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Abstract: In this paper, stochastic stabilization is investigated
by max-plus algebra for a Markovian jump cloud control system
with a reference signal. For the Markovian jump cloud control
system, there exists framework adjustment whose evolution is
satisfied with a Markov chain. Using max-plus algebra, a max-
plus stochastic system is used to describe the Markovian jump
cloud control system. A causal feedback matrix is obtained by
exponential stability analysis for a causal feedback controller of
the Markovian jump cloud control system. A sufficient condition
is given to ensure existence on the causal feedback matrix of the
causal feedback controller. Based on the causal feedback con-
troller, stochastic stabilization in probability is analyzed for the
Markovian jump cloud control system with a reference signal.
Simulation results are given to show effectiveness of the causal
feedback controller for the Markovian jump cloud control sys-
tem.

Keywords: Markovian jump cloud control system, causal feed-
back controller, max-plus algebra, max-product algebra,
stochastic stabilization.

DOI: 10.23919/JSEE.2022.000082

1. Introduction

Since its birth, cloud computing has attracted much atten-
tion for significate advantages in data processing, com-
puting power and communication security [1]. With
expansion of application scenarios, cloud computing is
applied into many complex applications which usually
have time-varying characteristics and switching struc-
tures [2,3]. A time-varying data cloud computing system
is used to reduce communication burden of individual
agents in a low-power nonlinear multi-agent system [2].
In [3], a multi-order Markov chain framework is designed
for anomaly detection uncertainties which are caused by
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structural change of a cloud server system. Nowadays,
new-type systems on cloud computing are investigated
such as cloud control systems [4], mobile cloud comput-
ing systems [5] and mCloud systems [6]. For a cloud con-
trol system, there exist numerous delays which are gene-
rated by information transmission and computing pro-
cesses [7,8]. Based on cloud predictive control schemes,
networked delays from information transmission are han-
dled to achieve consensus control for a networked multia-
gent system with cloud computing [7]. In [8], time delays
of computing processes are analyzed on predictive cloud
control for a networked multiagent system with quan-
tized signals and deniel of service (DoS) attacks. Dur-
ing a cloud control process, a processing frame-
work of a cloud control system is usually changeable for
the reason of that the processing framework is adjusted
according to control expectation in real time [9]. More-
over, framework adjustment of a cloud control system is
often dependent on states in the last sampling time solely
such that it is reasonable to take the framework adjust-
ment as a Markovian jump process [10]. Therefore, it is
an interesting work to study stochastic control for a cloud
control system with a Markovian jump process and time
delays.

It is well known that discrete-event systems are sui-
table to be taken as cloud control systems which are used
to model many engineered systems [11]. Nonlinearity can
be solved by linear equations of max-plus algebra in a
discrete-event system such that there exists a good idea to
apply max-plus algebra in cloud control systems [12,13].
Based on max-plus algebra, a very large scale integration
array processor is modeled as a max-plus linear system
for dimension reduction and feedback stabilization [12].
In [13], time schedule of a multi-legged robot is pro-
posed as max-plus linear equation sets which transform
discrete states into continuous states. Moreover, there are
some stochastic control strategies on max-plus algebra for
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discrete-event switching systems [14]. A model predic-
tive control strategy is designed for a switching max-plus-
linear system which consists of a switching process
within different operation modes [15]. It is known from
[16] that model predictive control with a nonlinear non-
convex constraint is given to achieve linear program-
ming for a switching max-plus-linear system. Note that
operability is dependent on stability of Markovian jump
systems in which stochastic stabilization should be con-
sidered for feedback controller design [17,18]. With a
memoryless state feedback controller, sufficient condi-
tions for exponential stabilization are proposed for a
stochastic Cohen-Grossberg neural network with Marko-
vian jump parameters [19]. In [20], remote stabilization
was investigated for an erasure channel using multi-step
Lyapunov bounds. To the best of our knowledge, there
are few results on max-plus based stochastic control for
Markovian jump cloud control systems, which motivates
our current research work.

In this paper, a max-plus stochastic system with a
Markov chain is taken as the Markovian jump cloud con-
trol system. A causal feedback controller is obtained by
exponential stability of an autonomous max-product sys-
tem obtained from the max-plus stochastic system. A suf-
ficient condition is proposed for the causal feedback con-
troller on a causal feedback matrix in the max-plus
stochastic system. Main contributions of this paper are
summarized as follows:

(1) Max-plus algebra is utilized for model establish-
ment on a Markovian jump cloud control system with a
reference signal.

(i1) A causal feedback matrix is introduced to a causal
feedback controller for the Markovian jump cloud con-
trol system.

