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Abstract: With the rapid development of cloud computing and
control theory, a new paradigm of networked control systems
called cloud control systems is proposed to meet the require-
ments of large-scale and complex applications. Currently, cloud
control systems are mainly built by using a centralized architec-
ture. The centralized system is overly dependent on the central
control plane and has huge challenges in large-scale heteroge-
neous node systems. In this paper, we propose a decentralized
approach to establish cloud control systems by proposing a dis-
tributed point-to-point task routing method. A considerable
number of tasks in the system will not rely on the central plane
and will be directly routed to the target devices through the point-
to-point routing method, which improves the horizontal scalabi-
lity of the cloud control system. The point-to-point routing
method directly gives a unique address to every task, making
inter-task communication more efficient in a complex heteroge-
neous and busy cloud control systems. Finally, we experimen-
tally demonstrate that the distributed point-to-point task routing
approach is compatible against the state-of-the-art central sys-
tems in large-scale task situations.
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1. Introduction

Cloud control systems [1] are complex systems that unify
cloud, edge and terminal devices. As cloud control sys-
tems continue to develop, system requirements for perfor-
mance and reliability continue to increase. Meanwhile,
many edge and terminal devices exist and are newly
added to the system. For example, the cloud control sys-
tem in intelligent transportation needs to complete the
collection and calculation of massive traffic data in real-
time and control the colossal road traffic equipment to
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complete complex vehicle control tasks. Cloud control
systems are more different from cloud computing sys-
tems. Cloud computing systems are mainly cloud devices,
complex computing, and the cloud control system in
addition to the cloud also contains complex heteroge-
neous edge and terminal devices, cloud devices, edge
devices, and terminal devices in the system to form a
highly unified, collaborative whole, forming a closed-
loop from computing to control. Edge and end devices
have low computing power. Generally, they run small
tasks (low amount of required system resources), and as
the number of edge and end devices increases, the num-
ber of small tasks within the cloud control system
increases. The number of devices and tasks within cloud
control systems and the heterogeneity of devices and
tasks are much higher than typical cloud computing sys-
tems.

Existing cloud control systems are built based on com-
mon container orchestration platforms and virtual
machine management platforms [2—4]. The system is
addressed only for devices (usually using IPv4 protocol
addressing), and inter-task communication uses device
addresses, making full use of the protocol stack provided
by the operating system to ensure the reliability and sta-
bility of the system. However, there are three main prob-
lems: (i) address space is limited by the Internet protocol
(IP), (ii) address is randomly assigned and lacks seman-
tics [5], and (iii) tasks are migrated between devices,
requiring central nodes to record task addresses [6,7].
Containerized orchestration platforms and virtual mach-
ine (VM) management platforms can usually be divided
into control and execution planes. The control plane can
be considered the central node of the system, which is
responsible for creating, launching, scheduling, and man-
aging container or VM tasks. The system’s functional
implementation relies heavily on the central node, which
often becomes the system bottleneck [8]. Systems such as
Kubernetes alleviate the central node pressure to a cer-
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tain extent by setting up a multi-node control plane and
by load balancing. However, for the case of multiple
devices and multiple tasks in the cloud control system,
the control plane is still a system bottleneck, which
severely restricts the increase of the device size and the
number of schedulable execution tasks in the cloud con-
trol system.

This paper eliminates the central structure and builds a
ring-type system by unified addressing of tasks and dis-
tributed point-to-point routing to solve the above prob-
lems in current cloud control systems. The main contribu-
tions of this paper are as follows:

(i) We propose a unified addressing method for tasks
and devices within cloud control systems. The unified
addressing algorithm addresses semantics to tasks and
devices, and the addressing space is controlled by the
algorithm parameters, which are not restricted by the IP
protocol. Tasks and devices within the cloud control sys-
tem use the same addressing algorithm. The obtained
addresses will be in the same addressing space, and a
suitable distance algorithm can measure the distance
between tasks and devices.

(i1) Quality of service for devices (DQoS) in a group is
proposed. Devices with the same address form a group,
and tasks are routed to the group need to select specific
execution devices. The selection priority of devices
within the group needs to be considered. The device with
higher priority will be selected as the execution device.
Based on the careful consideration of device perfor-
mance and reliability, this paper proposes a method to
calculate the quality of service of a device and uses the
DQoS score of a device as the selection priority.

(i) We propose a distributed point-to-point ring sys-
tem structure, where there is no central control plane in
the system. The task-to-device scheduling problem in the
system is transformed into a task-to-device routing prob-
lem. A task-to-device routing method applicable to the
cloud control system is proposed based on the unified
addressing of tasks and devices.

