Journal of Systems Engineering and Electronics
Vol. 33, No. 4, August 2022, pp.997 — 1009

Solving open vehicle problem with time window by
hybrid column generation algorithm

YU Naikang'?, QIAN Bin>*", HU Rong®®, CHEN Yuwang®, and WANG Ling’

1. School of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China;
2. School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China;
3. Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China;
4. Alliance Manchester Business School, University of Manchester, Manchester M139SS, U.K.;

5. Department of Automation, Tsinghua University, Beijing 100084, China

Abstract: This paper addresses the open vehicle routing prob-
lem with time window (OVRPTW), where each vehicle does not
need to return to the depot after completing the delivery task.
The optimization objective is to minimize the total distance. This
problem exists widely in real-life logistics distribution process.
We propose a hybrid column generation algorithm (HCGA) for
the OVRPTW, embedding both exact algorithm and metaheuris-
tic. In HCGA, a label setting algorithm and an intelligent algo-
rithm are designed to select columns from small and large sub-
problems, respectively. Moreover, a branch strategy is devised
to generate the final feasible solution for the OVRPTW. The com-
putational results show that the proposed algorithm has faster
speed and can obtain the approximate optimal solution of the
problem with 100 customers in a reasonable time.
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1. Introduction

As an indispensable part of modern enterprises, the logis-
tics system directly affects the profits of enterprises.
Companies not only have to spend on employee and vehi-
cle arrangements but also consider the various costs of
vehicle distribution. Therefore, the research on the vehi-
cle routing problem (VRP) in the logistics distribution
system has received extensive attention from the aca-
demic community. Since Dantzig et al. [1] proposed this
problem, the vehicle routing problem has been a key
research direction in the field of combinatorial optimiza-
tion, and its related research has always been paid atten-
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tion to by relevant researchers. VRP is usually described
as a group of depot points and customer points, and the
arrangement of group of fleets to provide services to all
current customers in a given order under certain con-
straints such as the vehicle load and the time window.
The optimization goal of VRP is usually traveling cost or
time. In practical applications, there are various types of
VRP problems, including the capacity vehicle routing
problem (CVRP), the vehicle routing problem with times
windows (VRPTW), and the vehicle routing problem
with pick-up and deliveries (VRPPD). In the CVRP, the
fleet needs to return to the depot node after serving the
last customer. For the variant of the open vehicle routing
problem (OVRP), the vehicle does not need to return to
the depot node after serving the last customer.

Open vehicle routing problem with time windows
(OVRPTW) is an important variant type that can be for-
mally expressed as follows: Given a central depot and a
group of customers, they can be represented by a com-
pletely directed graph G = (V,E), where V ={0,1,---,n},
node O represents the central depot, V\{0} represents cus-
tomers, and each edge has a cost ¢, > 0; each customer
point has a demand ¢, > 0 (g, = 0), a time window [e;, ;]
represents the time range allowed by the customer to
serve and s; represents the time for serving the customer.
There are £ homogeneous vehicles in the central depot,
and each vehicle has its own capacity Q. All customers
V\{0} must be served once by one of the m vehicles. The
OVRPTW is a strong non-deterministic polynomial (NP)-
hard problem because it generalizes the Hamiltonian path
and knapsack problem [2,3], which is known as an NP-
hard problem.

To solve the OVRPTW, we propose a hybrid column
generation algorithm (HCGA), which is a hybrid frame-
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work that combines the column generation method, a rule-
based label setting algorithm, a particle swarm optimiza-
tion (PSO) algorithm and a branch strategy. The column
generation method is utilized to solve the linear program-
ming relaxation (LPR) of a set partitioning model of the
considered problem. Accordingly, the arising subprob-
lem of LPR consists of a so-called resource-constrained
shortest path problem (RCSPP), whose objective is to
minimize the reduced cost. Since the VRP is already NP-
hard and it reduces to the RCSPP, the latter is also NP-
hard. In order to reasonably determine columns from the
RCSPP, a label setting algorithm based on the dynamic
programming program scheme [4] and a PSO algorithm
are designed to solve the small and large RCSPPs,
respectively. Then, a branch strategy is specially devised
to further transform the LPR’s solution obtained by the
column generation method into a feasible and satisfac-
tory solution of the OVRPTW.

