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Abstract: In recent years, ground-based micro-deformation
monitoring radar has attracted much attention due to its excel-
lent monitoring capability. By controlling the repeated cam-
paigns of the radar antenna on a fixed track, ground-based
micro-deformation monitoring radar can accomplish repeat-pass
interferometry without a space baseline and thus obtain high-
precisiondeformationdataofalargesceneatonetime. However, itis
difficult to guarantee absolute stable installation position in every
campaign. If the installation position is unstable, the stability of the
radar track will be affected randomly, resulting in time-varying
baseline error. In this study, a correction method for this error is
developed by analyzing the error distribution law while the spa-
tial baseline is unknown. In practice, the error data are first iden-
tified by frequency components, then the data of each one-di-
mensional array (in azimuth direction or range direction) are grou-
ped based on numerical distribution period, and finally the error
is corrected by the nonlinear model established with each group.
This method is verified with measured data from a slope in sou-
thern China, and the results show that the method can effective-
ly correct the time-varying baseline error caused by rail instability
and effectively improve the monitoring data accuracy of ground-
based micro-deformation radar in short term and long term.

Keywords: ground-based micro-deformation monitoring radar,
deformation monitoring, time-varying baseline, error compensa-
tion.
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1. Introduction

Due to influences from external factors (celestial gravity
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and surface loads) and internal factors (dynamical pertur-
bations of the fluid outer core), the surface deformation
of Earth is incessant. At the same time, affected by the
growing intensity and frequency of human activities and
frequent extreme weather events, the deformation is
increasing significantly [1-6]. In this case, landslides,
debris flow, ground collapse, and other geological disas-
ters are common all over the world, and has become an
important safety hazard in our life and production [7—10].
Therefore, monitoring surface deformation accurately in
real time is essential. At present, researchers have deve-
loped a variety of instruments for monitoring ground disa-
sters and predicting the evolution of surface deformation
[11-14]. Among them, as an active remote sensing moni-
toring approach, ground-based micro-deformation moni-
toring radar has attracted much attention due to its long
monitoring distance, wide monitoring range, and all-day,
all-weather monitoring capability [15—18]. Over the past
decades, ground-based micro-deformation monitoring
radar has been successfully applied to the cases of slopes,
volcanoes, large electric pole towers, and surface col-
lapse [19-23].

In general, some stress changes occur inside the struc-
ture of a slope, dam, or other terrain before macroscopic
instabilities occur, which are gradually reflected on the
surface in the form of surface deformation [24—27]. This
process has no time limit and is highly susceptible to
extreme weather (strong winds or rain), but it could be
predicted if the deformation information were to be cap-
tured [21,28—30]. For the ground-based micro-deforma-
tion monitoring radar, there are mainly two working
modes used for different application scenarios, i.e., the
continuous mode and the discontinuous mode. The con-
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tinuous mode is suitable for a relatively fixed and risky
scene requiring constant monitoring because an instabi-
lity incident could occur at any time. In contrast, the dis-
continuous mode allows longer time intervals between
rounds of monitoring, which can be applied in a scene
where the risk is lower and the target is relatively dis-
persed. The advantage of the discontinuous mode is that
it enables technicians to monitor multiple targets with
fewer instruments. It is worth noting that the ground-
based micro-deformation monitoring radar requires high
baseline accuracy in both modes, creating a thorny prob-
lem [31-33]. When the instrument is working in the dis-
continuous mode, it is difficult to ensure the positions of
the instrument coincide exactly in two observations, but
any inconsistencies will result in a large baseline error.
Although most errors can be removed during data pro-
cessing by means of image registration and coordinate
correction, some will remain. However, even if the instru-
ment is working in the continuous mode, the mechanical
disturbance of the platform and the slow creep of the
placement point will also lead to a baseline error, and the
accumulation of such error cannot be negligible in a long-
term observation [34—38].

In summary, it is necessary to carry out time-varying
baseline error correction, and data with such error have
relatively obvious characteristics. Hence, this paper pro-
poses a method to correct the baseline error of monitor-
ing results when the baseline offset is unknown. The
method first identifies the data with baseline error by the
numerical distribution information within deformation
data. The deformation error data are then decomposed
into multiple one-dimensional arrays in the azimuth
direction (or in the range direction) based on the error
distribution. After that, every one-dimensional array is
further decomposed into multiple smaller one-dimen-
sional arrays according to the numerical distribution
information of the numerical distribution in it. Finally,
the error is corrected with the established models.

