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Abstract: This  paper  introduces  the  time-frequency  analyzed
long  short-term  memory  (TF-LSTM)  neural  network  method  for
jamming  signal  recognition  over  the  Global  Navigation  Satellite
System (GNSS) receiver. The method introduces the long short-
term  memory  (LSTM)  neural  network  into  the  recognition  algo-
rithm  and  combines  the  time-frequency  (TF)  analysis  for  signal
preprocessing.  Five kinds of  navigation jamming signals includ-
ing  white  Gaussian  noise  (WGN),  pulse  jamming,  sweep  jam-
ming, audio jamming, and spread spectrum jamming are used as
input  for  training  and  recognition.  Since  the  signal  parame-
ters and quantity  are unknown in the actual  scenario,  this  work
builds a data set containing multiple kinds and parameters jam-
ming  to  train  the  TF-LSTM.  The  performance  of  this  method  is
evaluated  by  simulations  and  experiments.  The  method  has
higher recognition accuracy and better robustness than the exis-
ting  methods,  such  as  LSTM and  the  convolutional  neural  net-
work (CNN).

Keywords: satellite  navigation,  jamming  recognition,  time-fre-
quency (TF) analysis, long short-term memory (LSTM).
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1. Introduction
The global  navigation satellite  system (GNSS) is  widely
utilized  in  an  abundance  of  applications.  Critical  infras-
tructures such as cellular towers, the power grid and even
financial trading institutions can be disrupted if the GNSS
receivers  are  jammed.  Accurate  recognition  of  naviga-
tion  jamming  signals  is  the  premise  of  monitoring  and
suppression. However, jamming signal identification with
high accuracy is not an easy task at present.

Traditional  navigation  jamming  signal  classifiers  are
designed based on the time, frequency or time-frequency
(TF)  domain  features  of  the  signal.  The  threshold  deter-
mination  and  implementation  of  the  algorithm  are  com-
plex,  and  its  performance  in  a  low  signal  to  noise  ratio
(SNR)  is  not  satisfactory  [1−3].  The  shallow neural  net-

work  is  also  used  to  recognize  the  jamming  signal  in
recent  years.  Mosavi  et  al.  [4]  used  multi-layer  percep-
tron for narrowband jamming tracking and suppression, it
cannot recognize other types of jamming signals. Wang et
al. [5] classified jamming signals based on back propaga-
tion (BP) neural network, but the jamming existence fac-
tor,  bandwidth,  spectral  kurtosis,  and  average  spectral
flatness coefficient are required.

Deep  neural  network  (DNN)  including  convolutional
neural  network  (CNN)  and  recurrent  neural  network
(RNN)  has  been  widely  used  in  signal  processing  and
recognition.  A large number of  studies show how to use
CNN to classify jamming signals in communication sys-
tems [6−10], or to classify transient radio frequency inter-
ference [11]. In addition, CNN is also widely used in sig-
nal modulation recognition [12,13], time series classifica-
tion  [14],  and  image  target  classification  [15].  The  long
short-term  memory  (LSTM)  neural  network  is  proposed
to solve the problem of gradient disappearance and explo-
sion  in  the  training  process  of  ordinary  RNN  [16].  It  is
better  at  learning  the  dependence  between  signal  sequ-
ences  than  other  RNN,  such  as  solar  radio  spectrum,
machine  fault  diagnosis  [17],  abnormal  electrocardio-
gram  signals  [18,19].  Moreover,  LSTM  is  also  used  for
signal  modulation  identification  [9,20].  In  terms  of  jam-
ming  recognition,  LSTM  is  used  for  radar  emitter  [21]
and wireless  interference signal  recognition [8,22],  radio
frequency signal classification [23].