The rest of this paper is organized as follows: In Sec-
tion 2, the relevant literature is briefly reviewed. In Sec-
tion 3, the definition of the OVRPTW is introduced and a
corresponding integer programming model is also pro-
posed. In Section 4, the set partitioning model of the
OVRPTW is established, and the HCGA 1is proposed and
described in detail. In Section 5, experimental results and
comparisons are presented and discussed. Finally, we end
the paper with some conclusions and future work in Sec-
tion 6.

2. Literature review

The OVRP was first described by Schrage [5], but no cor-
responding algorithm was given. Sariklis et al. [6] used a
two-stage heuristic algorithm to solve OVRP. In the first
stage, customers are divided into groups, and the rules are
used to allocate customers in the customer group again.
The second stage is to transform the route of each cus-
tomer group into an open one and optimize the route with
the minimum spanning tree algorithm. Brandao [2] used
the basic tabu search (TS) algorithm to solve the OVRP
and explores the structure of the solution of the OVRP, so
that the algorithm can improve the quality of the solution
in a short time, which provides a benchmark for other
heuristic algorithms. However, the research on OVRPTW
is limited. Schopka et al. [7] adopted the improved adap-
tive large neighborhood search (ALNS) algorithm to
solve the OVRP problem with time window constraints.
Ge et al. [8] proposed an improved TS algorithm to solve
the OVRP with soft time windows, and Repoussis et al.
[9] proposed a greedy per production path construction
heuristic algorithm to solve OVRPTW. At present, most
of the solutions for OVRPTW are focused on the heuris-
tic algorithm, and the exact algorithm for solving this

problem has not attracted the attention of relevant scho-
lars.

As an exact algorithm, the column generation algo-
rithm (CGA) has been widely used to accurately solve
large-scale combinatorial optimization problems. Since
the CGA was first applied by Ford et al. [10], it has been
widely used to solve various combinatorial optimization
problems, such as the production scheduling problem
[11], the surgical scheduling problem [12], cutting stock
problems [13], and so on. CGA is also one of the most
frequently used exact algorithms for solving vehicle rout-
ing problems. Cacchiani et al. [14] proposed a set parti-
tioning formula for the periodic vehicle routing problem
(PVRP), and solved the linear relaxation model by the
CGA. In the subproblem, columns are generated by the
iterative local search algorithm, and the tabu list is used
to avoid loop. Aiming at the vehicle routing and schedul-
ing problem with semi-soft time windows (VRPSSTW), a
basic shortest path problem with resource constraints and
delay penalty conditions was proposed [15]. The modi-
fied forward insertion heuristic algorithm was used to
solve the subproblem, which provided better columns for
the main problem, so as to accelerate the convergence
speed of the algorithm. However, due to the particularity
of the vehicle routing problem, the sub-problem is also
described as a mixed integer programming, so in each
iteration of the algorithm, it takes too much time using
commercial solvers such as CPLEX and GUROBI. Yuan
et al. [16] proposed a set partitioning model for the gener-
alized vehicle routing problem, and proposed a heuristic
algorithm based on column generation. This mathemati-
cal method relies on constructing heuristics, path opti-
mization process, local search operators and heuristic
process to provide negative cost reducing paths. Behnke
et al. [17] proposed a heuristic column generation method
and an exact branching and pricing method for the emis-
sion oriented VRP (EVRP) in the green logistics, and
designed a label correction algorithm for the problem. In
order to speed up the pricing, an improved double pro-
gramming formulation is proposed, which reduces the
number of iterations and the number of generated
columns. It is a mainstream research direction to
redescribe the subproblem as the shortest path problem
with limited resources, and to use label setting algorithm
[4,18] and label correction algorithm [19]. Ozbaygin et al.
[20] proposed an improved labeling algorithm to solve
the subproblem for the vehicle routing problem with
roaming delivery locations. Li et al. [21] proposed a
branch pricing cutting algorithm based on a strong set
partition model for the vehicle routing problem with pick-
up and delivery, in which an ad-hoc label setting algo-
rithm was designed to solve the pricing problem. While



YU Naikang et al.: Solving open vehicle problem with time window by hybrid column generation algorithm

Timo et al. [22—24] studied the two-way label setting
algorithm. To solve the subproblem, Ke et al. [25] used
the variable neighborhood search (VNS) to provide high-
quality columns and Roman et al. [26] used the method of
machine learning to solve the pricing subproblem.

