form a Nash equilibrium of , where 

.

Continued

Symbol Description B1 B2 B3 B4 R0

viz /(km·h−1) Z  coordinate of speed [53,56] [71,73] [84,88] [94,97] [37,40]
mi /km Missile attack distance [30,33] [31,34] [29,31] [26,28] [42,44]
ri /km Radar detection distance [81,87] [82,89] [90,94] [84,87] [91,98]
εmi Maneuverability performance [1.3,1.5] [1.5,1.6] [2.4,2.6] [1.4,1.6] −

ε
f
i Firepower performance [0.4,0.5] [0.7,0.9] [0.6,0.7] [0.5,0.6] −

εdi Detection performance [0.8,0.9] [0.4,0.5] [0.6,0.8] [0.7,0.9] −
εhi Handling performance [0.6,0.7] [0.5,0,6] [0.3,0.4] [0.4,0.5] −
εs

i Survival performance [0.4,0.5] [0.7,0.8] [0.4,0.6] [0.5,0.6] −
εvi Voyage coefficient [0.3,0.5] [0.6,0.7] [0.5,0.6] [0.4,0.5] −
εei Electronic countermeasure performance [0.3,0.4] [0.5,0.6] [0.7,0.9] [0.4,0.5] −

LI Shouyi et al.: Threat sequencing of multiple UCAVs with incomplete information based on game theory 993



ω∗ λ∗

(ω∗,λ∗) = f −1(π∗)
f −1

Step  4　According  to  Theorem  2,  the  weight  coeffi-
cient parameter  and interval parameter  can be cal-
culated by the formula , where the defi-
nition of  is given in (29)−(31), thus we obtain

ω∗ = (0,0,0.85,0.085 3,0.064 6), (38)

λ∗ = (0,0,1,1,1). (39)

T (Bi)
(i = 1,2, · · · ,n)
Step  5　According  to  (32),  the  threat  degrees 

 are calculated as

T (B1) = 0

T (B2) = 0.085 9

T (B3) = 0.014 4

T (B4) = 0.061 9

.

Therefore, the threat sequencing result is given as fol-
lows:

B2 ≻ B4 ≻ B3 ≻ B1

≻where  means “is preferred to”. 

4.2    Results analysis and comparison

ω λ

D N
N

D
ω

λ

ω λ

ω∗ λ∗

For  the  threat  sequencing  problem  of  multiple  UCAVs,
the  weight  coefficient  parameter  of  different  threat  indi-
cators are usually changeable with time-varying,  and the
threat matrix is in the form of intervals.  To calculate the
weight coefficient parameter  and interval parameter ,
a zero-sum game model of  and  with fuzzy payoffs
is  proposed  in  this  study.  In  the  proposed  game,  is
regarded  as  a  spoiler,  who  minimizes ’s threat  by
choosing the weight coefficient parameter  and interval
parameter .  In fact,  in the traditional method, when the
system  is  completely  unknown,  and  there  is  no  prior
knowledge,  the  parameters  and  cannot  be  obtained
by  a  convincing  theory.  However,  in  the  proposed
method,  the  parameters  and  are  obtained  via  the
game theory and is therefore reasonable.

ω∗ λ∗

γl (l = 1,2, · · · ,100)
U(γl,ω∗,λ∗) (l = 1,2, · · · ,100)

D γ∗

In  the  above  numerical  example,  for  the  calculated
value of  and  in (38) and (39), we give 100 random
values  of  .  Under  these  parameters,
the threat degrees   are pre-
sented in Fig.  3,  which shows that  the ’s choice of 
in (36) is the target with the greatest threat value. In fact,
the  meaning  of  threat  sequencing  is  to  obtain  the  threat
degrees of the targets. It is reasonable to select the largest
threat target. Our method is to perform threat sequencing
on  the  basis  of  selecting  the  largest  threat  target,  which
shows the effectiveness of our method.
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γl ω∗ λ∗Fig. 3    Threat degrees of different   under   and 
 

B1,B2,B3,B4

In  multi-attribute  decision-making  problems,  the  tech-
nique for order preference by similarity to an ideal solu-
tion  (TOPSIS)  method  is  often  used  to  select  the  best
solution  from  alternatives  with  multiple  attributes.  A
threat  sequencing  method  based  on  the  TOPSIS  method
was given in [37]. As a comparison of our method, in the
following,  the  TOPSIS  method  is  applied  to  conduct
threat  sequencing  for ,  and  the  calculation
steps are as follows:
Step 1　The fuzzy decision matrix is shown in (33).
Step  2　 Determine  the  positive  negative  ideal  solu-

tion and the negative ideal solution as

I+ = {[1,1], [1,1], [1,1], [1,1], [1,1]} ,

I− = {[0,0], [0,0], [0,0], [0,0], [0,0]} ,
respectively.

Bi

Step 3　Calculate the relative closeness coefficient of
threat target  as

CC∗i =
D−i

D+i +D−i
, (40)

where

D+i =

√√√ 5∑
j=1

m(b̃i j, [1,1]) ,

D−i =

√√√ 5∑
j=1

m(b̃i j, [0,0]) .

The calculation result is given as
CC∗1 = 0.2010
CC∗2 = 0.3934
CC∗3 = 0.4993
CC∗4 = 0.3392

.

B1,B2,B3,B4Step  4　Rank  the  threat  target  accord-

994 Journal of Systems Engineering and Electronics Vol. 33, No. 4, August 2022



B3 ≻ B2 ≻ B4 ≻ B1

ing  to  the  relative  closeness  coefficients.  Therefore,  the
threat  sequencing result  based on the TOPSIS method is

.

B2 ≻ B4 ≻ B3 ≻ B1

B3 ≻ B2 ≻ B4 ≻ B1

B3

N

ω∗ = (0,0,0.85,0.085 3,0.064 6)
λ∗ = (0,0,1,1,1)

The  result  shows  that  our  threat  sequencing  result
is , while the result of the TOPSIS me-
thod  is .  This  is  because  the  TOPSIS
method  does  not  distinguish  the  importance  of  different
threat indicators, and treats the weight coefficient of each
indicator  as  the  same.  Hence,  has  the  greatest  threat
among  the  four  targets.  In  our  method,  is  endowed
with  wisdom.  Under  its  motivation  to  obtain  the  most
payoffs,  the  weight  coefficients  of  the  threat  indicators
are  and  the  uncertain
parameters  are .  Note  that  in  the  threat
sequencing  problem  of  multiple  UCAVs,  the  time-vary-
ing weight  coefficients  and interval  parameters  are diffi-
cult to effectively deal with by the traditional methods. It
should be pointed out that the theory that we have estab-
lished gives an effective theoretical support for this kind
of  problem,  thereby  ensuring  the  validity  and  rationality
of our method. 

5. Conclusions

D N
In this study, for the threat sequencing problem of multi-
ple  UCAVs,  a  zero-sum game  model  of  and  with
fuzzy  payoffs  has  been  proposed  to  obtain  the  weight
coefficient  parameters  of  the  threat  indicators  and  the
interval parameters of the threat matrix. Moreover, a no-
vel technique has been proposed to solve the established
zero-sum  game  with  fuzzy  payoffs,  whereby  the  final
threat  sequencing  result  has  been  provided.  Finally,  the
effectiveness  of  the  proposed  method  has  been  verified
by numerical simulations. Future work will aim to extend
the  proposed  method  to  more  similar  scenarios  for
MADM problems with incomplete information.
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