(iii) A sufficient condition of stochastic stabilization is
used for exponential stability of the Markovian jump
cloud control system.

2. Problem statement and preliminaries
2.1 Max-plus algebra

For the real number set R, an algebraic structure (RU
{—o0},®,®) is defined as max-plus algebra R, in which
® and ® are the main operations in max-plus algebra
such that

a®b =max{a,b}, a®b=a+b

with a,b € R,,.. Therefore, it is obtained that ¢! is equal
to —c for ¢ € R, U {+00}. Note that ¢ and & represent the
identity element and zero element, respectively. In max-
plus algebra, R represents the set of all the mxn

matrices belonging to R,,. For two matrices A =

(a;;) €R™" B = (b;) € R™", the operation & is satisfied
with

(A ®B)ij = al‘j@b,‘j .

With a matrix C = (¢;;) € R, the operation ® is given

max 2

as

(A®C),, = @aﬂ@)q_/ .
=1

Similarly, an algebraic structure (R,,®,®) is denoted
as max-product algebra, where © is the operation such
that

a@bza-b, (A@B)ij: @aﬂ-b,j .
=1

For a matrix D = (d;;) e R, D* and D" are denoted

max

as
D'=1,oDeD*®---,
D'=DD®---®D,
———

n

where I,, represents the m X m identity matrix. In max-
plus algebra, A(A) represents the maximum cycle mean.
For a matrix A = (@;;) € Ryt , the precedence graph G(A)
of A is a weighted directed graph with n nodes. In G(A),
there exists an d;;-weighted directed arc from node j to
node i if a; is satisfied with d;; # &. For max-plus alge-
bra, a Petri net is a weighted directed graph which is
described as a six-tuple such that

PN = (P9Q3F’ WM3MO)

where P ={p,ps,---,pn} represents the location set,
Q=1{q:,9>, - ,q,} represents the transition set, F' repre-
sents the set of directed arcs, W represents the weight
function of directed arcs, M represents the status mark-
ing which is also called the Token, M, represents the ini-
tial marking. Furthermore, the operation ® is sometimes
omitted for simplification.

2.2 Cloud control system

In a cloud control system, an instruction of a cloud paral-
lel processor is often divided into three subprocesses,
such as instruction fetch, instruction analysis and instruc-
tion execution [21]. Therefore, the cloud control system
is obtained as shown in Fig. 1.
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Fig.1 Cloud control system
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There exist multiple latches in the cloud control sys-
tem to avoid instruction congestion [22]. During a cloud
control process, the instruction processed by each subpro-
cess is locked up by a latch until the next instruction is
delivered to the subprocess. By a Petri net, the cloud con-
trol system is established as [23] in Fig. 2.
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Fig. 2 Petri net of the cloud control system

According to Fig. 2, it is obtained for the kth instruc-
tion that the cloud control system is satisfied with

x1(k) =[x (k— 1) @ u(k),
x2(k) = f1x,(k) @ hxy(k— 1),

x3(k) = Hx, (k) ®hx;3(k— 1),

where u(k) is the control input of the cloud parallel pro-
cessor, x;(k), x,(k) and x;(k) are the beginning epochs of
instruction fetch, instruction analysis and instruction exe-
cution, respectively, 7,, #, and #; represent the processing
time units of instruction fetch, instruction analysis and
instruction execution, respectively, #; represents the
transforming time unit between instruction fetch and
instruction analysis, f, represents the transforming time
unit between instruction analysis and instruction execu-
tion. Therefore, the cloud control system is modeled as
follows:

x(k) = Ax(k)® Ax(k—1)® Bu(k)

with

g & &

A=|f e €],
e b €
f] &

A=| e L |,
£ 3

x(k) = [x1(k) x(k) x;(0)]",

B=lece]".

According to [24], there exists instruction dependency
of the cloud parallel processor in a cloud control process.
During instruction dependency, the (k+ 1)th instruction
has to enter the instruction analysis after the kth instruc-
tion leaves the instruction execution for the reason of that
both the kth and (k+ 1)th instructions have the same
source operand reference. Therefore, the cloud control
system is transformed into the following form as Fig. 3.
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Fig.3 Petri net with instruction dependency

In Fig. 3, the cloud control system is modeled as fol-
lows:

x(k) = Ax(k)® A, x(k—1)® Bu(k)

with
HL & ¢
Al = & fQ f4
e € L

where 7, represents the processing time units caused by
instruction dependency. In practice, there also exist many
other frameworks of the cloud control system, such as
instruction lost, instruction failure and so on [24]. Note
that a framework of an instruction in the cloud control
system is dependent on the one of the previous adjacent
instruction. It is reasonable to denote the framework adjust-
ment into a Markov chain y, €{1,2,---,M} with M e
R. Moreover, denote a state transition matrix C € R**™
for the Markov chain y, in which each evolution is satis-
fied with ¢;; = P(yy1 = jlye =i). Based on the Markov
chain y;, a max-plus stochastic system is obtained for the
Markovian jump cloud control system in the following
form as

x(k) = Ay)x(k)® A(y)x(k—1)® Bu(k) (1)

where A(y,) e R¥® and A(y,) e R¥ are the stochastic
state matrices.