The article is structured as follows: After this introduc-
tion, background and relative works are given in Section 2.
The distributed point-to-point routing method for tasks in
cloud control systems is introduced in Section 3. The
experimental findings and insights on the main results are
presented in Section 4. Related work is summarized in
Section 5.

2. Background and relative works

In this section, we first introduce the current architecture
commonly used in the cloud control system, that is, con-
tainer orchestration platform-based centralized cloud con-
trol systems, illustrating the difficulties faced in large-

scale distributed tasks for which a novel solution will be
proposed in this paper. Then, the quality of service for
devices and the difficulties of existing methods to mea-
sure both device performance and reliability are
described. We will propose novel methods in this paper
to enable more balanced routing of tasks within groups of
devices.

2.1 Container orchestration platform-based cloud
control systems

With the development of cloud control systems, the com-
plexity of the system increases, and the scheduling and
management of a large number of tasks within the sys-
tem becomes a significant issue that hinders the develop-
ment of cloud control systems. Container technology is a
technology to virtualize applications in a lightweight
manner and has been adopted on a large scale in cloud
computing systems [9].

Usually, containers are processed isolated and resource-
limited through the Namespace and Cgroup functionali-
ties of the operating system kernel. Cgroup provides an
interface to limit the number of resources (e.g., CPU,
memory, read/write speed) per container. Hardware virtua-
lization technology virtualizes the hardware device and
operating system again on the host operating system.
Containers are faster to boot and more resource-efficient
for the host than virtualization. There are a large number
of heterogeneous hardware and software and a large num-
ber of tasks within the cloud control system, and using
containers to represent tasks is more efficient than using
virtual machines to represent tasks in task initiation and
task scheduling methods.

In the actual application of cloud control systems, there
are often dependencies between tasks, and task contai-
ners do not appear singularly. However, multiple task
containers are connected together, and they are deployed
as a unified unit. Also, task containers do not run only on
a single device but run task containers in bulk as a clus-
ter, so task container orchestration includes task con-
tainer scheduling, lifecycle management, elastic scaling,
network management, storage management, and cluster
management of devices running task containers.

Kubernetes is a more mature container orchestration
framework, which not only enables container application
deployment, container service orchestration, elastic scal-
ing, container scheduling, and other functions [10], but
also has features such as high availability and rolling
upgrade [11]. A complete Kubernetes cluster generally
contains two parts: the control plane (including master
nodes) and the execution plane (including worker nodes)
[3]. Improving system performance and reliability, the
control plane can consist of multiple load-balanceable
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device nodes.

When tasks migrate to a new device, the address of the
task changes, and a central node is needed to record the
change of address so that tasks can discover and commu-
nicate with each other [12,13]. When the number of tasks
in the system increases, the pressure on the central
recording node increases, limiting the expansion of the
number of tasks in the system and further limiting the
scale of the system.

Twine improves the performance of Kubernetes on
very large clusters [4]. The Twine scheduler allows to
split the scheduling of different subsets of entitlement
under the same region, allowing for larger scale cluster
management (scalability). The sharding mechanism
increases the cluster size, but the cross-shard scheduling
of tasks remains limited by a new model of central con-
trol plane bottleneck.

The central control plane constrains the horizontal scal-
ing of centralized system clusters. Various solutions have
been proposed by numerous researchers. Literature
[14,15] proposed to improve the system performance by
optimizing the central control plane synchronization algo-
rithm. Literature [16] proposed the use of federation to
turn multiple independent clusters into logically unified
clusters. Federated clusters increase cluster size in part,
but interconnecting multiple clusters efficiently poses a
new problem. Literature [17] simulated the network envi-
ronment in disadvantaged tactical networks and evalua-
ted the performance of the Kubernetes system in a big
federated cluster. The study revealed that the central con-
trol plane causes problems in a large number of task
loads, deteriorating the system’s efficiency, and proving
difficult to improve.

These studies have driven the development of centra-
lized cluster systems, but have not essentially solved the
bottleneck caused by the central control plane. The elimi-
nation of the central control plane in the system can sig-
nificantly solve the problem of system efficiency
improvement in the case of a large number of tasks and a
busy system, and can essentially eliminate the factors that
limit the horizontal expansion of the system.

In this paper, we propose a task-distributed point-to-
point routing method to eliminate the central control
plane in the system and complete the task-to-device rout-
ing by proposing a task and device unified addressing
method.

2.2 DQoS

For the dynamic calculation, the DQoS is usually approxi-
mated by the arithmetic mean of the historical DQoS of
the device [18], and it is assumed that the DQoS remains
unchanged during the selection and evaluation of the

device. Although this approach is simple to implement, it
does not differentiate the functions of device services,
resulting in it not reflecting the DQoS dynamically and
effectively. The changes in the device operating environ-
ment and the different task types and task granularity
make the DQoS highly dynamic.