This paper is organized as follows: Section 2 describes
the study area. Section 3 introduces the core theories and
methods, including the calibration process and how to
achieve error identification and error correction. Section 4
presents the results. Taking the continuous model as an
example, this paper verifies the correction effect of the
proposed method under the conditions of short-term mo-
nitoring and long-term monitoring with the measured data
of a slope in southern China. Section 5 and Section 6
present discussions and conclusions respectively.

2. Theory and study area
2.1 Interference theory

Interferometric measurement is widely used in ground-

based micro-deformation monitoring radar. With this
technique, the interferometric phase between pixels of the
same name is obtained by conjugate multiplication of two
radar complex images. Interference phases consist of se-
veral components, that is,

D=0+ @+ Qi+ Qo+ Povj + Pn (D

where ¢, is the reference plane phase, ¢, is the topo-
graphic phase, ¢, is the deformation phase, ¢, is the
atmospheric phase, ¢, is the additional phase due to
changes in scattering characteristics, and ¢, is the noise.
Generally, orbital data, digital elevation model (DEM)
data and atmospheric data can be introduced to filter out
¢r, ¢, and ¢,. If the parameter characteristics of the tar-
get before and after deformation remain unchanged, then
@a; can also be ignored. In this case, the composition of
the interference phase includes

b=+, 2

Noise is difficult to filter out, while its value is usually
acceptable. Then the interference phase is obtained and
the deformation value of the target is calculated based on
it [39—42], that is,

1
AR = —4—(90d +¢,) 3
7T

where AR is the deformation value, and A is the signal
wavelength.

In practice, as Fig. 1 shows, if the distance changes
(suppose the center of the instrument moves from O to
0"), the baseline error will add a geometric phase to the
interferometric phase, which can be regarded as ¢, in (1),
that is,

3 _4n(0'P’—0P) _ 4ndsing
a A " Asin(B-a)

“4)

where S is the slope inclination, « is the angle between
the radar line of sight (LOS) and the horizontal line, and
it can be seen that ¢, is influenced by the baseline offset,
the distance and visual angle between the radar and the
target, and the shape of the target surface.

Horizontal line ,L

Fig. 1 Schematic diagram of the impact of instrument instability
on monitoring
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It is worth mentioning that, due to the periodicity of
trigonometric functions, the phase difference we end up
with is the phase principal value, which is also known as
the wrapped phase and is limited to the range [—n,+nx]. If
the baseline error is so large that the additional geometric
phase exceeds the range [—m,tn], the phase difference
will vary periodically within it [43—46]. As for tradi-
tional approaches, this type of error is often considered as
simple low-frequency signal filtering, as its numerical
distribution shows the distinct characteristic of a large-
amplitude and low-frequency signal [31,38]. However,
the numerical jump of the phase at +r prevents simple fil-
tering from being able to completely eliminate the error.
And it is also difficult to eliminate the baseline error from
the source while the offset and direction of the instru-
ment movement are random and unknown.

2.2 Study area

The study area of this paper is a slope located in southern
China, it is composed of a large mass of soil, detritus and
a large expensed rock wall which is generated by a mas-
sive landslide.

As presented in Fig.2(a), the stability of the slope needs
to be monitored in real time as the engineers reinforce the
exposed rock wall and treat the slope and its surrounding
facilities. The engineers also place guardrails on the rock
walls to protect workers and equipment from rock falling.

(a) Partition diagram of monitoring target

(b) Schematic diagram of Area-2

: Reinforced area;
: Guardrail.

——: Exposed rock wall;
—— Terrene slope;

Fig.2 Schematic diagram of monitoring target

The ground-based micro-deformation monitoring radar
was developed by Inner Mongolia Mypattern Technol-
ogy Co., Ltd., which was placed at a position of about
200 m to the observed area on the south side of the slope.
It mainly adopts the synthetic aperture technique and the
differential interferometry technique, and it can obtain the
deformation information of the whole slope at one time.
It works at a frequency of Ku band. Some parameters of
the instrument are shown in Table 1.