2.3 Objective statement

The following definitions and lemmas are proposed based
on [25] and [26] to show main results in this paper.
Definition 1 A matrix is row G-astic if it has at least
one nonzero in each row of the matrix.
Definition 2 An autonomous max-product system

x(k+1) = AGF) Ox(k), x(0) € R} 2

is exponentially stable if there exist a > 1 and L > 0 such
that

Il < L-1x(Oll/a* .
Definition 3 A max-product system

{ x(k+1)=AGF) 0x (k) & B(§) 0 0(k)
z2(k) = C(3) © x (k)

is bounded input bounded output in probability (BIBipO)
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stable if there exists a positive constant M, for a positive
constant o~ and an initial condition y(0) such that P[y;(k) <
M.] >0 with 0€(0,1) in which y;(k) represents the
entry at the ith row of y(k). o(k) respresents the control
input.

Lemma 1 [27] Consider the autonomous max-pro-
duct system (2). If the autonomous max-product system
(2) is mean norm exponentially stable, then a nonau-
tonomous max-product system

{ xk+1) = AG) © x (k) ® B(Fi) © (k)
2(k) = C(31) © x (k)

is satisfied with P(||z(k)|| < M,) > 1 — € for a positive con-
stant M. > 0 and an initial condition y/(0).

3. Main results

In this section, a causal feedback controller is investi-
gated for the max-plus stochastic system (1) with a refe-
rence signal. According to [16], a reference signal is
denoted as r(k) = kT +&(k), where T is the positive con-
stant, £(k) is the bounded vector. Moreover, the max-plus
stochastic system (1) is rewritten as follows:
x(k) = A(y)x(k)® A(y)x(k—1)® Bu(k) =
(Apox(y® Ayo)x(k—1)® Bu(k))®
Ay ®A(x(k—1)® Bu(k) =
(Avoel)Ap)xk- e
A ®(Av) o) Bu(k) =
A G0AGox(k=1)® A" () Bu(k). 3)

Considering the max-plus stochastic system (3), a
causal feedback controller is designed as

u(k) = (k) ®v(k) “4)

where K is the causal feedback matrix to be designed,
ii(k) = Kx(k—1) represents the regulating part of the
causal feedback controller, v(k) = kT represents the input
part of the causal feedback controller. Based on the max-
plus stochastic system (3), a stochastic system is calcu-
lated as

x(k) = A*(n) (A(yk) ® BK)x(k ~Devk) .

With the additional controller v(k) = &, an autonomous
stochastic system is obtained as

x(k)= A0 (A0 @BK)x(k=1) . (5)

In [27], a max-product stochastic system is obtained
from the autonomous stochastic system (5) as

(k) = (Ao @ A, (y)) 0 2(k— 1) (6)

with

Ay = exp(A" A/
A 0) = exp(A°(v)BK) /6

Lemma 2 Consider the max-product stochastic sys-
tem (6) with O<a <1 and i=1,2,---,M. If there exists

a positive vector k(y;) such that
M

Z ¢y W (O (A @A) < -k (i), )

Jj=1

{ F(k) = exp(x(k) /6", 6 = exp(T)

then the max-product stochastic system (6) is exponen-
tially stable.

Proof Selecta Lyapunov function V(y,)=h"(y,)0%(k).
Based on the Markov chain y,, expectation on the Lya-

punov function V(y,,) is obtained as
M

VO] = ) oy h'(HORK) =

Jj=1

M
Zc, B (o (A A () oFk-1).

Note that the Lyapunov function V(y,)=h"(y,) ©¥(k)
is satisfied with By[|x,|| < E[V (ys1)] < Bollxll in which g,
and f3, are the positive constants. One has that

E[E[V(iD] E[Bllxll] =
E[Vi)] < E[Ballxdl]-

From the inequity (7), there exists E[V(yi1)] <a-
E[V(yl. By the same way, it is obtained that
E[V(yi.1)] < & -E[V(y;)] which is equal to

E[R"(k+1)ox(k+ 1] <o -E[AT(1)ox(1)].