The  recent  success  of  DNN  in  jamming  classification
in other fields suggests that the recognition of navigation
jamming can benefit from it. Thus, researchers start using
CNN in the navigation,  but  the case of  using LSTM has
not  been  found.  Wu.  et  al  [24]  used  one-dimensional
CNN to extract jamming signal features for classification.
However, retraining CNN under different parameter con-
ditions  seriously  limits  the  practicability  of  the  method.
The adaptability of CNN to the variation of jamming sig-
nal  parameters  such  as  the  period  of  pulse  jamming,  the
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frequency  sweep  rate  of  sweep  jamming,  etc.,  has  not
been  discussed.  Li  et  al.  [25]  used  the  smooth  pseudo
Wigner-Ville distribution to convert jamming signals into
images,  then  extracted  image  features  for  recognition
with CNN. Although the method can classify signals in a
certain range of parameters, it takes a lot of memory and
signal processing resources.

This paper proposes a method named TF-LSTM to rec-
ognize navigation jamming signals with high accuracy in
real scenarios. This idea is based on two facts:

(i) The jamming signal varies continuously and depen-
dently  over  time,  and  provides  an  opportunity  for  the
application of LSTM.

(ii) TF can extract signal parameters for jamming sup-
pression and enhance signal features [2,3].

Our contributions include the following:
(i)  The  LSTM  is  introduced  into  the  navigation  jam-

ming  recognition  and  the  TF  is  used  for  signal  prepro-
cessing.

(ii)  For  the  first  time,  the  adaptability  of  the  recogni-
tion  method  to  the  range  of  navigation  jamming  signal
parameters is researched.

(iii)  Several  groups  of  comparative  studies  prove  the
advantages of  the new method in recognizing single and
multiple jamming signals over a wide range of parameter
variations in actual scenarios.

The model of the jamming signal recognition system is
introduced in Section 2, as well as the mathematical mo-
del of the navigation jamming signal. This work explains
the  principles  of  TF  analysis,  LSTM  and  signal  feature
extraction  in  Section  3.  The  performance  of  different
methods  is  discussed  by  simulations  and  experiments  in
Section 4. 

2. System description
 

2.1    System model

The  GNSS  user  receives  a  radio  frequency  (RF)  signal
within  a  certain  bandwidth,  obtains  an  intermediate  fre-
quency  signal  through  down-conversion  and  filtering,
then performs acquisition and tracking. The jamming still
exists  in  the  intermediate  frequency  (IF)  signal  after
down-conversion  if  there  are  jamming  signals  in  the
received bandwidth,  so the recognition of  the navigation
jamming  signals  can  be  completed  within  the  IF  band-
width.  The  principle  of  the  navigation  jamming  signal
recognition system designed in this paper is shown in Fig. 1,
which consists of a signal collection module and a signal
analysis module. The collection module receives the sig-
nal through the antenna, converts the RF signal by down-
conversion,  sampling  and  quantization  into  a  digital  IF
signal  stream,  then  sends  it  to  the  analysis  module

through  the  network  protocol.  After  pre-processing  the
signal by TF analysis, the signal analysis module runs the
recognition  algorithm  by  using  the  trained  neural  net-
work  parameters,  and  performs  operations  including
recording  and  early  warning  according  to  the  classifica-
tion  results  to  provide  reference  for  the  subsequent  jam-
ming mitigation module. The functions in the blue dashed
box are implemented by LSTM neural network.
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Fig. 1    Navigation jamming signal recognition system
  

2.2    Jamming signal model

The RF signal received by the antenna is expressed as

R (t) = S (t)+ J (t)+n (t) (1)

S (t)
J (t) n (t)
where  is the navigation signal in the frequency band,

 is  the  jamming  signal,  and  is  the  noise  in  the
environment.  Since  the  navigation  signal  power  is  much
lower  than  the  noise  and  the  jamming  signal,  this  work
focuses  on  the  power  relationship  between  the  jamming
signal  and the noise,  which is  measured by the jamming
to noise ratio (JNR).