At present, the research on the OVRP is mostly seen in
heuristic algorithms [27,28]. The research on the CGA
has not attracted the attention of related scholars. In the
existing research, Majid et al. [29] proposed a compound
called SISEC heuristic algorithms, including scanning
algorithms, insertion, exchange, and 2-opt movement,
which improved elite ant colony system (EAS) and the
CGA, cannot guarantee the quality of accurate solutions
due to heuristic operations. Faiz et al. [30] proposed two
different models for the open vehicle pickup and delivery
problem. The first model was solved by the accurate
method, while the second model was solved by the fast
vehicle path generation algorithm combined with the col-
umn generation algorithm. The research on the precise
algorithm of OVRPTW has not attracted the attention of
related scholars.

3. Problem description
3.1 Description of OVRPTW
The OVRPTW can be described as a homogeneous fleet

) Demand
fﬁ [Time window]

Service time Cost time
Capacity

999

located in the central depot and a group of customers with
deterministic demand and service time in a predeter-
mined geographical location. The goal of OVRPTW is to
build a route from the central depot to the customer point
to meet customer needs. Each vehicle only visits one cus-
tomer at a time, and each customer is allowed to be
served by one vehicle only once. Each feasible path
requires the vehicle to visit the customer within the time
window specified by the customer. The total customer
demand within the path does not exceed the vehicle’s
capacity. As shown in Fig. 1, there are three homoge-
neous fleets in the depot with a capacity of 200. Each
customer point has three labels, which are demand, time
window, and service time. ¢ is the cumulative total time
of vehicles at the customer point, and it is also the ear-
liest time to visit the next customer point. 7 represents the
total time at the customer point. Assume that the speed is
constant. The route distance is also the time spent. Path 1
is feasible, and its customer’s total demand is 115, with
40+10+60+5<200, and the vehicle access service within
the time window of the customer point. Path 2 total
demand is 230, with 90+50+90>200, violating the weight
constraint. Path 3 does not violate the weight constraint.
However, when visiting the last customer point, 7' = 150
is not within the time window of the last customer. There-
fore, Path 2 and Path 3 are illegal paths.
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Fig. 1 Illustrative examples associated with the OVRPTW

3.2 Notation and mathematical formulation

Let G=(V,A) be a complete directed graph with V =
{0,1,2,---,n}. Node 0 denotes the distribution center, and
other numbers represent the customers. For customer i,

the quality d; of demand is to be satisfied by the vehicle
within the time window [e;,/;]. Furthermore, the service
time s, is required. A ={(i, j)|i, j € V} signifies the group

of arcs. For each(i, j) €A, let ¢; be the distance from
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node i to node j. A homogeneous fleet is located in the
depot, and each vehicle has a capacity Q. The objective
of the OVRPTW is to minimize the total distance, while
considering the following assumptions:

(1) The vehicle must provide services for all customers,
and the vehicle can only visit each customer once;

(i1) Each feasible route must start from the depot;

(iii) The total demand of customers on the path served
by each vehicle does not exceed the capacity Q;

(iv) The service of each customer i must start within
the customer time window [e;,[;], and if the vehicle
arrives early, the waiting time w; must be spent.

The complete variable parameter definition of the
OVRPTW is shown in Table 1.

The OVRPTW’S mixed integer programming model is
described in the following equations:

minZZZCU ij (1
i=0 j=0 k=1
S.t.
K n
DI =1 V=12 ik )
k=1 i=0
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D2 =k Vs L2 mi % ®)
k=1 j=0
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D=1 k=12, K ©)
j=1
fof():(), Vk:1,2,~-,K (6)
i=1
K n
Z X+ trwits)=t, ¥Vj=12,--.n (7)
k=1 i=0
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xff,.E{O,l}, Yk=1,2,---,K;
Yi=1,2,---,n; Yj=1,2,---,n 9)

Welo, 1}, Vi=1,2,-,m; Vk=1,2,--- . K (10)

The optimization objective (1) minimizes the distance
traveled by the vehicles. Constraints (2) and (3) ensure
that each customer is served by a vehicle. Constraint (4)
represents the vehicle capacity. Constraints (5) and (6)
indicate that all vehicles should leave the central depot to
serve a group of customers without returning to the depot.
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Constraints (7) and (8) indicate that each customer has a
time window. Constraints (9) and (10) indicate that the
decision variables are binary decision integer variables.
Moreover, we assume that the distance between cus-
tomers satisfies the constraint of the triangle inequality.
Obviously, the above model can be transformed to the
CVRP model by setting c¢;, # 0 and the right-hand side of
constraint (7) is 1.

