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Abstract: Rich semantic information in natural language increa-
ses team efficiency in human collaboration, reduces dependence
on high precision data information, and improves adaptability to
dynamic environment. We propose a semantic centered cloud
control framework for cooperative multi-unmanned ground vehi-
cle (UGV) system. Firstly, semantic modeling of task and envi-
ronment is implemented by ontology to build a unified concep-
tual architecture, and secondly, a scene semantic information ex-
traction method combining deep learning and semantic web rule
language (SWRL) rules is used to realize the scene understand-
ing and task-level cloud task cooperation. Finally, simulation
results show that the framework is a feasible way to enable
autonomous unmanned systems to conduct cooperative tasks.
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1. Introduction

Semantic information is much more used than precise in-
formation in human collaboration. For example, when
someone is asked to “put the package on the first desk to
the left of the classroom door”, a semantic-centered infe-
rence process is carried out. Relying on semantic infor-
mation such as <target location,on,desk>, <desk,leftOf,
door>, <desk,firstOf,desks>, <classroom,has,desks>,
<classroom,has, door>, the target location can be identi-
fied easily and the “package delivery task” can be comple-
ted without accurate spatial information. Semantic is an
important element in intelligence. Knowledge with seman-
tic information enables autonomous unmanned systems to
be context-aware, spatial-time aware, and behavior aware.
Knowledge graph is considered as one of the keys to in-
telligent decision-making [1]. Hu et al. [2] considered
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that effective utilization of expert knowledge is a key is-
sue for artificial intelligence transferring from the game
world to the real battlefield. Defence Advanced Research
Projects Agency (DARPA) also proposed a theoretical
third-generation artificial intelligence framework that inte-
grates data and knowledge in 2018. And Tang [3] summa-
rized this theory as cognitive graph, which is knowledge
graph plus cognitive inference plus logical expression.

Like human beings, autonomous unmanned systems also
need the ability to express, efficiently access, and share se-
mantics when they are performing a certain task so that
autonomous unmanned systems could collaborate across
platforms, systems, or even domains. Semantic informa-
tion is used to make unmanned systems, such as robots
[4], unmanned submarine vehicles [5], self-driving cars
[6] and others understand scenes and complete tasks auto-
nomously. However, these researches focus on intelligent
control of a single platform. It can be more challengeable
when the unmanned vehicles work collaboratively.

Therefore, we propose a semantic-centered cloud con-
trol framework for autonomous unmanned systems to rea-
lize unified cognition, knowledge sharing, and autonomous
cooperation among unmanned vehicles connected to a sha-
red cloud.

The rest of our paper is organized as follows. Section 2
introduces the related works including cloud robotics and
knowledge representation of unmanned systems. Section 3
focuses on the design of ontology and the realization of
inference engine. Section 4 provides the mechanism of min-
ing deep scene information and triggering autonomous
task coordinating. Section 5 simulates and verifies the
proposed framework. Finally, Section 6 summarizes the

paper.
2. Related works and proposed framework
2.1 Cloud robotics

Cloud robotics is known as the research field that inte-
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grates cloud computation and autonomous robotic sys-
tems [7]. On one hand, cloud robotics has a centralized
cloud that provides massive environment information ac-
quired by robotics connected to the cloud. On the other
hand, the cloud provides a shared library of capabilities,
behaviors, states of robotics, and even the experiences of
other robotics. Cloud robotics is developed from net-
worked robotics and is in line with the trend of multi-
agent systems that provide intelligent services. The con-
cept of cloud robotics brings about important applica-
tions in areas such as smart city [8], semantic sensor net-
work [9], cloud manufacture [10], and cyber-physic sys-
tem [11].

However, existing cloud control frameworks focus on
data sharing [12], and the control mechanism is tightly
coupled with the hardware connected to the cloud, they
are more similar to shared databases rather than cloud
control systems. In this paper, we focus on building a com-
mon and shared cognitive cloud for autonomous un-
manned systems. That is the unified representation of know-
ledge, causal reasoning based on knowledge, and their
implementation in task coordination among unmanned
vehicles connected to the cloud during task execution.

2.2 Knowledge representation based on ontology

Ontology is a formal and normative representation of con-
cepts. The clarity and normative characteristics of onto-
logy make it suitable for knowledge sharing and reuse
[13]. Ontology-based way of autonomy has gained atten-
tion in recent years. Miguelanez et al. [14] first intro-
duced semantic knowledge information into mission
planning, which improved the autonomy level of autono-
mous underwater unmanned vehicles. Ekvall et al. and
Kragic [15,16] proposed a task-level planning system
based on experiential activity schema, which realized task
planning by configuring task goals and constraints.
Mokhtari et al. [17] proposesd a conceptional method for
autonomous robots that conceptualized task experience
into the activity mode and applied it to task planning.
Chen [18] proposed a robot task planning method that
integrates activity schema with conceptional task experi-
ence based on ontology knowledge. Using ontology as a
scene modeling method has the advantages of strong
expression ability, supporting cognitive inference, high
scalability, and loose coupling with hardware. However,
most of the existing researches focus on single unmanned
vehicle control and their interactivity with human.