The  navigation  jamming  signals  researched  in  this
work include pulse jamming, sweep jamming, audio jam-
ming, and spread spectrum jamming.

Pulse  jamming is  a  kind of  jamming obtained by mo-
dulating  a  pulse  signal  to  a  single  frequency  carrier,  the
pulse  signal  is  in  the  form  of  a  square  wave,  its  time-
domain signal expression is

Jp (t) =
+∞∑

n=−∞

pτ (t−nT ) Ap exp
(
j2π fpt+φp

)
(2)

τ T
Ap fp φp

where  and  are the pulse width and repetition period;
, ,  and are  the  amplitude,  frequency,  and  initial

phase of the carrier respectively.
Sweep  jamming  in  this  paper  changes  the  centre  fre-

quency linearly with time. In addition, its amplitude may
also  change  with  time in  some cases,  and  it  can  cover  a
larger bandwidth in the frequency domain within a period
of time. The time domain signal expression is
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Js (t) = Asrect
(
1
T

)
exp

[
j2π ( f0+Kt) t

]
(3)

As T
f0 K

where  is the signal amplitude,  is the dwell time of a
certain frequency point,  is the initial frequency, and 
is the constant coefficient of frequency change with time.

Audio jamming refers  to  a  cosine signal  with a  single
frequency  that  can  interfere  with  a  certain  frequency
point.  It  is  the  basic  form  of  multi-tone  jamming.  The
time domain expression is

Ja = Aa exp
(
j2π fat+φa

)
(4)

Aa fa φawhere , ,  and  are  the  jamming signal  amplitude,
frequency,  and  initial  phase  respectively.  The  difference
in the initial phase generally does not cause the jamming
effect to change.

Spread  spectrum  jamming  usually  refers  to  direct
sequence spread spectrum (DSSS) signals. Depending on
the  spreading  code  rate,  the  navigation  signal  at  the  tar-
get  frequency  point  will  cause  narrowband  or  wideband
jamming. The time domain signal expression is

JD = ADC (t)exp
(
j2π fDt+φD

)
(5)

C (t)
AD fD φD

where  is  the  spreading  code  of  carrier  modulation.
, ,  and  are  the  amplitude,  frequency,  and  phase

of the carrier respectively. 

3. Recognition algorithm
Inspired by mechanical fault diagnosis methods [26], this
work uses TF analysis to strengthen signal features, then
LSTM is used to extract them. 

3.1    TF analysis

TF analysis transforms the signal from the time domain to
the TF domain. Signal features are similar in the time or
frequency domain, which sometimes can be easily distin-
guished in the TF domain. The TF analysis methods used
in this paper include the instantaneous frequency and the
spectral entropy.

S (t, f )

k =
⌊(Nx−L)/ (M−L)⌋ Nx

⌊x⌋
S (t, f )

The instantaneous frequency of a non-stationary signal
is a parameter that changes with time and is related to the
average  value  of  the  frequencies  present  in  the  signal.
When calculating  the  instantaneous  frequency,  using  the
short-time  Fourier  transform  to  calculate  the  TF  power
spectrum matrix  of the input signal first, the num-
ber  of  rows  is  equal  to  the  number  of  discrete  Fourier
transform  (DFT)  points,  the  number  of  columns 

,  represents the length of the origi-
nal  signal,  and  represents  rounding x down.  There-
fore, the  matrix is expressed as

S (t, f ) =
[
X1 ( f ) ,X2 ( f ) , · · · ,Xk ( f )

]
. (6)

S (t, f )The mth element in  is

Xm ( f ) =
∞∑

n=−∞

x (n)g (n−mR)e−j2πn f (7)

x (n) g (n)
Xm ( f )

mR R

where  is  a  discrete  time domain signal,  is  the
window  function  of M point  length,  and  is  the
DFT of the data in the window centre on time .  is
the number of data points skipped between two consecu-
tive  DFT.  Its  size  is  the  difference  between  the  window
length M and  the  overlap  length L.  Then  the  instanta-
neous frequency is estimated [27,28] as

finst (t) =

w ∞
0

f S (t, f )d fw ∞
0

S (t, f )d f
. (8)

x (n)
S (t, f )