Table 1 Symbol description
Symbol Description of symbol
Decision variable: if the vehicle k visits customer i after
ij visiting customer point j, then the variable value is 1;
otherwise, the value is 0
P Decision variable: if customer i is visited by the
i vehicle k, the variable value is 1; otherwise, the value is 0
4 The time of vehicle arrives at customer i
wi The waiting time of vehicle to arrive at customer i
i,j Customer node i, j€ V
k Vehicle node k=1,2,--- ,K
K Total number of vehicles
n Total number of customers
(0] Maximum vehicle capacity
Cij Distance from customer i to customer j
lij Time from customer i to customer j
d; Demand of customer i
[ei, Ii] Time window of customer i
e; The earliest time that customer i can be visited
l; The latest time that customer i can be visited
Si Service time of customer i
4. HCGA for the OVRPTW

In this section, we will detail the proposed HCGA for the
OVRPTW via explaining its key components, including
the framework of HCGA, the set partitioning model, the
generation of feasible path, the label setting algorithm for
the small-scale subproblem, the PSO algorithm for the
large-scale subproblem, and the branch strategy.

4.1 HCGA'’s framework

The OVRPTW model in Subsection 3.2 is not suitable for
addressing medium and large-scale problems. Obviously,
with the increase of the scale of the OVRPTW, its deci-
sion variables increase rapidly, which makes the solution
space very huge. It is difficult to find good enough solu-
tions in such a huge solution space. We consider combin-
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ing the decomposition method and the intelligent algo-
rithm to solve the OVRPTW. The existing decomposi-
tion techniques include Lagrange relaxation [31], column
generation, and row generation [32]. Since the column
generation has been successfully applied to various com-
binatorial optimization problems, we utilize it as the
decomposition method and the search framework in our
HCGA. When the mixed integer programming model of
the OVRPTW is transformed into the set partitioning
model, the column generation framework is used to deal
with many variables. The process of generating other
effective columns is realized by solving a so-called pric-
ing problem, in which one or more dual variables with
negative cost are determined. After each execution of the
pricing procedure, we calculate the optimal value of the
linear programming (LP) relaxation of the restricted mas-
ter problem (RMP), which is the upper bound of the opti-
mal value based on the set partitioning model, and this
value itself is the lower bound of the mixed integer pro-
gramming model of the OVRPTW. When using the
solver to solve the RMP, we obtain the optimal value of
the dual variable corresponding to the constraint. These
values are used for pricing issues to check whether we
can generate new columns with negative costs. If we find
such columns, we add them to relax the main problem
and re-optimize them. In the framework of the HCGA,
the way of adding columns adopts the PSO algorithm.
This hybrid mechanism can provide diverse columns and
reduce the running time of the algorithm. A detailed
description of the CGA can be found in [30].

The HCGA can be considered as an improvement of
the basic CGA based on the characteristics of the
OVRPTW. The main process of the HCGA is provided as
follows: Firstly, the LP relaxation is applied to the mas-
ter problem (MP) of the OVRPTW, and the original RMP
is obtained. Then the RMP is solved via a commercial
solver (e.g., GUROBI) with the dual variables obtained
and its final solution set as the initial solution. Secondly,
the goal of the subproblem is to generate the shortest path
to visit customers. The subproblem is considered as a
resource constrained shortest path problem, and the sub-
problem is solved by using the label setting algorithm to
accurately consider the resource constraints in the
OVRPTW. In the algorithm, the depot node is set as the
initial node, and a label is set for each customer node to
indicate the current state of time and cost resource con-
straints, and the reduced cost of the node is calculated by
the dual variables. In each iteration of the algorithm,
these nodes are extended and the hopeless nodes are fil-
tered out through the dominating rules until no new labels
are generated. The label setting algorithm essentially

depends on the mathematical programming model, and
the solution time of the mathematical programming
model is relatively large. Therefore, when the solution
time of the label setting algorithm exceeds the set value,
the PSO is used to further explore the sub problem space,
which can not only provide a better combination of exist-
ing columns, but also introduce new columns. As a result,
the resulting columns are more diverse and may also
accelerate pricing. Finally, the HCGA uses a concise and
effective branching strategy to generate feasible solu-
tions. The complete HCGA framework can be seen in
Fig. 2.

e
Solve the RMP

RMP | by GURPBI

3
Provide dual variable 4\; \7 Return new column
2. %

Solve the subproblem by
/ label setting algorithm
\ Solve the subproblem by
PSO algorithm
\i A

Using branch strategy to obtain the
feasible solution

Fig.2 Complete HCGA framework

Subproblem

4.2 Set partitioning model

Balinski et al. [33] first proposed a classical method for
solving CVRP. This method represents the model as a set
of division forms and lists all feasible routes. The start
and end positions of each vehicle’s feasible route are at
the central depot, and the total demand of all customers
served by the route does not exceed the total vehicle load.
In the OVRPTW, since the vehicle does not return to the
depot, we assume a virtual depot node connected to the
last customer in the path, but its cost is 0.