Literature [19] proposed to predict the stability of the
service provided by the device based on long short-term
memory (LSTM) neural network and to calculate DQoS
in combination with the cost of the service spent. Litera-
ture [20] proposed a model for calculating DQoS in real-
time based on a multi-signal mechanism of the immune
system, which only gives the calculation of the service
reputation and does not give the calculation of other
important DQoS metrics. The work mentioned above pro-
motes the study of dynamic computation of DQoS, but
treats all known devices as a single set and then calcu-
lates the QoS of each device without making a clear dis-
tinction between services that provide similar or identical
functions or not.

3. Distributed point-to-point routing method
for tasks

3.1 Unified addressing method for tasks and devices

There are two main entities within cloud control systems,
tasks and devices. The devices are the execution units and
are the carriers of the tasks. One of the main functions of
the cloud control system platform is task scheduling to
the execution device. The task ¢ can be formulated in a
binary way: f#4, = (b,P(b)), where P is the set of
attributes of the executable code b, P(b)={p, (b),
p2(b),---, p,(b)}. Uniform encoding of tasks and devices
within the cloud control system and giving task and
device address semantics is the basis for task-to-device
routing.

In cloud control systems, many task attributes are con-
tinuous attributes, e.g., CPU usage limitation, memory
usage limitation. Different continuous attributes take dif-
ferent ranges of values.

In cloud control systems, the tasks are performed by
various heterogeneous devices containing some low com-
putational power edge and end devices. The restricted
Boltzmann machine (RBM) is a two-tier network with
simple computation and implementation to accommodate
different device computational capabilities.

The RBM is a variant of the Boltzmann machine that
restricts the model to be a bipartite graph and can learn
randomly generated neural networks with probability dis-
tributions from the input data set. RBMs have found
applications in dimensionality reduction [21], classifica-
tion [22], collaborative filtering [23], feature learning
[24], and topic modeling [25]. RBMs can be trained by
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using by supervised or unsupervised learning methods
depending on the requirement. The model contains visi-
ble units corresponding to the input parameters and hid-
den units corresponding to the training results, and each
edge in the graph must connect one visible unit and one
hidden unit. In contrast, the ‘“unrestricted” Boltzmann
machine contains edges between hidden units, making it a
recurrent neural network. This restriction allows for more
efficient training algorithms compared to general Boltz-
mann machines, especially the gradient-based contrastive
divergence algorithm [26].

Given the training set S uun = {(x1,y1),(X2,¥2), ",
(x:,¥:)}, where i denotes the ith sample in the set consist-
ing of the input vector x; and the corresponding target
class y; €{1,2,---,n}. We use a specific RBM to model
the joint distribution between a layer of N hidden varia-
bles h = (hy,h,,--- ,h,) (often referred as features) and the
observed variables (x,y). It is a parametric model with
parameters @ = (W,U,b,c,d) representing the following:
W is weights matrix between x and h; U is weights
matrix between e, and h; b,c,d are respective biases of
x,e, and h, and e, = (1,.;) for i e (1,2,---,C) is the ‘one
out of C’ vector representation of y.

After the RBM is trained, the computation can be com-
pleted with the conditional probability p(ylx). p(y|x) can
be calculated from (1).

FGY)=cituy+ ijixi
i=1

F(y,h) = —d,— Zn: log, (1 + ef(j,_v)) (1)

J=1

p(ylx) = argmin F (y, x)

The framework of the RBM neural network computa-
tion used in this paper is shown in Fig. 1. It consists of an
RBM visible layer and a hidden layer. First, the data of
task and device attributes are preprocessed. Second, the
sequence of each attribute of the task and device is used
as the input to the network. Finally, the value of the hid-
den layer is output as the attribute encoding.

Algorithm 1 provides the pseudo-code of training
encoder.

Algorithm 1 Pseudo-code of training the RBM encoder
in a python-like style

# data: training examples

# w: weight matrix, random initialization
# v: visiable unit matrix

# h: hidden unit matrix

# 1: leaning rate, constant

# o (x): function of activation

# p: positive matrix

# n: negative matrix

for d in data do
vi=d
# forward 1
for j from 1 to length of & do
for i from 1 to length of v do
a: = a+wli, j]v[i]
hljl=o (a)
# calculate the positive matrix
for i from 1 to length of v do
for j from 1 to length of & do
pli. /1AL
# backward, reconstruct the visible units
for i from 1 to length of v do
for j from 1 to length of & do
a: = atwli, j1h[j]
v[i]=o (a)
# forward 2, update the hidden units again
h: = O'(Z w,-j-v,-)
# calculate the negative matrix
for i from 1 to length of v do
for j from 1 to length of & do
li, /IVilhDj]
# update the weight matrix
wli, j1<=wli, j11(pli, /1-nli, j1)