P (m)

The  spectral  entropy  of  a  signal  is  a  measure  of  its
spectral  power  distribution.  The spectral  entropy regards
the normalized power distribution of the signal in the fre-
quency  domain  as  a  probability  distribution  and  calcu-
lates  its  information entropy.  The information entropy is
the spectral entropy in this case [29,30]. For signal ,
if  the  TF power  spectrum  is  known,  the  probabi-
lity distribution  is

P (m) =

∑
t
S (t,m)∑

f

∑
t
S (t, f )

(9)

S (t,m)where  is  the TF power spectrum at  a  certain fre-
quency m, then the spectral entropy is

H = −
N∑

m=1

P (m) log2 P (m). (10)

S (t, f )
The  probability  distribution  of  the  given  TF  power

spectrum  at t is

P (t,m) =
S (t,m)∑

f
S (t, f )

. (11)

Then the spectrum entropy at t is

H (t) = −
N∑

m=1

P (t,m) log2 P (t,m). (12)

Calculate the instantaneous frequency and the spectral
entropy  of  the  non-jamming  white  Gaussian  noise
(WGN), pulse jamming, sweep jamming, audio jamming
and  spread  spectrum  jamming  respectively  in  IF  band-
width.  The TF analysis  can be regarded as  data  pre-pro-
cessing  before  LSTM  training.  As  can  be  seen  from
Fig.  2,  the  pre-processing strengthens the  features  of  the
jamming  signal.  The  jamming  signal  parameters  are
shown  in Table  1.  As  shown  in Fig.  2,  the  top  of  each
panel  is  the  original  time-domain  sequence,  the  middle
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and  the  bottom  of  each  panel  are  the  instantaneous  fre-
quency and the spectral entropy sequences respectively. It

can  be  seen  that  the  feature  between  the  time  domain
sequences of different signals is not obvious.
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Fig. 2    TF analysis results of jamming signals
 
 
 

Table 1    Jamming signal parameters

Parameter Value

JNR/dB 10

IF/MHz 24

Pulse jamming period/μs 10

Duty cycle/% 10

Sweep jamming bandwidth/MHz 40

Audio jamming frequency/MHz 1 575.42

Spread spectrum jamming carrier frequency/MHz 1 575.42

Code rate/Mcps 2.046
 

However,  for  the  instantaneous  frequency  sequence,
there  are  significant  differences  between  jamming  sig-
nals.  WGN  has  a  wider  distribution  in  the  frequency
domain than other jamming signals, so the sequence fluc-
tuates  in  a  large  range.  In  a  pulse  period  of  pulse  jam-
ming,  the  value  of  instantaneous  frequency  alternates
between noise and carrier  frequency.  Sweep jamming li-

nearly increases or decreases the instantaneous frequency
with time. The frequency of audio jamming remains con-
stant  for  a  long  time.  The  instantaneous  frequency  of
spread  spectrum  jamming  fluctuates  around  the  carrier
frequency,  the  higher  code  rate,  and  the  larger  range
occupied for the sequence.

It  is  the  same  for  the  spectral  entropy  sequence.  The
sequence  value  of  WGN  is  the  largest.  For  pulse  jam-
ming, when there is a signal in the pulse period, the spec-
trum entropy mainly depends on the spectrum entropy of
the  carrier  or  it  is  similar  to  the  spectrum  entropy  of
noise.  Change of  frequency basically  does  not  affect  the
power  distribution  for  sweep  jamming.  For  spread  spec-
trum jamming,  the  value  of  the  sequence  between  audio
jamming  and  white  noise  is  significantly  different  from
other jamming signals.