Next, we describe the set partitioning model, let the set
of all feasible paths be R={1,2,---,R}, and let ¢, be the
cost of route r. Define 6, as the customer selection
parameter in the path

19
6ir - { 0’

for customer i€V and path reR. Let x, be a binary
decision variable

route r through customer i; r € R
otherwise
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‘= 1, route ris adopted

"7 1 0, otherwise )

The goal is to select a set of feasible paths with the
minimum cost so that each customer is included in a

route. It is

mian,x, (1)
reR
s.t.
Dloix =1, VieV\(0), (12)
reR
Zx, <K, (13)
reR
x,={0,1), VreR. (14)

This model is the MP of the OVRPTW, the objective
function (11) determines a group of travel expenses with
the smallest feasible path; constraint (12) ensures that
each customer point is covered by a feasible path in the
selected scheme; constraint (13) means that the number
of feasible routes cannot exceed the number of vehicles.
Constraint (14) is a variable value constraint. R is the set
of all feasible routes that satisfy the OVRPTW con-
straints. The difficulty of this model is that the value of
|R| is usually very large, and the number of feasible
routes r € R increases exponentially with the number of
customers. There is no way to find all the columns ini-
tially. In fact, we can find the set ReR composed of
some initial paths, and relax the constraint (14) as fol-
lows:

VreR. (15)

Then the RMP is obtained. Obviously, the above prob-
lem is an LP problem, and the optimal solution of the
problem can be obtained in a short time by commercial
software. And this relaxation does not lose the optimal
solution of the original problem.

0<x <1,

4.3 Generation of feasible path

The construction of an initial feasible solution has an
essential impact on the running speed of the whole algo-
rithm. First of all, it is impossible to give all the columns
at the beginning of the CGA. Similar to the simplex
method, if the initial columns are nonlinear, they form a
basis. Therefore, we cannot select more than the number
of vehicles to form the initial column. Each column rep-
resents the customer point to be visited, and only one cus-
tomer point is visited at a time. Without violating other
constraints, the initial column formed by these paths is
obviously a basic feasible basis. Second, in the initial
path, we do not want to visit too many customers, but to
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visit promising clients and to obtain dual variables
quickly. The generation rules of the initial feasible basis
are shown in Algorithm 1, and the route division is based
on the vehicle weight ¢; and time window [e;,/;] required
by customers.

Algorithm 1 Initialization procedure

1:INPUT: Number of customer points #;
Customer demand g;;
Distance between customers ;
Number of vehicles & ;
Vehicle load limit Q;
Time window restrictions [e;,[;];
Candidate partial path set C = @;
Path set R=@
2:for all i e V—{0} do
3 if g; < Q and i < k then
4. set C=CU{i}
5 end if
6 R+=C
7: Return k paths in R set

4.4 Pricing subproblem

In order to solve the RMP, the method of dynamically
adding columns is adopted, because it is impossible to
find all feasible paths r € R. Define

reduced cost = ¢, — Z (7r; — o)

VieV\{0}
where 7; and 7z, represent dual variables related to con-
straint (12) and constraint (13) respectively. According to
the duality theory, if there is a path with a negative
reduced cost, there are solutions that can improve the cur-
rent target value, and this process is called pricing. The
subproblem is equivalent to a elementary shortest path
problem with resource constraints (ESPPRC). The ESP-
PRC is a strong NP-hard problem [33]. The precise algo-
rithms for solving the shortest path problem include Dijk-
stra’s algorithm, Floyd’s algorithm and so on. The Dijk-
stra algorithm is a single-source shortest path algorithm.
It cannot only find the shortest path from the source node
to the sink node, but also the shortest path from any point
in the graph to the rest of the nodes. The time complexity
of the algorithm is O(n*) but the Dijkstra’s algorithm can-
not solve the shortest path problem with negative
weights. The Floyd algorithm is a multi-source shortest
path algorithm that calculates the shortest distance
between any two nodes. However, the complexity of
Floyd algorithm is O(n*), which is not suitable for large-
scale data calculation. Therefore, the choice of subprob-
lem solving algorithm is very important to the speed of
the whole algorithm. In the following, we will introduce
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two different types of solving algorithms, namely, the
dynamic programming algorithm that uses the label set-
ting algorithm and the intelligent algorithm to solve the
pricing subproblem.