‘ Sequence data of each task/device attribute ’

¥

[ Data standardization j

Task/
device
attribute
encoding

Visible units  Bias unit Hidden units

Fig.1 RBM network encoding model

Set the state of the visible unit to the input sequence of
attribute data. Update the state of the hidden unit using
the following activation rule: for the jth hidden unit, cal-
culate its activation energy a; =w;;x;, and set a; to 1
according to the probability o (a;) derived from (2), and
set a; to 0 according to the probability 1—o(a;). Then
for each edge e¢;; of the network, calculate P(e;;) = x;x;,
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i.e., for each pair of units, detect whether they are acti-
vated or not.

1
I+e

2

o(x)=

Similarly, reconstruct the visible units: for each visible
unit, calculate its activation energy a; and update its state
(this reconstruction may not be consistent with the origi-
nal preferences). Then, the hidden units are updated
again, and P(e;) = %x; is computed for each edge in the
network. The weights of each edge e;; in the network are
updated using (3).

wi; =wi+ L(P(e,.j) - f’(e,»j)) )

where L is the learning rate.

P(e;) is determined by taking the product of the ith
and jth cells after reconstructing the visible cell once and
then updating the hidden cell again. We can also take the
product after more reconstructions, i.e., repeatedly updat-
ing the visible unit, then the hidden unit, then the visible
unit again, which can more accurately describe the day-
dreams of the network. In addition to using P(e;) = x,x;,
where x; and x; are binary 0 or binary 1, one can also let
x; and/or x; be assigned the activation probability value
o (x). The same is true for P(e;). We can penalize larger
edge weights to obtain a sparser or more normalized
model. When updating the edge weights, we use a
momentum factor: the current step described above (i.e.,
L(P(e,»j)—IA’(e,-j))) and the weighted sum of the previous
steps taken are added to each edge. Instead of using only
one training example in each calendar time, we can use
batches of examples in each calendar time and update the
network's weights only after passing all the examples in
the batch. This can speed up learning by using a fast
matrix multiplication algorithm.

The output of the RBM network is the encoding of the
attributes. An RBM network needs to be trained for each
attribute and used for uniform encoding of task and
device (or device group which will be described in Sub-
section 3.2) attributes.

The task and device address encoding algorithm is
illustrated in Fig. 2. Task, containing some instance
attributes, is the input part. All attributes of the task are
encoded by Rb; respectively. Combining all the features,
the task unified code can be obtained. For a task or a
device, the encoding of the attributes, also called attribute
features, is obtained using the attribute encoding algo-
rithm proposed above. Features are multiplied with the
weight matrix w to obtain the encoding. All attributes are
weighted and summed, and the weight coefficients are
equal to the weights of the attributes. The obtained sum
vector characterizes this task, and the cosine angle
between the vectors can be used to measure the distance

between the corresponding tasks. In order to obtain an n-
bit signature, the sum vector needs to be compressed. If a
dimension of the sum vector is greater than 0, the corre-
sponding bit of the final signature is binary 1, otherwise,
it is binary 0. Finally, we obtain the uniform code (UC).

Task as input <\; Features Codes

/\‘L—-‘b = E xw,= F——

Instance attribute | [ | ©

| g | B

8 o g o

L i | — - ucC
Missing attribuﬁi l >l = [ 2 ¥

N ! ,

[

N N i

| IS ] P Compress function

Rb

Fig.2 Task/device encoding model

The function of a task (i.e., executable codes) is gene-
rally well defined before the system runs it. The attributes
of the task also have a clear physical meaning. Therefore,
a weight matrix w can be determined based on the physi-
cal meaning of the task attributes.

The addresses of devices and tasks after uniform
address encoding have the minimum value y =
min(UC) =0 and the maximum value ¢ = max(UC) =
2" —1. Let y ==y, the addresses of devices and tasks are
close together in the address space to form a ring pattern,
as shown in Fig. 3.

2”*1/T\0

Task 7
"0 Device group
® Task

Device group

. Device group

Task

b

Device group Device group

Device group
Fig.3 Uniform address ring

The distance between addresses can be obtained using
the cosine similarity in (4).