Combining the two TF sequences will be benefit to dis-
tinguish the features of the jamming signal than the time
domain  sequences.  The  advantages  of  TF  analysis  is  be
shown in simulation and experiment. 
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3.2    LSTM neural networks

The standard RNN has a chain structure of repeating neu-
ral network modules, and there is only one nonlinear tanh
function  layer  inside  the  repeating  module,  while  the
repeating module of LSTM has a more complex structure.
The internal structure of each cell of the LSTM is shown
in Fig. 3.
  

tanh

tanh

ht

ht

ct
ct−1

ht−1

xt

zzizf zo

σ σσ

Fig. 3    LSTM cell structure
 

⊗
⊕

In Fig.  3,  is  Hadamard  multiplication,  that  is,  the
corresponding elements in the matrix are multiplied.  is
matrix addition.  The working principle of LSTM mainly
has the following four parts:

(i)  Decide  to  discard  information.  The  first  step  in
LSTM is to determine the information discarded from the
cell  state,  which  is  determined  by  a  forget  gate  gating
signal:

z f = σ
(
W f · [ht−1, xt]

T
+ b f

)
(13)

z fwhere  is  the  splicing  vector  multiplied  by  the  weight
matrix, and then converted to a number between 0 and 1
through a sigmoid activation function as the gated state of
the  forgotten  gate.  1  means  completely  reserved,  and  0
means completely discarded.

(ii) Confirm the update information. The next step is to
determine  the  new  information  stored  in  the  cell  state.
There are two parts. The first part is the input data, which
creates  an  updated  candidate  value  vector,  and  the  se-
cond part is the calculation of the input gate, which deter-
mines whether the input data in the first part is updated:

z = tanh
(
W · [ht−1, xt]

T
+ b

)
, (14)

zi = σ
(
W i · [ht−1, xt]

T
+ bi

)
, (15)

zi zwhere  is  the  state  of  the  update  gate,  is  the  value
between  −1  and  1  after  the  splicing  vector  is  multiplied
by the weight and converted into a value between −1 and
1  through  the  tanh  activation  function,  which  is  used  as
the input data of the module, and the two together gene-
rate an update to the state.

ct−1

z f

ct

(iii)  Update  the  cell  status.  The  first  two  steps  have
determined the upcoming operation, and this step is actu-
ally  completed.  Take  the  old  state  Hadamard  multi-
plicate ,  as  discard  the  information  determined  to  be
discarded in (i), then add the updated information jointly
determined by the two parts in (ii) to obtain the new state
value  as

ct = ct−1⊗ z f + z⊗ zi. (16)

(iv)  Confirm  the  output  information.  The  output  also
includes two parts: one is based on the updated cell state
to create the output candidate value vector, the other is to
calculate the gated state of the output gate. The two parts
jointly determineing the output information are

zo = σ
(
Wo · [ht−1, xt]

T
+ bo

)
, (17)

ht = zo⊗ tanh(ct) , (18)
zo ht

zo

ct

where  is the state of the output gate;  is the final out-
put  data  obtained  by  Hadamard  multiplication  of  and

 through the tanh activation function.
The cell state is similar to a conveyor belt, with only a

few linear interactions, so it is easy for the information to
be transmitted on it to remain unchanged. LSTM removes
or  adds  information  to  the  cell  state,  useful  features  are
remembered and useless features are forgotten. There are
usually two chain structures of the LSTM neural network:
one  is  the  LSTM  layer  composed  of  ordinary  unidirec-
tional  chains,  and  the  other  is  the  bidirectional  LSTM
(BiLSTM)  layer  combined  of  forward  and  backward
chain.  BiLSTM  is  more  conducive  to  sequence  features
extraction [31].