In this paper, we focus on ontology’s ability in sup-
porting autonomous task coordination of multi-unmanned
ground vehicles (UGV) environment. We define unified
concepts, relationships, and terminology, provide a uni-
fied knowledge representation for the cloud-based un-
manned system, and realize the sharing at the knowledge

level. The ontology-based semantic knowledge base (KB)
as the carrier of the unmanned system’s long-term and
short-term episodic memory makes it possible to infer
based on task knowledge to support the unmanned sys-
tem planning autonomously.

2.3 Semantic centered cloud control framework for
swarm task coordinating

In this paper, we take heterogeneous unmanned system
which includes carriers, fork lifters, and wreckers under-
taking delivery tasks as an example to verify our frame-
work. In this scenario, carriers need lift coordinating
when loading package and may encounter roadblock or
maintenance when delivering the package. Therefore, this
is a collaborative task scenario in which unmanned vehi-
cles need to understand the scene and undertake collabo-
rative tasks autonomously.

In the framework, a central knowledge engine serves as
a cloud, and the unmanned vehicles connected to the
knowledge engine serve as nodes that may access the
engine at any time. The knowledge engine and all nodes
connected to it constitute the cloud control system. All
data acquired by sensors is organized under a unified
ontology so that all entities in the environment and all
details about the collaborative delivery task are described
as a semantic network. Then, the rule-based inference
engines extract deep scene information to understand the
situation they are in and take a suitable collaborative task.
Finally, each node undertakes collaborative tasks under
the plan domain describe language (PDDL) [19] planner
autonomously. The framework is described as Fig. 1. UXV
means unmanned X vehicle.
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Fig. 1 Semantic-centered cloud control framework
3. Knowledge engine for cloud control
framework

To implement the proposed framework, the following work
must be done: firstly, an ontology must be defined to
store information acquired by sensor under a unified con-
ceptual architecture as the common sense of swarmed
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unmanned system; secondly, a mechanism of mining deep
information of sensor data is needed so that the unman-
ned vehicles may be aware of the situation they are in and
perform tasks autonomously. Ontology is used in this
framework to model domain knowledge such as expert
knowledge and environmental knowledge acquired by the
unmanned system itself.

3.1 Building ontology for task scenario
The formal definition of ontology is
0=(C,PA)) (1

where C represents a collection of classes and P repre-
sents a collection of predicates that describe object prop-
erty or data property of a certain instance. 4 represents a
collectionofaxioms,describingtherelationshipsbetweencla-
sses, properties, and instances related relationships, such
asinclusion, equivalence, reciprocity, transitivity, and sym-
metry. / represent a collection of instances, which is an

instantiation of classes. Environment, mission, and UXV
are three core ontologies of cloud control ontology. As
shown in Fig. 2, ontology mainly expresses knowledge
from the perspective of task planning. Among them, envi-
ronment ontology defines environment-related knowl-
edge, such as artificial objects, natural objects, terrain,
and weather; mission ontology defines task-related
domain knowledge, such as tasks, behaviors, goals,
states, and plans; UXV ontology defines unmanned vehi-
cle related software and hardware knowledge, such as dif-
ferent types of unmanned vehicles, loads, capabilities,
physical and geometric parameters, as well as software
modules, algorithms. Besides, the cloud control ontology
also includes other important ontologies such as univer-
sal instruction ontology which defines cooperative task
instructions between unmanned systems, communication
and network ontology which defines communication
knowledge, space-time concept ontology, and concept
and common sense ontology.
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Fig. 2 Task ontology

In addition, the ontology includes the rule that ex-
presses knowledge from a logical perspective. The rule is
a kind of causal knowledge expression method. For
example, the capability attributes of a certain vehicle in
UXYV ontology correspond to an atom action in the task
ontology, these two ontologies are connected through
causal knowledge in the form of rules.

Protege [20] is used as an ontology modeling tool. It
provides a graphical modeling interface, and the ontology
can be formalized and stored using the web ontology lan-
guage (OWL) based on the resource description frame-
work (RDF). Good adaptability to the web environment
of OWL makes it much more suitable for building an
ontology for the cloud control system.