D. = A-B
O NANNBI @)
De1- arccos (Dgp)
s

where 4 and B are the UC of a task or a device (group).
3.2 QoS for grouped device

There are various factors affecting DQoS, which can be
roughly divided into two kinds of objective factors and
subjective factors. Objective factors are factors related to
the device’s function, which are the essential factors
determining the DQoS and are internal factors, such as
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the operational efficiency of the device and the reliability
of the device. Subjective factors are factors that are not
related to the function of the equipment but can affect the
rating of the device service quality and are external fac-
tors, such as the price of the device service (usually given
by the device provider), and the service quality rating
given by the device provider. We believe that the rating
of device service should reflect both subjective and
objective factors comprehensively but should be domi-
nated by objective factors and supplemented by subjec-
tive factors. Because of the objectivity of the objective
factors, it should be possible to measure them in real-time
and objectively on any device. We choose the perfor-
mance and reliability of the device as the primary objec-
tive factors to evaluate the DQoS.

The optimal target device that can meet the perfor-
mance requirements is selected based on DQoS in the
task-to-device routing process. The optimal target device
satisfies the following two cases: (i) when there are more
devices providing the same performance, the selection
margin of the device is larger, and the DQoS score should
be biased toward the device performance; (ii) when there
are fewer devices providing the same performance, the
selection margin of the target device is small, and the
DQoS score should be biased toward the reliability of the
device once the number of replaceable devices is small
when the selected target device cannot provide the ser-
vice properly. The relationship between performance and
reliability is given in (5).

DQoS=pS+(1-p)P (5)

where p € [0,1] is a factor, S is the device stability, and P
is the device performance. For ease of use, S and P are
generally normalized at [0, 1], and then DQoS € [0, 1].

The device is considered as a single individual to mea-
sure DQoS, the DQoS obtained will not reflect the infor-
mation of the number of services with the same function,
and thus it is impossible to dynamically adjust the propor-
tion of device performance and reliability in the DQoS
calculation results according to the number of devices
that meet the relevant requirements, and finally, it is diffi-
cult to obtain the optimal target device for device selec-
tion according to DQoS.

Firstly, calculate the addresses of all devices in the sys-
tem according to the unified addressing method of
devices proposed in Subsection 3.1, divide the devices
with the same UC into a group. Then obtain the relative
parameters of each device in the group. Finally, give the
DQoS score of each device in the group to accurately and
effectively reflect the actual QoS and select the best tar-
get device in the routing process. After grouping devices,
the number of devices in a single group is reduced, which

is conducive to improving the efficiency of DQoS calcu-
lation. In addition, after grouping the devices, the devices
between different groups do not affect each other, which
is conducive to improving the stability of the correspond-
ing DQoS of a single device and facilitating the selection
of the optimal target device in the task-to-device routing
process. Therefore, we group devices with the same
addressing into one group called a device group.

When evaluating devices within a group, the influence
of the reliability of a single device within the group on its
DQoS score should be jointly determined by the size of
the device group and the reliability of all devices within
the group. When the devices within the group are gene-
rally reliable, and the size of the group is large, the impor-
tance of the reliability of a single device will be reduced,
and the influence of the reliability on its DQoS score will
be reduced; conversely, the importance of the reliability
of individual services will be more obvious. The perfor-
mance of a device is also a relative concept, a measure of
the relative performance among the devices in the group.
It is not practical to examine the performance of a single
device alone but to put the device in the device group and
examine the device's performance in the group relative to
other devices in the group. Because the first thing to con-
sider when selecting a device is the availability of the
device, i.e., reliability, it is meaningless to consider only
the performance of the device in isolation from the relia-
bility of the device, so the influence of the performance
of a single device within the group on its DQoS score
should also be combined with the reliability of the device.

Equation (6) is used to calculate the DQoS score of the

ith device in a group.
§ S;
j=1

= n
2.6
=1

L

" (6)

U

T =

j=1

1
v=(1__)u

n

_ S,
DQoS, =TV +(1-V) %

i

where ¢, is the total accumulated running time of the ith
device in the group; n is the group size, n > 1; §; is the
number of successfully received execution tasks of the ith
device in the group; C; is the total number of received
execution tasks of the ith device in the group.

In the application system based on service computing
technology, the DQoS of each device in the group can be
dynamically calculated according to (6) by collecting va-
rious parameters involved in (6) in real-time, such as the
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execution time of the task on the device, and the number
of device calls. After a task is routed to the device group,
the priority of every device in the group will be deter-
mined according to the DQoS, and the device with high
priority will execute the task first. The detailed process is
described in Subsection 3.3.

3.3 Distributed point-to-point routing method

Any device in the system can generate (receive) a task
and route the task to a device suitable for task execution.
The task-to-device routing is done in two steps. Firstly,
any task in the system route to a device group, and then
the target device is selected within the device group based
on DQoS.

According to the previous section, all tasks and devices
within the system are distributed in an address space. The
number of devices that can be accommodated in the sys-
tem is related to the length of UC. For an n-dimensional
UC addressing space, up to 2" devices and/or tasks can be
accommodated. Each device in the system keeps the UC
addresses of other devices, which will result in an over-
sized device routing table and reduce the efficiency of
lookup and discovery. We use a binary tree model to
compress the routing table.