Let B, and 3, represent the maximum entry and mini-
mum entry, respectively. One has that

E[B, - llx(k+ DIl < - E[Bs - [lx(DI].

Therefore, the max-product stochastic system (6) is
exponentially stable. This completes the proof. O

Theorem 1 If there exists at least an stochastic feed-
back matrix K which is satisfied with

K < H,A"()Bs ((HioHy) A"()AG))

where

M
H, =In(a h"G)), H, = ln(z c;-h'( j)],
Jj=1
® and e are defined as left division and subtraction
respectively, based on the residuation theory, then the
max-product stochastic system (6) is exponentially stable
with the causal feedback controller (4).

Proof Note that transformation from the autonomous
stochastic system (5) to the max-product stochastic sys-
tem (6) is invertible [27]. Therefore, it is reasonable to
transform the inequality (7) to the following inequality as



WANG Jin et al.: Stochastic stabilization of Markovian jump cloud control systems based on max-plus algebra 831

M
5 ch.j 1 (j)oexp(A*(i) (A() @ BK)) <
j=1
5-a-h'(i). ®)
Taking natural logarithms on both sides of the inequality
(8), it is obtained that

1n(6- zM: ey I j))A*(i) (Ao BK) <

J=1

In(6-a-h"(). )

By shifting items and residuation theory, one has that
K < HA ()Bx (H,oH,A"()A(i)) (10)
This completes the proof. O

Based on Definition 1, it is known that the matrix
A*(y,)B is row G-astic in the autonomous stochastic sys-
tem (5). There exists the causal feedback matrix K which
is satisfied with the inequity (10) if and only if rows of
the matrix H,oH,A*(i)A(i) are null for a null row in the
matrix H,A*(i)B. Note that the causal feedback matrix K
is a non-null row vector in the causal feedback cont-
roller (4). To ensure the inequity (10) valid, rows of
H,oH,A"(i)A(i) are null when the corresponding rows
are null in matrix H,A*())B. Considering that it is diffi-
cult to obtain the causal feedback matrix K only by resi-
duation theory, a theorem is proposed to assist existence
analysis of K in the following.

Theorem 2 There exists an appropriate causal feed-
back matrix K with i = h(1)®h(2)---® h(M) if there is a
positive constant T such that

7-h(n) > h, AIn(t/a)A*(HA®G) <e

holds fori=1,2,--- ,M.
Proof Considering the inequity (9), one has that

M
In (5- TR j))A*(i) (Ao BK)<
=1
In(6-2") A*(i) (A(i) @ BK).
It is obtained that the inequity (9) holds when
In(s- ") A*(i) (A() @ BK) <
Inaln(s- A ().
One has that
In(6- k") A*())(A()®BK)Int <
Inaln(s-h").
By further retraction, it is obtained that

in(k7) A*()(AG)® BK)Int <Inaln(k"). (1)

According to [28], the inequity (11) has the same solu-
tion on In(h") as

In(A")(A"()(A()® BK)p) =In(h").  (12)

Note that existence of In(A") is equivalent to a two-
sided eigenproblem in [29]. According to Perron-Frobe-
nius theory, spectral radius of pfi*(i) (A(i)eBBK) is equal
to its maximal eigenvalue which is also the maximum
cycle mean. With the row G-astic matrix A*()B, it is
obtained that there exists at least one stochastic feedback
K such that A((A*(i) (A(i)eaBK)p)*) = e. This completes
the proof. O

Theorem 3 If there exist positive constant

M
T > P AA(n)(A(n)® BK))
n=1
and the causal feedback matrix K such that the max-
product stochastic system (6) is mean norm exponen-
tially stable, then the autonomous stochastic system (5) is
stable in probability with a positive constant M, such that

Plx(k)—kT <M,]>1—-¢

where 0 < € < 1, x;(k) represents the entry in the ith row
of x(k).