3.2 Semantic representation of task domain
knowledge

Ontology defines a framework that describes the entities
involved in the task scenario. However, these pieces of
information are static and conceptual, thus two kinds of
predicates are used to describe the semantic relationship
needed for scene understanding and autonomous task co-
ordinating. One kind of predicates describes the relation-
ship between different entities, such as “located-at” which
describe the positional relationship like “vehicle located
at a certain point”. Some predicates that describe entity
relationships are shown in Table 1. The other kind of
predicates describes the relationship between entities and
their data properties, such as “hasState” which describe
the state of a certain entity like “road segment #39 has
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state ‘LOCKED’”. Some predicates that describe such
data properties are shown in Table 2.

Table 1 Entity property
Predicate Domain Range
arriveAddress uxv Address
atWarhouse Uuxv Warehouse
onRoad Uxv Road
hasObstacle Obstacle Road
hasSign Road Sign
hasCandidateTask Uxv Task
Table 2 Data property
Predicate Domain Data type
hasCurrentSpeed Uxv Float
hasState Road Enum
hasWidth Obstacle Float
hasDistance Uxv Float
inScene UXV Self define scene type

In the semantic centered cloud control framework, the
system implements task-level cooperative control by the
scene that vehicles are facing. The connection between
the scene and the vehicle’s behavior is a semantic rela-
tionship. This kind of semantic relationship is repre-
sented by semantic web rule language (SWRL). Beyond
this, SWRL is also used to represent relationships such as
explicit data acquired by the sensor and their deep mean-
ings. The process of discovering these two kinds of
semantic relationships may be defined as situation aware-
ness and scene understanding. Scene understanding is the
process of mining deep hidden pieces of information
behind the representation. Situation awareness is the pro-
cess of triggering an unmanned vehicle’s behaviors or
tasks when they are in a certain situation. The semantic
representation of task domain knowledge and its princi-
ple of driving scene understanding and situation aware-
ness is shown in Fig. 3.
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Fig. 3 Semantic representation of task domain knowledge

3.3 Implement of knowledge engine

A semantic knowledge engine is an interactive access
system for semantic KB based on Jena Fuseki [21]. Jena
Fuseki is deployed in the cloud, and Fig. 4 shows its
structure. Two main interfaces for human-machine inter-
action are implemented: one is the reasoner interface,
which is mainly used for importing rules; the other is the
ontology interface, which is mainly responsible for
adding or modifying descriptive pieces of knowledge.
Vehicles as nodes connected to the cloud may access the
semantic knowledge engine based on hyper text transfer
protocol (HTTP) protocol, query or update information

by SPARQL protocol and RDF query language (SPARQL)
[22]. The inference is implemented in the form of query
for the KB. These queries fall into two categories: simple
query and complex query. Simple query mainly queries
for explicitly defined facts, that is data properties of a sin-
gle entity (such as orientation, connectivity, and state).
Complex query has two more circumstances. One is
querying for inference results based on axioms and prede-
fined SWRL rules. These rules must be strictly validated
to ensure correctness. The other is querying for inference
results based on temporary and local rules that may not
be suitable in all situations. These queries are imple-
mented in the form of SPARQL.
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Fig. 4 Diagram of the knowledge engine

When the cloud control system runs, all nodes keep a
connection to the cloud by Algorithm 1. This algorithm
registers the vehicles when they first connect to the cloud
and keeps updating the state of the vehicles and data
acquired by the sensor. These data are the raw material
for scene understanding. When any node makes a certain
query, the knowledge engine conducts inference based on
these facts and the rules predefined.

Algorithm 1  Semantic synchronization algorithm

Input:

Interface of KB;

Topic and service of UXV component;
Output:

State update result;

swarmInit{
subscribeComponentTopic ();
connectToKB (KB);
if uxv not instantiated in KB then
creat_uxv (uxv);
end
¥
excuse with fixedperiod {
if uxv state changed then
update individual state in KB;
update inferred knowledge;
end

H

4. Inference based scene understanding and
cloud task coordinating

The process of scene understanding is generally divided

into two main stages [23—25]. In the first stage, standard
target detection networks such as region-convolution neu-
ral network (R-CNN) [26], faster-R-CNN [27], and You
Only Look Once (YOLO) [28]. are used to identify the
object and obtain the bounding box of the object accord-
ing to the input image. Then, in the next stage, the object
is instantiated as instances, and the object’s bounding box
features, object labels, and spatial coordinates are instan-
tiated as instance features, and use long short-term me-
mory (LSTM) [29], gated recurrent unit (GRU) [30],
TreeLSTM [31], etc. to predict the relationship between
objects. Predicates are usually from specific vectors such
as Word2Vec [32], and ConceptNet [33]. In this study,
the predicate vector is obtained from the task ontology
rather than a certain data set. For the problem of relation-
ship prediction, a hybrid scene understanding method that
combines the advantages of deep learning and rule-based
inference is proposed. Cloud control framework based on
this method has the advantages of end-to-end learning,
concise, efficient and quick adaption to different task sce-
narios as required.