The routing table consists of multiple lists, each corre-
sponding to one binary bit of the UC (e.g., with 128 bits
of UC, the node’s routing table would contain 128 lists).
Each list contains multiple entries, containing some data
necessary to locate other nodes. In this paper, the lists are
referred to as D-Buckets. The length of a D-Bucket is

[ Route table in every node ]

v | |

'

" max (item)=af -

A

‘ - ‘ (i+n)th

(Target) d

D-bucket, max (item)=af

= Onehop * = -p. Select » a

of Systems Engineering and Electronics Vol. 33, No. 4, August 2022

generally a runtime constant, set by parameter ¢.

Fig. 4 shows the process of task routing to a device
group. The task generated by any device is used as the
address code of the task by calculating the uniform code
of the task according to the method described in Subsec-
tion 3.1. It is assumed that the ith D-Bucket is the closest
among all D-Bucket in the current device routing table.
To speed up the routing process, the maximum number of
concurrent routing queries for a device is allowed by
defining « as the query concurrency. Query messages are
sent concurrently to each device in the ith D-Bucket, and
then they send no more than S8 next-hop device UC lists
back to the device from which the query was sent as a
load of returned data. Each device has a pool to maintain
the next-hop list, and 8 next-hop device UCs for each
query response are put into the pool, i.c., a total of af
next-hops are put into the pool. If the remaining space in
the pool is more extensive than @, then af next-hops
are put into the pool; otherwise, each next-hop device
must be checked to see if it has already been queried. If
so, the next-hop device will be discarded. When all next-
hops in the pool are tracked, and no UC is found, the
device tries to send a route lookup request for a re-
selected device in the ith D-Bucket. Until the UC device
group is found or there are no unlooked-up devices in the
ith D-Bucket. If there are no unsearched devices in the ith
D-Bucket and the device group with the same UC is
found, the device group closest to the task UC during the
route lookup is selected as the route result (target device

group).

Response, no more than £ nodes

Route table o
_ Sl D> . x
uclucz| . |uCx | st clect > 0 o b . x

Device node group

Device node group

A

¢ = Onehop + -

. <
-
evice node group

Every group includes
several device nodes - =

Fig. 4 Process of task route to device
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The device selects @ devices at the ith D-Bucket as the
target for sending a route lookup request based on the
round-trip time (RTT). When each device receives a route
lookup response, the RTT between it and the responding
device is calculated and stored in the D-Bucket for the
next route lookup. Initially, since there is no RTT infor-
mation between devices, the distance between UCs
defined in (4) is used as the RTT. Traditionally, addi-
tional communication is required to obtain RTT (e.g.,
RTT through active Internet control massage protocol),
but the total number of messages increases. The commu-
nication frequency can be adjusted not to affect the avai-
lable bandwidth, but the real-time performance of the sys-
tem can be seriously affected. In this paper, we use net-
work coordinate systems [27—30] to obtain RTT informa-
tion between groups of devices.

When the routing query is sent back to the device from
which the query is sent, a new entry is added during the
iterative lookup if the ith D-Bucket of the device is not
full. A device needs to be eliminated from the D-Bucket ¢
if the ith D-Bucket is full. An existing entry &yq is
selected according to (7) and replaced with a new entry

Enew

Tm (gx, snew) < Tru (819 gold)

N N Y (7)
v ({aom} U {enew}) = {” ({e,-} y {anew})}

where Ty, (g,,¢,) is the RTT time from &, to g, &, is the
routing query issuing device, b? is the sth D-Bucket of
&, and g,4 €b’. o is the variance of the UC distance
between neighboring devices. When the D-Bucket is full,
i.e., the number of entries is ¢, the replacement process of
D-Bucket ¢ in the device is executed. If g, satisfies the
condition of (7), it replaces &4, always ensuring that the
length of the D-Bucket does not exceed the parameter o.

After the device issuing the task finds a device group
suitable for task execution, it queries the DQoS of all
devices in the group, selects the device with higher DQoS
as the target device, and sends a start task request to the
target device.

4. Experiments
4.1 Simulation setup

We use a self-managed cluster that contains sixty virtual
machines with the exact specifications to complete the
simulation experiment. Table 1 shows the relevant
parameters of those virtual machines. These physical
machines which locate virtual machines use single root
I/O visualization (SR-IOV) to virtualize the network
interface controller (NIC) (also known as a network inter-
face card) for virtual machines to ensure that the network

does not become a bottleneck for the experiment. Some
of the large-scale inter-task communication efficiencies
are compared using OverSim, which simulates the under-
lying and overlay communication. Many parameters can
be defined in OverSim before the simulation, and the re-
levant parameters are shown in Table 2.