The  LSTM  network  contains  five  layers  including  a
sequence  input  layer  and  a  class  output  layer.  The  two
input sequences are obtained by pre-processing the origi-
nal jamming signal by the TF analysis in Subsection 3.1.
The  second  layer  is  BiLSTM  containing  200  cells  (100
forward  and  100  backward),  the  output  of  the  BiLSTM
layer goes through a fully connected layer. The fully con-
nected  layer  connects  each  node  output  by  the  BiLSTM
with  each  node  of  the  softmax  layer.  After  two  layers’
operation, jamming signal features are extracted from the
input.  Then the softmax layer is  used which can achieve
good  classification.  In  softmax  regression,  the  probabil-
ity that we classify input x into category j is calculated by

p (y = j|x;θ) =
eθT

j x

k∑
l=1

eθ
T
l x

(19)

θ kwhere  is the parameter of our model and  is the total
class number. The softmax classifier calculates the expo-
nent  of  each  probability  that  the  input  belongs  to  each
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category and normalizes all  exponential  probability.  It  is
widely  used  for  classification  problems.  The  specific
parameters of the network are shown in Table 2.
 
 

Table 2    LSTM neural network structure parameters

Layer Type Parameter

1 BiLSTM 200

2 Fully connected 5

3 Softmax 5
  

4. Simulation and experiment
The simulation and experiment use the same training and
testing  samples  to  compare  the  performance  of  CNN,
LSTM, and TF-LSTM. The structure parameters of CNN
refer to [24] and LSTM just has no time-frequency analy-
sis part compared with TF-LSTM. 

4.1    Simulation results and discussion
 

4.1.1    Neural network training

The jamming signal  for  neural  network training is  gene-
rated according to the signal model in Subsection 2.2. In
addition, WGN is regarded as non-jamming to detect the
existence  of  other  jamming  signals.  The  jamming  signal
parameters are as follows:

(i)  Jamming types: WGN, pulse jamming, sweep jam-
ming, audio jamming, and spread spectrum jamming.

(ii) JNR range: −5 dB to 15 dB.

T τ/T

K

fa

C (t)

(iii)  Other  parameters:  the  sample  frequency  is
125  MHz.  The  IF  is  24  MHz.  Pulse  jamming:  the  pulse
period  is between 1 μs and 1 ms, the duty cycle  is
10%.  Sweep  jamming:  the  sweep  frequency  is  between
1 555.42 MHz  and 1 575.42 MHz,  the  sweep  rate  is
between 0.4 MHz/s and 400 MHz/s. Audio jamming: the
carrier  frequency  is  randomly  generated  between
1 555.42 MHz and 1 575.42 MHz. Spread spectrum jam-
ming:  is  binary phase shift  keying modulation,  and
the code rate is between 0.204 6 Mcps and 10.23 Mcps.

(iv) Signal samples: the sample length is 10 240 points.
Each kind of the jamming signal has 1 000 training sam-
ples. There are a total of 5 × 1 000 = 5 000 training sam-
ples. Randomly select JNR and other parameters.

In  order  to  test  the  recognition  accuracy  of  different
methods, this work uses the following test samples:

(i) The JNRs of the test sample are −5 dB, 0 dB, 5 dB,
10 dB, and 15 dB respectively. Other parameters are sel-
ected randomly and the range is the same as the training
samples. There are a total of 5 × 5 × 1 000 = 25 000 sam-
ples.

(ii)  The JNR of the test  sample is randomly generated
between  −5  dB  and  15  dB.  Pulse  jamming,  sweep  jam-

ming,  and  spread  spectrum  jamming  parameters  are
shown  in Table  3.  There  are  a  total  of  4  ×  3  × 1 000 =
12 000 samples.
 

Table 3    Simulation jamming signal parameters

Jamming
type

Parameter Case 1 Case 2 Case 3 Case 4

Pulse Period/μs 1 10 100 1 000

Sweep
Sweep

rate/(MHz/s) 0.4 4 40 400

DSSS
Code rate/

Mcps
0.204 6 1.023 2.046 10.23

 

(iii) The JNR and other parameters of the multiple jam-
ming signals in each test sample are selected randomly as
(i). There are a total of 5 × 1 000 = 5 000 samples.