4.1 Object detection based on deep learning

YOLO series network has the advantages of fast and rela-
tively high accuracy. In recent years, researchers have
improved its performance by adding an additional pool-
ing layer between the backbone network and the head.
YOLO3-SPP adds the spatial pyramid pooling (SPP) [34]
module to realize the multi-scale overlap of images,
which improves the accuracy of the network in predict-
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ing images of different resolutions and objects of differ-
ent sizes. This paper chooses YOLO3-SPP as the target
detection network.

4.2 Estimation of spatial parameters

Extraction of semantic information needed by unmanned
system tasks varies from that in the field of computer
vision which pursues rich picture information. Spatial pa-
rameters and spatial semantic relations are crucial to the ex-
ecution of tasks. Therefore, after completing basic target
detection and image recognition, it is necessary to estimate
and infer the spatial parameters and spatial semantic rela-
tions of entities in the scene. In the field of robotics, spa-
tial parameter estimation relies heavily on stereo vision,
depth information, or point cloud information. However,
in the real mission scenario, the vehicles usually observe
objects from a distance, and it is very difficult to obtain
depth information and point cloud data. Therefore, this
paper is based on the use of a monocular camera image to
achieve spatial parameter estimation.

The monocular camera acquires a two-dimensional
image, and it is difficult to estimate the distance using
Euclidean distance directly. Inverse perspective mapping
(IPM) is an effective method for realizing the conversion
from two-dimensional pixel points to the three-dimen-
sional actual position [35]. In the conversion process, it
only needs to know the camera’s position, height, angle
of view, and the inherent parameters of the camera, which
are available in advance. The relationship between the
position in the two-dimensional image of the object and
its position in the real world can be expressed as

[u v 1| =kRI[ X, Y, 7, 1] @

where u and v represent the number of pixels of the tar-
get recognition frame in the horizontal and vertical direc-
tions. X,, Y,,, Z, represent the position of the object in the
world coordinate system. K is the inherent parameter of
the camera. R and T respectively represent the rotation
and translation matrices from the world coordinate sys-

tem to the two-dimensional image coordinate system.
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where /4 is the height of the camera, f'is the focal length,
k, and k, are the numbers of horizontal and vertical pixe-
Is of the camera, s is the image zoom ratio, and ¢, and c,
are used to correct the main optical axis of the image
plane.

Assume that the Z-axis value of the target in world
coordinates is 0, then the relationship between the world
coordinate system and the image coordinate system is

X, ny My My u
YW = Ny Ny, nmys 14 . (6)
1 msp Mz Mz 1

Relative coordinates can be calculated by

(Xw9 Yw) =

(m” XU+ XV+M3 My XU+ My XV + My
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4.3 Scene understanding and situation awareness

Target detection and spatial parameter estimation obtain
the basic physical dimensions and spatial parameters of
environment entities, but these parameters cannot sup-
port the autonomous behavior of the cloud control sys-
tem. Thus, as shown in Subsection 2.2, SWRL rules are
used to mine deep semantic relationships behind the data,
figure out the situation a single node is in, and take
proper actions that are beneficial to achieving the swarm
task goal.

SWRL is described as antecedent—consequent.

Both antecedent and consequent consist of zero or
more atoms. SWRL as production rules may infer new
information based on the information already known, so
it is an efficient way to infer information that is hidden
behind the data but is important to the cloud system’s
autonomy behavior. For example, when a UGV encoun-
ters a fallen tree on road, the cloud control system may
infer whether the road is blocked or not by the physical
size of the obstacle and width of the road, and the road’s
state then is the decision basis for cloud task coordinat-
ing, as shown in the following:

Tree(?tree)” on(?tree, ?road)” Road(?road)” hasWidth
(?tree, ?wk)* hasWidth(?road, ?wd)" swrlb:divide(?wd,
2)" swrlb: greaterThan(?wk, 7wd) —hasState(?road, BLO-
CKED)
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Furthermore, based on the information inferenced,

the cloud control system may recognize the situation
it confronts, and perform further inference about the 1" hasState(?r, BLOCKED)" on(?tree, ?road)” hasMass

actions the system can take. For example, when the road (7 ?m)" hasMaxLift(?w, ?1)* swrlb:lessThan(?m, ?1)—
is blocked, the cloud control system should dispatch hasCandidateTask(?w, OBSTACLE_CLEANNING)

Carrier(?u)"Wrecker(?w)"Road(?r)"Tree(?tree) at(?u,?

another wrecker for obstacle cleaning task. The rule for SWRL rules used for scene semantic information ex-
triggering the obstacle cleaning task is shown as follows: traction are shown in Table 3.