Table 1 Instrument parameters

Parameter Value
Bandwidth/MHz 500
Field of view/(°) >60 (azimuth)x30 (elevation)
Repetition time/min 8
Resolution 0.3 mx 5.4 mrad

During the monitoring process, the instrument was
unstable due to ground construction and earthquake, and
thus time-varying baseline error occurred in the monitor-
ing data. The monitoring area experienced several intense
precipitations in July 2019, resulting in instability in two
areas on the slope, denoted as Area-1 and Area-2 in Fig. 2.
These two cases provided multiple types of data for this
study, and the timing continuity of the data was good.
Finally, the data from July 15, 2019 to July 31, 2019,
were selected as measured cases for demonstration.

3. Materials and methods
3.1 Data-processing flow

The processing flow of the method proposed in this paper
is shown in Fig. 3. The process can be divided into two
parts. First, it should be determined whether the data con-
tain baseline errors, and then any errors should be cor-
rected. In practical monitoring, deviations of the instru-
ment’s orientation may lead to different distribution
modes of the error (along the range direction or along the
azimuth direction). In addition, the shape of the monitor-
ing target surface may make it difficult for the radar sig-
nal to reach some certain areas, thus resulting in fade
areas. Therefore, it is necessary to select multiple one-
dimensional arrays at equal intervals along two direc-
tions in the deformation data to ensure that the informa-
tion is not omitted due to missing data. To be specific,
several one-dimensional arrays are first selected in the
range direction at equal intervals after obtaining deforma-
tion data, and the fast Fourier transform (FFT) is applied.
Then it is judged whether there is a low-frequency com-
ponent with a large amplitude in the entire frequency
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component. If so, it means that there is baseline error in
the data, which should be corrected. If not, we should
select several one-dimensional arrays at equal intervals in
the azimuth direction and conduct the same operations as
in the range direction. Once there is no obvious low-fre-
quency component with large amplitude in the range
direction and azimuth direction, the data are free of base-
line error.

Range FFT

Larger
amplitude
and
low-frequency?

Azimuth FFT

Larger
amplitude
and No error
low-frequency?, -

Error correction

Filter outlier
Groups numbe
determination

Nonlinear model
establishment

Error correction

Fig.3 Flow chart of error identification and error correction
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The purpose of clustering and grouping the data is to
avoid the difficulties caused by the numerical jump at 7.
Furthermore, to improve the accuracy of data clustering,
outliers in the data should be filtered out. In the method
proposed in this paper, we hope that the data of each
period can be divided into a separate group, and the num-
ber of groups depends on the number of phase wrap
cycles, which can also be estimated by the frequency
component of data. After that, the value distribution in
each group should be monotonically increasing (or
decreasing). Nevertheless, this trend is not necessarily
linear due to the influence of the target surface shape,
thus a nonlinear model is established according to the
trend, and the error is finally corrected by the model.

In addition, Fig.4 shows two kinds of data that can be
used in the above processing: deformation data and
review data. Deformation data represents the real-time
state of the observed area, which reflects the difference

between the echo data of two adjacent campaigns. Never-
theless, if the instrument is shifted at a slow rate, the error
may be not obvious enough to present in the real-time
data. At this time, two echo data with a longer time inter-
val which called review data in this paper can be adopted
in the difference processing so as to observe the cumula-
tive result of the error. Even more important is that the
time interval mentioned above must be well limited. If
the interval is too long, the accumulated error may
become larger and lead to multiple periods wrapped
phase, or even lose the true deformation value of the tar-
get during this interval [47—50]. The appropriate interval
should be chosen with reference to the specific situation
in practice.
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Echo amplitude data Review data

Deformation data

Fig. 4 Deformation data and review data

3.2 Error identification

As mentioned above, the time-varying baseline error can-
not be simply filtered as a low-frequency signal, but it
can still be identified based on this feature. Suppose the
selected one-dimensional array is V, and then the fre-
quency component for ' needs to be analyzed, that is,

F((Alvfl)’(AZ»fZ)»' o ’(An—l’ﬁl—l)?(Aﬂ’f;l)) = fft(V) (5)

where 4, and f, are the amplitude and frequency for each
component respectively, n (n EN’) is affected by the
sampling frequency f; and the number of sampling points
N, and fft(-) is the FFT function. To observe the fre-
quency components in V further completely, more sam-
pling points and a higher sampling frequency can be
adopted. If the obtained frequency component contains a
large amplitude signal with low frequency, the data con-
tain errors. Nevertheless, it should be noted that neither
the large amplitude nor the low frequency adopted here is
an absolute standard, meaning their values are different in
different monitoring scenarios. Therefore, it is more appro-
priate to consider the statistical result of real-time data in
practice and the prior information when setting the ampli-
tude threshold T, and frequency threshold 7.