The test samples (i) correspond to the problem of JNR
variations in the actual scenario, the test samples (ii) cor-
respond  to  the  blind  classification  problem  where  the
jamming  signal  parameters  are  unknown,  and  the  test
samples (iii) mean multiple jammings appear at the same
time in the actual scenario. 

4.1.2    Recognition accuracy

In order to research the adaptability of different methods
to JNR. Test and draw the recognition accuracy of CNN,
LSTM and TF-LSTM under different JNRs in Fig. 4.
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Fig. 4    JNR adaptability simulation recognition accuracy
 

It can be seen from Fig. 4 that with the increase of the
jamming  signal  JNR,  the  recognition  accuracy  of  the
audio  and  pulse  jamming  increases.  The  recognition
accuracy  of  spread  spectrum  jamming  does  not  change
significantly,  and  even  with  the  increase  of  JNR,  the
accuracy  decreases  slightly.  This  is  because  CNN  and
LSTM  extract  noise  as  part  of  the  DSSS  feature  during
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training. The recognition accuracy of WGN and sweep is
stable around 100%.  It means that if there is jamming in
the navigation frequency band,  these methods can effec-
tively  detect  it.  Overall,  the  recognition  accuracy  of  TF-
LSTM for all jamming signals is higher than that of CNN
and LSTM under different JNRs.

The  adaptability  of  the  different  methods  to  jamming
parameters is shown in Fig. 5. At the same time, we also
test  the  recognition  accuracy  of  the  different  methods  in
multiple  jamming  scenarios,  the  results  can  be  seen  in
Fig. 6.
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Fig. 5    Parameter adaptability simulation recognition accuracy

 
Fig.  5 shows  that  there  is  a  significant  relationship

between  the  recognition  accuracy  and  the  jamming
parameters.  The  accuracy  of  pulse  jamming  is  greatly
reduced as the period reaches 1 ms for the three methods,
because the sequence length corresponding to the exces-
sive  pulse  period  exceeds  the  feature  extraction  capabi-
lity  of  CNN.  Although  the  length  of  the  sequence  that
LSTM  can  learn  is  limited,  it  still  performs  better  than
CNN. The sweep rate can be accurately identified in the
order of 0.4 MHz/s—4 MHz/s for LSTM, but the sweep
rate reaches 40 MHz/s or higher, its features are difficult
to be extracted by CNN and TF-LSTM, especially CNN.
When the code rate of spread spectrum jamming is lower
than  1  Mcps,  the  recognition  accuracy  is  significantly
reduced for CNN. In addition, it is not possible to directly
extract  the  sequence  features  for  LSTM.  Obviously,  for
the  TF-LSTM,  whether  it  is  adaptable  to  JNR  or  other
parameters,  its  performance  is  better  than  that  of  LSTM
and CNN.

Fig.  6 illustrates  that  when  multiple  jammings  app-
ear  at  the  same  time,  the  recognition  accuracy  of  CNN
for  each  jamming  signal  changes  dramatically,  especi-
ally  when  two  jammings  appear,  the  LSTM  also  pre-
sents a  similar  result,  while  the  recognition  accuracy  of
TF-LSTM also decreases, but the decline is little, and the
recognition accuracy is  still  the highest  overall.  It  shows
that the recognition accuracy of the three methods in the
appearance  of  multiple  jammings  decreases  to  varying
degrees,  but  the  robustness  and  recognition  accuracy  of
CNN and LSTM are not as good as TF-LSTM. 

4.2    Experimental results and discussions

In this work, the experiment environment is placed in an
open  space.  The  platform  of  the  jamming  recognition
research  consists  of  receiving  antennas,  universal  soft-
ware  radio  peripheral  (USRP)  N300  and  Laptop.  The
jamming signals are generated by a vector signal genera-
tor Agilent E4438C.