Table 3 SWRL rules in scene understanding and situation awareness

Number Rule body Description

Infer the availability of

Rule#l  Uxv(?x)" isldle(?x, ?y)" swrlb: booleanNot(?y, false)-> UxvAvailable(?x) vehicles

Rule#2  UxvAuvailable (?x)" hasEndurance(?x, ?y)" swrlb: greaterThan(?y, 80) —UxvEndurance (?x, HIGH) Duration time inference

BaseStation(?bs)” hasPosition(?bs, ?pos1) “Uxv(?uxv)" hasPosition(?uxv, ?pos2)" hasRemainEndurance
Rule#3  (?uxv, ?re)” swrlb:divide(?posl, ?pos2, ?dis)" swrlb:lessThan(?dis, ?re) — Alert(?alert)®
hasUxv(?alert, ? uxv)" hasAlertType(?alert, INSUFFICIENT ENDURANCE)

Infer low endurance alert
event

Rule#4  Uxv(?uxv)”" Entity(?entity)”" inFrontOf(?entity, ?uxv) ~ —Obstacle(?entity) Infer obstacle type

Tree(?tree)” hasHight(?tree, ?hight) “hasWidth(?tree,?width)” swrlb:divide(?rate, ?width, ?hight)"

Rule#5 Inft tity stat
e swrlb:greatThan(?rate, 4) —hasState(?tree, FALLEN) nier entity state
Tree(?tree)” hasHight(?tree, ?hight) “hasWidth(?tree,?width)” hasDensity(?tree, ?density) ~ swrlb: multiply .
Rule#6 . . . . Estimate the mass of the tree
(?mass, ?width, ?width, ?hight, ?density) —hasMass(?tree, ?mass)
Rule#7 Tree(?tree)” on(?tree, ?road)” Road(?road)” hasWidth(?tree, 2wk)™ hasWidth(?road, ?wd)"swrlb: Infer the road is blocked or ot

divide(?wd, 2)" swrlb:greaterThan(?wk, ?wd) —hasState(?road, BLOCKED)

Carrier(?u)" Wrecker(?w)”" Road(?r)" Tree(?tree)" at(?u, ?r)* hasState(?r, BLOCKED)" on(?tree, ?road)"
Rule#8  hasMass(?t, 7m)" hasMaxLift(?w, ?1)" swrlb:lessThan(?m, ?1)—hasCandidateTask(?w, Infer obstacle cleaning task
OBSTACLE CLEANNING)

Tree(?tree) hasMass(?tree, ?mass)” Uxv(?uxv)" hasMaxGrip(?uxv, ?grip)" swrlb:greaterThan

Rule#9 Inf didate task t
uie (?grip, ?mass) — hasCandidateUxv(?task, ?uxv) frier candicate task executor
Carrier(?c)” ForkLift(?f1)" Package(?p)"* WarHouse(?r)" at(?c, ?wh)" hasTargetPakage(?c, ?p)* hasMass . .
Rule#10 Infer lift tive task
e (?p, 2m)* hasMaxLift(?fl, 21)* swrlb:lessThan(?m, ?1)—hasCandidateTask(?w, LIFT_COOPERATION) frier Hiit cooperative fas
Replanni th when th
Carrier(?c)" Road(?r)" MaintenanceSign(?ms)" at(?c, ?r)* hasState(?r, BLOCKED)" hasSign °p anryng patiw 'en ¢
Rule#11 road is blocked since

(?r, 7ms)—hasCandidateTask(?w, ROUTE_REPLANNING) .
- maintenance

Carrier(?u)® Wrecker(?w)”* Road(?r)" Tree(?tree)”" at(?u, ?r)" hasState(?r, BLOCKED)" on(?tree, ?road)"
Rule#12  hasMass(?t, 7m)" hasMaxLift(?w, ?1)" swrlb:greaterThan(?m, ?1)—hasCandidateTask(?w,
TOUTE_REPLANNING)

Carrier(?c) Customer(?p)" Address(?a)”" at(?c, ?a)" hasAddress(?p, ?a—hasCandidateTask(?c,
PLACING_PACKAGE)

Carrier(?c)” ForkLift(?f1)" Package(?p)" WarHouse(?r)" at(?c, ?wh)" hasTargetPakage(?c, ?p)*
Rule#14 hasMass(?p, ?m)" hasMaxLift(?fl, ?1)" swrlb:greaterThan(?m, ?1)—Alert(?alert)"