Table 1 Virtual machine configurations
Configuration Value
Number of vCPU 8 cores @ AMD EPYC 7742
Processor
Type of vCPU usage Host
Memory 16 GB @ DDR4 ECC 2666MHz
Network 10 GE @ Intel x710
Type of network interface usage SR-IOV

50 GB @ Intel P4600 (shared in

Disk storage ZFS, RAID Z7)

Table 2 OverSim parameters

Parameter Value
Sim. Time/s 500
Churn model Pareto churn
Lookup type Iterative lookup

Application type KBRTest

4.2 Comparison with the IP-based device address
encoding method

In this section, to verify the performance advantage of
our proposed method for communicating between a large
number of tasks within cloud control systems, we com-
pare the impact of the IP-based device addressing encod-
ing (IP-DAE) and the use of the task addressing encod-
ing (TAE) method proposed in this paper on the commu-
nication between a large number of tasks within cloud
control systems.

The traditional approach is to give each device an indi-
vidual address. This ensures that devices can communi-
cate across the network. The communicable address of a
device is generally an IP address. Tasks on a device share
the device address, which is the device's IP address. The
operating system of the device where the task is located
generally identifies the local task address using a pair as
(IP: Port). When a task is dispatched from one device to
another by the scheduling system due to a failure or other
reason of the device where the task is located, the task
will get a new IP and port number pair as the new address
through the operating system within the newly located
device. Generally, the updated address is not the same as
the original address.
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To show that the direct task address encoding method
proposed in this paper improves the efficiency of mutual
discovery between tasks and the efficiency of interrup-
tion re-communication in a system where tasks are fre-
quently scheduled, compared with the traditional
approach of giving IP addresses to devices where tasks
share IP addresses within devices, experiments in this
section are designed and the results clarify the advan-
tages of our proposed approach.

Communication between tasks latency generally con-
sists of two parts, task lookup latency and data transfer
latency. The communication data between tasks is 1 kB
fixed data, and PING-PONG operation is performed
between tasks. Since the received data latency recorded
by the task may be affected by other factors, both ends of
the communication only record the send latency as the
end-to-end communication latency. During the experi-
ment, no tasks are scheduled to ensure that the communi-
cation is not affected by task execution device switching.

The result is in Fig. 5. When there are few tasks (no
more than 1 024) in the system, the device address encod-
ing method can achieve higher communication efficiency
with the help of the kernel's well-established protocol
stack. However, as the task number increases, the task
unified addressing encoding method has no kernel over-
head and is more efficient in communication. In addition,
in a massive tasks system, the IP-DAE method takes
more time to lookup tasks, reducing communication effi-
ciency.

Task count (log-scale)
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In summary, using a task address encoding algorithm
to give each task an address, compared to giving a device
address where all tasks share the same device address
allows for more efficient inter-task communication within
the cloud control system, especially with massive tasks.

The size of the cloud control system can be further scaled
up without the limitation of the device address space.

4.3 DQoS performance and reliability

4.3.1 Stability of DQoS calculation results for devices

in a group

In this experiment, we define a device group and add a
device to it. A simple addition task is used for simulation,
and the time of each task performed is increased by a
constant. The experimental result is shown in Fig. 6.
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Fig. 6 Stability of DQoS
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As the number of assigned tasks increases, the DQoS
rises and stabilizes at 1.0. This experiment shows that the
DQoS calculated using (6) is not affected by the device's
performance when there is only one device in the device
group. This result is in line with the actual situation when
there is only one device in the group to be selected for the
task. It also proves that the DQoS calculated using (6) is
stable.

4.3.2 Impact of grouped device reliability and count on

DQoS preferences

In this experiment, we define the device group and add 20
devices (virtual machines) with the same configuration,
with serial numbers from 0 to 19. Twenty tasks are
assigned to devices in the group, and the number of failed
tasks created by devices increases by 5% each time, as
shown in Fig. 7(a). At the same time, DQoS of the Oth
device is recorded during each iteration, and the results
are shown in Fig. 7 (b). The value of parameter 1—p of
the Oth device is recorded in the DQoS process during
each iteration, and the result is shown in Fig. 7(c). As
Fig. 7(b) shows, the DQoS of the devices in the group
calculated using (6) decreases as the percentage of the
number of failed creation tasks of devices in the group
increases. As the number of unreliable devices in the
group increases, the reliability of the whole device group
decreases in the external view. It can be seen that (6) pro-
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posed in this paper can correctly reflect that when the
devices within the group are generally unreliable while
the group size is large, the reliability of devices within the
group becomes particularly important and increases the
influence on the DQoS. In contrast, the influence of the
performance index on the DQoS decreases, as shown in
Fig. 7(c).
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Fig. 7 Impact of the grouped device reliability and count