3.3 Error correction

In spaceborne and airborne interferometry, a common
method is to establish an appropriate mathematical model
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based on the error distribution and to remove the error
with the fitting data obtained by the model [51]. It is quite
difficult, though, to build a highly accurate mathematical
model due to the influence of multiple sources of error
and observation blind area on data. However, the area
studied in this manuscript is small and has not undergone
drastic topographic changes. This makes the error caused
by baseline instability very similar to the flat bottom
effect of interference processing in spaceborne and air-
borne conditions. It is also could be noticed that, in this
case, the error distribution along the distance direction
was regular, and the data in different directions had a
good correlation. This greatly simplifies model building,
and it allows for error correction row by row or column
by column.

Another problem is that, due to terrain changes and
periodic phase changes, the error value will repeatedly
jump at a phase equal to £r. If each period can be sepa-
rated from the wrapped phase, then each separated dataset
will present a simple monotone nonlinear change, and its
mathematical modeling will also be simple. Therefore,
the key step of the proposed method for error correction
in this paper is to firstly separate out each period of the
one-dimensional array J and then establish mathematical
models for correction. The process can be divided into
the following steps.

3.3.1 Outliers filtration

The accuracy of separating will directly affect the correc-
tion result, and it will help to improve the accuracy if the
numerical distribution trend of V is clear, or the number
of the wrapped period is known. Therefore, outliers in V
need to be filtered out.

Since the numerical difference between a outlier and
its adjacent element is usually larger than that of the nor-
mal adjacent elements, and the difference value of nor-
mal adjacent elements that in a same period is smaller,
the standard deviation of the difference value for adja-
cent elements in ¥ can be used as the threshold for identi-
fying outliers. That is,

S WiV
i=2

2

Tour = i

-(V;=Vi) /m (6)
=2
where T, is the recognition threshold, and m is the ele-
ments number of V. The point can be considered as an
outlier as long as its numerical difference with any adja-
cent element is greater than this threshold (the value of
the element in the fade area is considered to be 0), and the
value of the outliers will be set to zero.

3.3.2 Numerical clustering

Since the period of the wrapped phase should be very
close to the period of the low-frequency component with
the maximum amplitude, the frequency component analy-
sis of the filtered V, named V., in the following, will be
helpful to determine the number of the wrapped period,
specificly:

Ny, = Lmy/ frax(A)] (7

where N, is the number of the wrapped period, and m, is
the sequence length of non-zero elements within ¥, which
is equal to the coordinate numerical difference between
the last non-zero element and the first non-zero element
in V, and f,.,(4) is the frequency of the component with
the largest amplitude. The periods number should be
equal to the groups number. Similar to the method of
removing outliers, this paper mainly depends on the
numerical difference between adjacent non-zero ele-
ments in the clustering process, but the threshold value at
this time should be obtained by V., that is,

m
m E (Vﬁller,i - Vﬁter,i—l)

i=2
ToukZ = Z m

j=2

— (Viier, i Viiter, j—l) / m

®)
where T, is the threshold for clustering, and this pro-
cess should be carried out from the first non-zero ele-
ment of V... They will be considered to belong to the
same group if the absolute difference value of two adja-
cent non-zero elements is less than 7,,.,; otherwise, they
will be respectively assigned to the two adjacent groups.
Furthermore, it should be noted that the data in a same
period may be discontinuous, but the trend should be con-
sistent. Therefore, the threshold actually used in this pro-
cess is ¢ x T,,,, where ¢ is the coordinate interval bet-
ween two adjacent non-zero elements. Obviously, it is
established on the premise that the value in a single
period changes linearly, but in fact the time-varying base-
line error usually shows a nonlinear change. It means if
there is a long data discontinuous in Vi, the linear
growth rate of T, threshold may be too high, and thus
leading to the wrong clustering. Based on the statistical
results of actual data, this paper sets the upper limit of the
growth of this threshold, which is not more than half of
the maximum value in V., that is,