Replanning path when the
road is blocked by an obstacle

Rule#13 Infer placing package action

Infer alert of forklift cannot

hasUxv(?alert, %c)* hasAlertType(?alert, LIFT COOPERATION FAILED) lifta package
On the whole, SWRL has the following functions, (i1) Link the physical attributes of environmental enti-
which are helpful for situation awareness: ties to their semantic descriptions.
(i) Link various attributes of environmental entities (ii1) Link the properties of environmental entities with

according to their inherent logic. the behaviors that can be imposed on them.
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4.4 Individual task planning and controlling

According to the assumption of the cloud control system
[12], all nodes connected to the cloud should be intelli-

of Systems Engineering and Electronics Vol. 33, No. 4, August 2022

gent enough to undertake the coordinative task. In this
paper, we use a PDDL planner as the individual planner.
The detailed cloud control system is shown in Fig. 5.
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Fig. 5 Diagram of cloud control system

Knowledge of task is defined according to the PDDL
language specifications and integrated into task ontology,
so that knowledge inference may be integrated with task
planning algorithms, enabling high-level logic inference
and planning algorithms such as fast down (FD), and for-
ward-chaining partial-order planning (POPF).

After inference, the problem file is transmitted to the
individual PDDL planner of relevant vehicles. The plan-
ner completes plan generation, plan distribution, and ac-
tion schedule. In the process of task execution, when the
environment changes, for example, the task cannot be com-
pleted, or new task requirements are generated. The prob-
lem file would be regenerated and the planner is called to
replan the task.

S. Experimental verification and analysis
5.1 Design of experiment

The test scenario is shown in Fig. 6. Two delivery UGVs,
a forklift, and a wrecker are in the simulation. The UGVs
are equipped with a camera to detect targets. The UGVs
use the A* based route navigation method for path plan-
ning. The simulation platform is Ubuntu 18.04, ROS
Melodic, Gazebo 7. The semantic ontology model of the
task, primary entities of environment, and SWRL rules
have been built in advance and integrated into the know-
ledge engine based on Jena Fuseki. The Jena Fuseki
server serves as the cloud control center, and both UGVs
connect to the server are nodes of the cloud control sys-

tem. The cloud control system assigns delivery UGV to
conduct delivery tasks when a package arrives, and dis-
patchs the wrecker for obstacle cleaning task or forklift
for loading tasks if needed. All the coordinating tasks are
dispatched autonomously.

warhouse!

warhouse[warhouse
#3 #2 #1

(b) 3D scenario diagram

Fig. 6 Simulated experiment scenario
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5.2 Scenario

To make the experiment easier, this scenario is designed
as a coordinated delivery task in a closed and limited
environment. The control center generates a delivery task
when a certain package arrives. The delivery UGV that
can perform the task goes to the warehouse to obtain the
package and perform the delivery task. During the deli-
very, the UGV may encounter a fallen tree on the road
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which blocks the road, so the delivery task is aborted.
The UGV acquires the sensor data, and synchronizes it to
the knowledge engine. Cloud knowledge engine perceives
the “blocked road” situation and generates the “Obstacle
cleanning” task, and assigns it to a wrecker UGV. All the
UGVs work coordinatively for faster delivery.

Summary of the plot of the experimental scene is
shown in Table 4.

Table 4 Plot summary of the experimental scenario

Item Description

Action

Task name Delivery task with exception event

#1, #2 delivery UGV, #3 wrecker UGV, #4 forklift UGV

Precondition located at the depot, new package arrives

UGV completes navigate autonomously

UGYV report to the cloud control center

#1 or #2 UGV conduct delivery task (Taskl)

Query for related information: candidate vehicle, package location,
destination location

Get package (Action 11)
Navigate to destination (Action 12)

Complete delivery (Action 13)

Event flow

#3 wrecker conduct Obstacle_cleanning task (Task 2)

Query for related information: Obstacle type, location
Navigate to the obstacle (Action 21)
Clean up obstacle (Action 22)

Navigate to the depot (Action 23)

Query for related information: Package location

Navigate to package (Action 31)

#4 forklift conduct lift cooperative task when needed (Task 3)

Load package (Action 32)

Navigate to the depot (Action 33)

#1 or #2 UGV delivery task failed since the road blocked

Generate scene graph and report to control center

According to the inference result, generate a new “obstacle cleaning”
task (Task 2)