We define a new device group. Firstly, a device (vir-
tual machine) is added to it and successfully assigned a
task once. Then, 29 devices with the same configuration
are added to the continuation. Each newly added device is

successfully assigned a task. The reliability contribution
(parameter p) of all devices in the current group was mea-
sured after each addition and successful assignment of a
task. The result is shown in Fig. 8.
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As shown in Fig. 8, the reliability contribution decr-
eases as the number of devices in the group increases.
The DQoS within the group, calculated according to (6),
reflects that the more devices with the same UC value
(providing similar function), the larger the selection space
for task routing to the devices, the smaller the impact on
the device group from the reduced reliability of a small
number of devices, and the smaller the DQoS change.

4.4 Comparison with Kubernetes

In this experiment, we use 60 virtual machines with the
exact specifications (virtual machine specifications in
Table 1) to build the Kubernetes cluster for testing, with
Kubernetes cluster system version 1.19.2. Three of them
are used to build the control plane (master nodes) and the
remaining 57 to build the execution plane (worker nodes).
In general, at least three servers are needed to build a
highly available Et Cetera Daemon (ETCD) cluster. In
this experiment, there is no need to consider the reliabi-
lity of ETCD, and according to the operation principle of
ETCD, reducing the number of ETCD service instances is
beneficial to improve the performance of ETCD service
instances [31]. To ensure test accuracy and reduce the
impact of the ETCD component on the Kubernetes sys-
tem [32,33], we use a high-performance server indepen-
dent of the test cluster as the host for running ETCD
instances. The ETCD server is interconnected with the
test cluster using an 80GE network.

After the Kubernetes cluster is tested, 60 virtual
machines are deleted, and then 60 virtual machines with
the exact specifications (virtual machine specifications in
Table 1) are recreated to test our proposed method. Sixty
virtual machines are randomly divided into 20 groups,
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with the number of devices in each group being random
and not less than 1. After the test cluster is built, the clus-
ter is given 10 min to start and initialize according to the
principles of the distributed point-to-point task routing
algorithm described in Subsection 3.3. The cluster is
given 10 min to start and initialize according to the prin-
ciple of distributed point-to-point task routing algorithm
described in Subsection 3.3.

During the test, 10° test tasks are sent to the two clus-
ters, and the time for the clusters to receive the tasks is
recorded, as shown in Fig. 9. The time from the Kuber-
netes cluster receiving a task to making the correspond-
ing one is the response time of the API-Server. The time
from receiving a task to making a corresponding in the
proposed system is from task reception to successful rout-
ing to the target device. The experimental results show
that the execution efficiency of the cluster built by the
distributed point-to-point task routing algorithm pro-
posed in this paper is much higher than that of the Kuber-
netes cluster under the same hardware environment as the
number of tasks in the system increases.
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Fig. 9 Comparison with Kubernetes

5. Conclusions

In this paper, we first propose a unified addressing algo-
rithm for tasks and devices, incorporating the properties
of tasks and devices so that the binary codes obtained by
the unified addressing algorithm have semantics. Through
unified addressing, tasks and devices are distributed in
one address space. The problem of scheduling tasks to
devices for execution can be converted into the problem
of routing tasks to the nearest devices. Second, consider-
ing many devices in the cloud control system, multiple
devices may compute the same uniform addressing, and
there is more than one device that can provide the same
task execution capability. However, the task can only be
eventually routed to one target execution device. We pro-
pose to group devices with the same uniform address into

a group and determine the priority of the device when it is
assigned a task based on the QoS of the device within the
group, which is called DQoS. Then, based on the uni-
form address and DQoS, we propose a distributed point-
to-point task routing algorithm. When a device generates
or receives a task, it first uniformly codes the task, routes
it to the device group according to the distributed point-to-
point task routing algorithm, and selects the optimal exe-
cution device according to the DQoS of the device.
Finally, through simulation experiments, it is verified that
the unified coding algorithm improves the efficiency of
the system platform, verifies the efficiency and stability
of the DQoS algorithm within the system, and compares
the distributed point-to-point task routing algorithm sys-
tem platform with the Kubernetes platform to verify that
the method proposed in this paper can effectively solve
the system center bottleneck problem within complex
cloud control systems.

As our future work, to improve the adaptability of the
task address encoding algorithm, we will collect data
related to the operation of the cloud control system and
use a machine learning approach to obtain the weight
matrix. Then, we will improve the distributed point-to-
point task routing algorithm and increase the security of
cloud control systems by introducing communication
security protocols.
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