Proof With ¥(k) = exp(x(k))/exp(kT), the max-plus
stochastic system (3) is equivalent to the following
nonautonomous system as

#k+1) = (Ae A ()okkeB.  (13)

Based on Lemma 1, it is obtained that the nonau-
tonomous system (13) is BIBipO stable. That is,
P(ICG) O x(k)|| < M,) > 1—¢€ holds for any C(¥;). Let-
ting CGy) =[eee], one has that P(||x,(k)|| < M,,)>
1-¢€, where M., and ¢ are the positive constants. By
the same method, it is known that P(||%,(k)|| < M,,) >
1-¢ and P(||%:(k)|| < M,3) > 1—¢& with CHy) =[eee]
and C(§,) = [& € e], respectively. Note that M,,, M,3, €
and e; are the positive constants. Therefore, there exists
Plx(k)—kT <M, >1-€ with M, =M, &M ,®M,;
and € = €, ® 6, ® ;. This completes the proof. O

Remark 1 In the autonomous stochastic system (5),
the maximum cycle mean /l(pfi*(i)ﬁ(i)) iS sometimes
larger than e. According to [30], the maximum cycle
mean A(pA*(i)A(i)) is reduced by changing state units.
For example, 1 s is replaced by 1/60 min, which reduces
numerical values. By this way, it is reasonable to make
/l(pfi*(i)ﬁ(i)) with arbitrarily p, A(y,) and fi(yk) satisfy
the condition A(pA*()A(i)) < e.

Remark 2 According to [31], state variables have
corresponding exponential upper bounds in max-plus
stochastic systems with a stochastic distribution. There-
fore, it is feasible to further reduce the differences
x;(k)—kT between the state variables and reference sig-
nals in the max-plus stochastic system (3) with the spe-



832 Journal of Systems Engineering and Electronics Vol. 33, No. 4, August 2022

cific stochastic distribution. Moreover, network attacks o 03

sometimes happen such that the time delays fluctuate in 2 0

the cloud control system [32]. That is, there has to be at 5 oLt PP
least one additional possible realization for the Markov 1234567891011121314151617181920

chain y, of the max-plus stochastic system (3) with the k

network attacks. In this case, it is interesting to improve & g(s) [
the proposed method for the Markovian jump cloud con- £ 25t
trol system (1) under network attacks. = %(5) EEEEEEEN

1234567 891011121314151617181920

4. Simulation results k

. . . . 7.5
In this section, two frameworks of the Markovian jump 5 70
cloud control system (1) are selected as structures whose © 2(5) \_/ \_/ \/\/\/\_
Petri nets are shown in Fig. 2 and Fig. 3. A max-plus Rogs L L1 TP
stochastic system (3) for numerical simulation is chosen 1234567891011121314151617181920

k

as a Markovian jump cloud control system (1) with
Fig.5 Differences x;(k)— kT in the sample 1 of the Markov chain yj

i ‘;: &€ ¢ io ‘; £ ¢ It is shown from Fig. 5 that the Markovian jump cloud
(= . ; z - AQ2) = - ;: z ’ control system (1) is stable in probability with the pro-
> £ e | & & posed causal feedback controller (4). Moreover, tracking
A=|e 5 | . d2)=|¢ 3 6 between the state x(k) and the reference signal r(k) are
s £ 4 ’ s £ 7 ’ given in Fig. 6. Based on the causal feedback controller
B [ e & & ] (4), the input u(k) is shown in Fig. 7.
220
and the initial state x(0) = [0 3 4]T. The Markov chain for 200 | 84 —
the Markovian jump cloud control system (1) is obtained 180 1 78 E—
as y; = {1,2} in which the transition probability matrix C 160 1 72
and the observation probability matrix @ are satisfied S0} 14172 76 7
=]
07 03 |08 < 100
C‘[o.é 0.4}"’)‘[0.2}' < sof ?
60
One of the possible realizations for the Markov chain 40 t 190
. . . L 185
Vi is shown in Fig. 4. 28 184 186 188 190 192
25 1234567 891011121314151617181920
’ k
— 1 xy(k); 10k, —— tx3(k); - - - (k).
20} Fig. 6 Tracking between x(k) and r(k)
200
§ 15t 180
160 -
1.0 140
120 +
100}
03 2 4 6 8 10 12 14 16 18 20 80 |
k
60
Fig. 4 Possible realization of Markov chain yj 40|
Based on Theorems 2 and 3, there exist K = [8 £ ]" 20p

and T = 10 in the causal feedback controller u(k). There- 01 2 345678 91011121314151617181920
fore, the difference x;(k)—kT on the Markov chain y, is k
presented in Fig. 5. Fig. 7 Input u(k)
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5. Conclusions

In this paper, a max-plus stochastic system with a Markov
chain is established as the Markovian jump cloud control
system. Based on residuation theory and exponential sta-
bility, a causal feedback matrix has been designed for a
causal feedback controller to track a reference signal. For
the causal feedback controller, a sufficient condition has
been proposed for existence of the causal feedback
matrix. By BIBipO stability analysis, stochastic stabiliza-
tion has been shown for the Markovian jump cloud con-
trol system with the reference signal. Simulation results
have shown effectiveness of the causal feedback con-
troller for the Markovian jump cloud control system.
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