#1 or #2 UGV delivery task failed since road maintenance

Acquire sensor data and update cloud KB information

E ti . . .
xcep'lon According to the inference result, replanning the path
handling
Acquire sensor data and update cloud KB information
#1 or #2 UGV arrive at a warehouse According to the inference result, generate a new “Lift_Cooperation”
task (Task 3)
#1 or #2 UGV arrives at customer address According to the inference result, unload the package
Each vehicle completes a designed task and reports to the
Effect —

cloud control center

5.3 Deep learning data set preparation and
network training

To verify the target detection, a database is constructed
based on the experimentally scenes. The categories of ob-

jects to be recognized are houses, roads, road signs, trees,
and cars. In the constructed Gazebo 3D environment, the
pictures of each kind of object under different angles are
collected and the images are labeled with the Labelme
[36]. The network training results are shown in Fig. 7.
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Fig. 7 Training results of YOLO network

5.4 Ontology model and inference function test

The ontology model and inference function test is used to
find whether the ontology model and rules properly meet
the requirements of scene modeling. The test was carried
out using the Drools plug-in in protege. After the con-
struction of the ontology model, some virtual facts are
added to the ontology for the test.

Four scenarios are tested: (i) Infer entity state based on
sensor data; (ii) Infer the lift cooperative task when deli-
very UGV arrives at the warehouse; (iii) Infer road block-

ing state and obstacle type according to sensor data; (iv)
Infer the cooperative task of cleaning obstacles when the
delivery UGV encounters road closure. The test results
are shown in Fig. 8.

Raw data:
Tree’s size, density, etc.
Inference result:
EquivalentProperties: hasName
Samelndividual: tree_001

tree_001 hasState "FALLEN"**xsd:siring
Wrecker SubClassOf Wrecker
owl:Nothing SubClassOf Probability

Infer entity state, time consumed: 38 ms

(a) Reasoning for entity state

Raw data:
UGYV arrives at the warehouse, package at the warehouse, etc.

Inference result:

UGV SubClassOf UGY

LIFT_COOPERATION liftPackage package_01
StraightRoad SubClassOf StraightRoad
owl:Nothing SubClassOf Obstacle

carrier 01 hasCandidateTask LIFT _COOPERATION
Predicates SubClassOf owl:Thing

Infer lift cooperative task, time consumed: 60 ms

(b) Reasoning for transit task

Raw data:

Road’s width, tree’s size, etc.

Inference result:

Tree SubClassOf Tree

roadSegment 32 hasState "BLOCKED ™ sd:string
owllopObjectProperty SubPropertyQf. owltopObjectF
EquivalentProperties: owl'topDataProperty

tree 001 Type Obstacle
Probability SubClassOf owl:Thing

Infer road state, time consumed: 63 ms

(c) Reasoning for road state

Raw data:

Road’s state, tree’s mass, Maximum lifting capacity of
wrecker, etc.

Inference result:

EquivalentClasses: PlacaCargo

camier 02 hasCandidateTask OBSTACLE CLEANNING
RePlanning SubClassOf RePlanning

carrier_02 owltopObjectProperty OBSTACLE _CLEANNING
DBSTACLE CLEANNING willClean tree 001

warHouse_01 Type Emvironment

Infer obstacle cleaning cooperative task , time consumed: 77 ms

(d) Reasoning for the obstacle cleaning task

Fig. 8 Logic test result of knowledge engine
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5.5 KB’s responsiveness to different types of inference

According Subsection to 3.3, knowledge queries fall into
three categories: simple query, SWRL based inference,
and SPARQL based inference [37]. An example of SPA-
RQL based inference statement and result is shown in
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Fig. 9(a). Response time of different queries is shown in
Fig. 9(b). It can be seen that the query type is the main
factor affecting the time consuming, and the overall query
time is relatively low, which can meet the real-time requi-
rements of task planning.

PREFIX rdfs:
PREFIX swrl:
PREFIX
PREFIX
PREFIX

swrla:
swrlb:
xsd:

<http
<http
<http
<http
<http

L/ /v w3 . org/ 20080,/01/ rdf-schema#>

/v w3 org/ 2003/ 11/ swrld>

1/ /swrl.stanford.edu/ontologies/3.3/surla.owl#>
LSS wew W3 org/ 2083/ 11/ swrlb#>

2/ fvvin w3 org/ 2001/ XMLS chema#>

* SELECT
Fugy
Ycap

?ugv WHERE {
UxV:has-capability 2cap.
rdf:type UxV:LiftSomeThing.
UV ihas-maxliftMass 2mass.

Pugw
*package Ux\:has-mass ImassPkg.
FILTER( ?mass>?massPkg).