The jamming signal used for neural network training is
collected  by  the  instrument  on  the  right  in Fig.  7.  The
parameters  of  the  jamming  signal  generated  by  Agilent
E4438C are the same as those in the simulation part.
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Fig. 7    Experiment scenario
  

4.2.1    Neural network training

In  order  to  test  the  recognition  accuracy  of  different
methods, this work uses the following test samples:

(i) The JNRs of the test sample are −5 dB, 0 dB, 5 dB,
10 dB, and 15 dB respectively. Other parameters of jam-
ming  signals  are  randomly  selected  from Table  3,  and
there are a total of 5 × 5 × 1 000 = 25 000 samples.

(ii)  The  JNR  of  the  test  sample  is  randomly  selected
from −5 dB—15 dB. Pulse jamming, sweep jamming and
spread spectrum jamming parameters are those in Table 3,
and there are a total of 4 × 3 × 1 000 = 12 000 samples.

(iii)  Limited  by  the  experimental  conditions,  the  JNR
and other parameters of the two jamming signals in each
test  sample  are  traversed  simultaneously  from  −5  dB  to
15 dB and Table 3, respectively. There are a total of 5 ×
1 000 = 5 000 samples. 

4.2.2    Recognition accuracy

The recognition accuracy curve of the method under dif-
ferent JNRs is shown in Fig. 8. The recognition accuracy
under different parameters is shown in Fig. 9. Meanwhile,
Fig. 10 shows the multiple jamming recognition accuracy.
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It can be seen from Fig. 8 that with the increase of the
jamming  signal  JNR,  the  recognition  accuracy  of  most
jamming  signals  is  improved,  and  the  recognition  accu-
racy of  WGN is  still  stable  around 100%.  In  the  experi-
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mental  scenario,  the  reflection of  ground in  the  environ-
ment  causes  multipath  signals  and  other  effects,  and  the
actual instrument is difficult to generate jamming signals
consistent with the simulation, so the results of the experi-
ment are slightly different from simulation. However, the
recognition accuracy of TF-LSTM is still the highest.

The  results  in Fig.  9 also  show that  there  is  a  signifi-
cant  relationship  between  the  recognition  accuracy  and
the  jamming  parameters.  The  accuracy  of  pulse  and
spread  spectrum  jamming  is  consistent  with  the  simula-
tion  results.  However,  the  recognition  accuracy  for  the
sweep jamming is different from the simulation, because
when Agilent E4438C generates sweep signals, there is at
least 1 ms dwell time at a certain frequency, which leads
to  the  recognition  accuracy  of  LSTM  decreasing  and
CNN increasing under the same conditions. TF-LSTM is
still robust to parameter variations in a wide range.

Fig. 10 illustrates that when multiple jammings appear,
CNN and LSTM show certain similarity with the simula-
tion  results,  but  the  recognition  accuracy  of  audio  jam-
ming and sweep jamming is maintained high. The recog-
nition  accuracy  of  TF-LSTM  decreases  slowly  with  the
increase  of  jamming  quantity,  but  the  accuracy  and
robustness  of  TF-LSTM  in  multiple  jamming  scenarios
are still the best. 

5. Conclusions
To  solve  the  problem  of  navigation  jamming  signal
recognition  with  unknown  JNR  and  other  parameters  in
actual scenarios, a method named TF-LSTM is proposed.
The combination of TF and LSTM improves the recogni-
tion  ability  of  the  GNSS receiver,  which  will  be  benefi-
cial  to  the  jamming  parameter  estimation  and  mitigation
in the future. Several groups of comparative experiments
show that the recognition accuracy of TF-LSTM is higher
than that of CNN and LSTM, and it is robust to jamming
parameters  variations  in  a  wide  range  and  multiple  jam-
mings.
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