Toulfv = CToukZ
€

1
Toul—v < 5 max Vﬁltcr
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Clustering is easy to implement when only one or two
periods exist in the data, since the elements only need to
be organized into one or two groups. However, if the
number of periods is greater than two, another decision
condition needs to be added in the clustering to deter-
mine whether the element assigned to a group will obey
the monotonicity formed by the existing element in the
group. For example, if the numerical distribution in V.,
is three periods, then it should be split into three groups.
When the difference between an element and the last ele-
ment of the first group is greater than 7., the element
should be assigned to the second group. When the differ-
ence between an element and the last element of the se-
cond group is greater than T, then it should be deter-
mined whether the value of the element obeys the mono-
tonicity formed by the existing element in the first group;
if not, the element should be assigned to the third group.
Generally, the elements in two nonadjacent periods will
not cross each other. Thus, the clustering of the first
group has been completed when the third group has an
element allocated.

3.3.3 Least squares (LS) numerical fitting

Each group obtained by clustering can be represented by
a nonlinear mathematical model, that is,

S (x) = appo(x) +a @1 (x) + arps(x) (10)

where a,, a,, a, are the coefficients of the model, and
0o(x), @,(x), p,(x) are linearly independent function clus-
ters. In this paper, it can be considered as ¢,(x) = 1, py(x) =
x, and @y(x) = x> when a second-order nonlinear mathe-
matical model is adopted [52]. The LS method is adopted
to solve the coefficients of the model, which assumes the
existence of a cluster value J as follows:

2
1615 = min " (S (x) = £(x))’ (11)
i=0

where f(x;) is the value of the original function. To make
model S(x) to approximate the original value as close as
possible, 0 should be as small as possible, and it will
reach the best case if S(x;) is equal to f{x;). Nevertheless,
this is impossible for an irregular function, so it turns into
a problem of finding a minimum value for a function with
several variables, and can be solved by Ga=d, that is,

a=lay a az]T
dz[do dl dz]T

(®0s0)  (o,01)  (po,p2) | - (12)
G=| (p1,0) (L1,01) (p1,02)

(®2,0)  (@2,01)  (¢2.02)

The solutions of (¢;, ¢,) and d, are as follows:

2
(05 00) = D () 4 (x)
SN(E)
(Fre0) = D f () @u(x) = di k=0,12
i=0

The complete expression of model S(x) can be obtained
when the coefficients a, a,, a, are calculated by (12) and
(13), and then the error correction can be completed by
subtracting model S(x) from the original array V. It
should be noted that since V" may contain more than one
S(x), multiple sections are required for error correction.
The outliers that are filtered out in the first step of the
error correction should also participate in the process and
be corrected by the model with the closest values. More-
over, all the expositions and processes mentioned above
will be presented more intuitively in the results section.

4. Results

This section presents the verification results of the pro-
posed method using measured data of a slope in southern
China. The instrument used in this project is affected by
construction, earthquake, and other factors during the
monitoring period, and it successfully detects two land-
slides, so the instrument provids abundant and reliable
measured data for this study. Subsection 4.1 presents the
results of error identification and compares the character-
istic differences between different types of data. In Sub-
section 4.2, the effect of error correction is shown from
the perspectives of short-term and long-term monitoring.

4.1 Error identification results

This subsection presents the frequency analysis results of
three types of data: data with no baseline error and no sig-
nificant deformation, data with no baseline error but sig-
nificant deformation, and data with significant baseline
error (for brevity, they will hereafter be called Type-1,
Type-2, and Type-3). In the frequency analysis process,
several one-dimensional arrays are taken from each type
of data, and their frequency components are compared.
The results are shown in Fig. 5. The deformation maps of
the three types of data selected are shown in Fig. 5(a),
Fig. 5(d), and Fig. 5(g), while the corresponding selected
one-dimensional arrays are marked with red dotted lines
in the figures. It can be seen from Fig. 5(b) that small
amplitude of numerical fluctuation occurs at 50—100 m
from the instrument, which likely reflects the influence of
ground construction activities. Meanwhile, as shown in
Fig. 5(b) and Fig. 5(c), the data amplitude is small, and so
is the amplitude of the low-frequency component. When
the selected one-dimensional array passes through a
deformation area in the monitoring scene, it brings a large
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peak to the numerical distribution in an appropriate posi-
tion, as shown in Fig. 5(e), so the amplitude of the low-
frequency component in the array also increases. Finally,
the numerical distribution shows obvious periodicity (as
shown in Fig. 5(h)) when there is a baseline error, and the
amplitude of the low-frequency component is signifi-
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(a) Data with no baseline error and no
significant deformation
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cantly greater than that of the other two types of data. In
addition, it can be seen from Fig. 5(g) that, due to the
uneven distribution of the actual terrain, there is a case of
repeated numerical jumps at the position of phase wrap,
which makes the two adjacent periods intersect and
increases the difficulty of clustering.
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Fig. 5