19 |}

1 result in 0.049 seconds

BB Table = Response

ugv

Simple view(l Ellipsel |Fjjer query results

1 <http://www.semanticweb.org/swarmplanner/ontologies/2021/Ux\V#UGY_002»

Showing 1to 1 of 1 entries

(a) Query for candidate vehicles

Query time/ms
\

100 200 400 800 1600 3200 6400
Number of triples

—-— : Simple query;
----: SPARQL based inference.
(b) Response time of different queries

Fig. 9 Responsiveness of KB

: SWRL based inference;

5.6 Semantic centered scene understanding and
intelligent task replanning

When the delivery UGV encounters a fallen tree obstacle,
the unmanned vehicle classifies the tree obstacle, esti-
mates its size, location, etc. These data are updated to the

cloud; then, when the UGV queries for the candidate task,
the cloud knowledge engine inferences road state, tree
mass. When the road is blocked, classifies tree is an in-
stance of Obstacle class.

This process is scene understanding and its procedure
is shown in Fig. 10.

(a) UGV encountering obstacle on the road

- > Far
7 car 001 < 20 m
. uGv a
/SceneOf, frontRightOf
l‘ TR FrontOf Middle
\ Near car_002 10 m
“tree 01 43 o 0.22
- nt
4(;3 kg Very Far
m
car_003
02m - o
0.3 m 0228
Road yqswidih
4
hasState
Blocked
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Move to action failed,
actor carrier 01,
target is POI_002,
has scene fallen tree on road

hasNatureLangu
ageExpression

CandidateTask
hasCandidateUxv,

rcker 0D

hasFailedAction

hasMass

hasWidth

hasLocX
hasLocY

Object recognition
Rule#4
IMP

Rule#5
Rule#6

Rule#7

(Rulcts |

hasHeight

hasWidth

| Double |

(b) Process of scene understanding and triggering autonomous cooperation behaviors

Fig. 10 Extracting semantic knowledge of the scene

The cloud KB first inferences the deep scene informa-
tion according to sensor data such as entity category, size,
and location. Then, if the scene meets the situation prede-
fined as SWRL rules, a cooperative task order may be
obtained by querying for “hasCandidateTask” predicate,
as shown in Fig. 10(b).

The cloud KB provides an information-sharing mecha-
nism that inspires swarm intelligence. When delivery
UGYV finds the road is blocked, this information is syn-
chronized to the cloud, the follow-up delivery task would
consider this condition when planning. Thus, four deli-
very tasks are designed to verify the advantage of the
cloud control framework, taskl—task4 corresponding to
the delivery package for address #1—#4 in Fig. 6(a). Task
planning time and task execution time with and without
cloud information sharing are shown in Fig. 11. The sce-
nario is that packages for address #1—#4 arrive sequen-
tially, when performing task 1, the delivery UGV finds
the road is blocked and the cloud control system dis-
patches a wrecker to clean the obstacle and the delivery
UGV replanning its path, the blocking situation persists
before task 4 starts. It can be seen that during the execu-
tion of task 2 and task 3, due to the realization of infor-
mation sharing within the cloud system, the follow-up
UGVs can avoid the blocked road. However, in the
absence of information sharing, the UGVs could not be
aware of the situation of the road segment being blocked
until they arrive at the blocked road segment, which cost
extra task planning time and execution time. The infor-
mation-sharing mechanism provided by the knowledge
engine optimizes the task performance of all vehicles as a

whole and shows the feature of preliminary swarm intelli-
gence.

120
100
80
60
40
20

Time/s

Task 1

Task 2 Task 3 Task 4

u: Planning time (with information sharing);

: Planning time (without information sharing);
u: Execution time (with information sharing);
u: Execution time (without information sharing).

Fig. 11
without knowledge sharing

Comparison of performance of task planning with and

6. Conclusions

In this paper, we propose a semantic-centered cloud con-
trol framework for heterogeneous cooperative autono-
mous unmanned systems. The semantic knowledge is re-
presented by ontology, and a semantic knowledge engine
is designed to express the domain knowledge which is
applied to the cloud task coordination. Then a hybrid scene
understanding method combining deep learning with rule-
based knowledge reasoning is proposed, which ex-
tracts the knowledge required for task execution, and trig-
gers autonomous behavior of the cooperative cloud sys-
tem. In addition, natural language processing attributes
are added for each scene to lay the foundation for the next
step of realizing natural language-based task collabora-
tion and human-machine interaction. Finally, simulation
experiments verify the feasibility of the framework.
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The semantic centered cloud control system is realized

according to the knowledge-based method, and works as

a knowledge parse system. These make it easier to be app-
lied into other fields such as agriculture, industrial manu-
facture, or supplies delivery and medical evacuation in

the military. This research shows a feasible way to rea-

lize the cognitive ability of autonomous unmanned sys-

tems at task-level. However, there is still much to do to
deal with large-scale graph problems if the scenario gets
more complicated.
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