(h) Numerical distribution of Array-3

Characteristics of different types of data

(1) Frequency components of Array-3

The amplitude distribution of the low-frequency com-
ponents of different types of data can be obtained accord-
ing to the above analysis. Images of 1330 scenes are cal-
culated to further verify the rule, and the results are
shown in Table 2. This statistic helps to determine the
threshold 7, which is used to identify the error data, as
the peak value 0.6 is the boundary line between Type-3
and the other two types. Thus, it should be the appropri-
ate value to determine if the monitoring data for the study
area contains baseline error. In practice, engineers do not
need to update the threshold in real time. They only need

to give a reference threshold applicable to the current
region by monitoring the initial data statistics.

Table 2 Amplitude peak distribution of low-frequency compo-
nents for different types of data %
Peak value Type-1 Type-2 Type-3
0.0-0.3 88.3 232 0.0
0.3-0.6 11.7 76.8 0.0
0.6-1.0 0.0 0.0 472

>1.0 0.0 0.0 52.8
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4.2 Error identification results

According to the method introduced above, this section
selects two one-dimensional arrays from the data, namely,
Array-5 and Array-6. We take range direction as an exa-
mple to present the error correction process. Among them,
Array-5 passes through a small deformation area caused
by construction, denoted as Area-3, while Array-6 passes
through no deformation area. At the same time, it can be
clearly seen that the error value in the data transforms

945

two cycles, so the clustering result should be two groups.
The details are shown in Fig. 6. The two intersecting
cycles are accurately divided into two groups, and the
numerical distribution in each group is very clear, so it is
easy to establish the mathematical model. In addition, it
can be seen from Fig. 6(e) and Fig. 6(f) that the value of
Area-3 still maintains an original relative relation with
the values of its adjacent pixel points, indicating that the
process retains the real deformation information when
correcting errors.
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Fig. 6 Example for error correction process

After the above processing for each one-dimensional
array in the data to be corrected, a complete error correc-
tion can be achieved, with the results shown in Fig. 7(a).
It is obvious that the original obvious baseline error is

well corrected, while Area-3 retains the relatively com-
plete deformation information. Fig. 7(b) presents the cor-
rection results for short-term data, while Fig. 8(a)
presents the correction results for long-term deformation
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accumulation. It can be seen that there are two deforma-
tion areas in the monitoring scene. In fact, the occurrence
time of these two areas of deformation is inconsistent,
because the method deals with each single interference
result in the process of processing, rather than the accu-
mulation of multiple interference results. At the same
time, when the data collection period of the equipment is
short enough, the numerical change caused by the defor-
mation will not exceed 4/4, and there will not be a large
numerical mutation. Therefore, this method is feasible
when there are multiple deformation regions in the scene.
The obvious negative deformation occurred in the rein-
forcement area and the ground construction area, as
shown in Fig. 8(a). However, large area deformation did
not occur, this indicated that the monitoring data are
affected by the instability of the instrument and would
seriously mislead the stability judgment. However, there
are many discrete deformation points or point sets due to
the frequent human activities, construction, and many
unstable scattered gravel pieces in the monitoring scene,
which cannot be ignored.
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Fig.7 Deformation data comparison before and after correction
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Fig. 8 Cumulative deformation before and after correction within
half a month

However, in slope stability monitoring, it is not worth
worrying about if the target cumulative value is only
caused by a sudden change in the deformation value at a
certain time, because it is likely that the monitoring data
are interfered with human activity [53]. The areas of
interest are Area-1 and Area-2, which are out of the
human activity range and exhibit continuous deformation.
Finally, it can be found through comparison that the cor-
rection method of long-term accumulated data proposed
in this paper can get good correction of errors and retain
the deformation information of Area-1 and Area-2. In
addition, it can be seen from Fig. 8 that there is a linear
deformation zone below Area-2, which corresponds to
the guardrail in Fig. 2(a). This indicates that stones falling
from Area-2 are intercepted by the protective fence.
Although the impact force of the falling stones causes the
guardrail to deform, the guardrail successfully protects
the staff and equipment.
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5. Discussions

According to the working principle and measured data of
the ground-based micro-variation monitoring radar, this
study illustrates that time-varying baseline error has a sig-
nificant impact on the accuracy and reliability of monitor-
ing data. The measured data used in this study are col-
lected in the continuous mode, and the time-varying base-
line error in this mode may be caused by construction,
instrument instability caused by earthquake, and mechani-
cal disturbance, which may be without great impact but
relatively frequent. The errors generated by different
causes differ in amplitude and frequency, so there is a
variety of error data superimposed on each other in the
long-term data accumulation, making the frequency com-
ponents in the accumulated data extremely complex, and
thus making the error correction difficult. In view of this
situation, this study suggests that data review should be
carried out before data accumulation, and the selection of
time interval during the review process should be care-
fully considered. In general, longer time intervals may
make the time-varying baseline errors in the data more
apparent, thus making clustering and modeling easier and
correcting results more accurate. However, excessive
time intervals may cause time de-coherence, resulting in
the loss of some key data, especially when the target is
deformed. In contrast, short time intervals can ensure
good coherence but may not be enough to highlight the
time-varying baseline error. Therefore, this study chooses
a relatively flexible strategy in the accumulation of mea-
sured data: if the target is relatively stable, a longer time
interval can be selected during the data review, and if the
target is deformed, a shorter time interval can be adopted.
Fig. 8 shows the results when 2 h/8 min (stable stage/
deformation stage) is used as the time interval of data
review.

To further illustrate the correction results at different
time intervals, Fig. 9 shows the cases in which the time
intervals are 2 h/30 min and 1 h/8 min. It can be seen
from Fig. 9(a) that adopting a longer time interval when
the target is deformed will indeed result in the loss of
deformation information, and Fig. 9(b) indicates that
using a shorter time interval during the stability stage
may retain more errors.

The selection of specific values should be determined
after the monitoring target is fully monitored and analy-
zed. The inversion analysis can be used to determine
whether the monitoring target is stable or deformed in a
certain period.

Finally, special attention should be paid to the stability
of the instrument so that the time-varying baseline error
can be corrected. If the instrument is operating in the dis-

continuous mode, the reference points of the two cam-
paigns should coincide as much as possible to minimize
the impact of the time-varying baseline error on monitor-
ing. It should be noted that the influence of atmospheric
changes on monitoring results is not considered in this
study since an atmospheric correction processing module
has been added to the test instrument used in this study
[54]. The introduction of atmospheric delay will compli-
cate the calibration model, which will be the focus of our
future work.
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Fig. 9 Correction cumulative deformation data comparison in dif-
ferent time interval

6. Conclusions

The stability of the ground-based micro-deformation
monitoring radar is important to obtain accurate deforma-
tion information, as additional time-varying baseline error
may lead to misjudgment by the monitoring system or
observers if the instrument is unstable. Although engi-
neers attach great importance to the stability of the gro-
und-based micro-deformation monitoring radar in practi-
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cal monitoring, it is difficult to eliminate instability dur-
ing the monitoring period, so it is necessary to correct the
time-varying baseline error. The method proposed in this
paper aims to correct time-varying baseline error under
the condition that the space baseline is unknown. It can
identify the data affected by time-varying baseline error
according to the frequency and the numerical distribution
information, disintegrate the data into several parts to
simplify the mathematical model, and achieve error cor-
rection. The data after correction will be more accurate
and reliable, which will help observers and engineers
more accurately judge slope stability, especially in the
process of long-term deformation accumulation. Accord-
ing to successful validation with the measured data of a
slope in southern China, the proposed method can accu-
rately identify data containing errors, and the data quality
after correction can reach the level of normal data while rela-
tively complete deformation information is retained. Over-
all, the method in this paper has good feasibility and effec-
tiveness both in short-term and long-term monitoring.
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