4.5 Label setting algorithm for the small-scale
pricing subproblem

According to the model in the previous section, it can be
concluded that the aim of the pricing subproblem is to
find one or more paths with negative reduced cost. So far,
an effective and exact method reduces the problem to a
resource constrained shortest path problem and solve it
with dynamic programming. We refer to the dynamic
programming based label setting algorithm described in
[4] and [34], and apply it to OVRPTW. This subsection
gives the procedure and properties of the label setting
algorithm. In the label setting algorithm, the structure of
the OVRPTW label is given first, and the label i of node
L, ={cl,q;,a;,y;} is given, where node c¢| represents
related reduced cost; g; represents demand accumulation
related to the path; «; represents accumulative total times
related to node i; y; represents the visited node associa-
ted with the label.

Given the label L;={c/,q;,@;y:}, L; can extend
(i,j) € V, which needs to meet the following require-
ments:

qi+d; <Q, (16)

a; + 8 +t,‘_/<e_,'. (17)

Constraint (16) ensures that when the label is expanded
to form a path, the customer’s demand will not exceed the
vehicle’s load, and it guarantees the related constraints of
the time window. We have the following claims about
label setting algorithm:

Claim 1 In the label setting algorithm of dynamic
programming, if the label L] = {c¢/,q’;,a/,y}} is extended
toj, then (i, j) € V and subsequent paths do not need to be
extended if the above resource constraints are not satis-
fied. This path must not be feasible.

Proof If there is a path r in directed G = (V,A), and r

[2,7]
1

//Q\\\(

13 \ 2.1)

\)‘

(3.,6) \

[1.9]
(a) Initialization

contains a subtour { — k — i, then there must be «;+
tx+ s, >e; at node k. This is in contradiction with the
constraint «, + s, +t,; <e; that can be extended. The
assumption does not hold. O

From the above label definition and extension function,
we can know that as long as the extension conditions are
met, each node can expand a considerable number of
labels. In the process of finding the shortest path, it needs
to continuously traverse all the labels, which will increase
the solving time of the subproblem. Still not all the labels
are effective in the process of solving the subproblem.

Suppose both L, ={c/,q';,,a,,y;} and L} ={c/",q/,a/,
v’} are labels associated with customer point i if there
are

¢ <c, (18)
q<q, (19)
a. <a’. (20)

As long as one of the inequalities (18), (19), and (20) is
strictly true, the label L, dominates L.

Claim 2 In the label setting algorithm of dynamic
programming, if the label L) ={c/,q,,@],y;} dominates
Ly = (c/".q/a}.3), the label Ly ={c/".q/\a7.y;} and
other labels controlled by it can be discarded.

Proof When the label L, ={c/,q),),y;} dominates
L' ={c",q/,a/,y/’}, it indicates that the reduced cost of
L! must not be greater than that of L, then the reduced
cost generated by the extended label of L must not be
smaller than that of L/, then the new path generated based
on L ={c/”,q/,a/,y’} cannot be the optimal solution of
the subproblem, so we can discard the label dominated by
Ly ={ci".qf ' Y7} O

As shown in Fig. 3, a simple example of the label set-
ting algorithm solving the shortest path problem is
shown. In the directed graph, the data on each arc corre-
sponds to two kinds of resources, namely cost resource
and time resource. Each point has its own service time
window. It is assumed that the goal of optimization is to
minimize the path cost.

[3,10]

L2,4)  [1,9]
(b) The first round of label expansion
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[2,7]
(1,3) %(2 1)

L(3,4)
(1 2) ‘(3 6)
L£(0,0)
[0,100] W %;fo
|w 4)
*L(4 9)

(c) The second round of label expansion
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|L(1.3)
D ~ (2,7
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(1 3) / \\\\ (2,1)
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0,100] / T4 [3,10]
/‘(2.4) [1.9]
b
L(4.9)

(d) The third round of label expansion

Fig. 3 Illustrative example associated with label setting

In the first round of label expansion: Set the initial
label of Node o to L(0,0), representing the initial accu-
mulation of two resources. First, add the label of source
Node o to the label set to be expanded; secondly, the cus-
tomers Node 1, Node 2 are connected to Node o . Use
the label expansion function to gradually mark the
Node 1, Node 2 labels connected to it and set them to
L(1,3) and L(2,4). At this time, the extension of the cus-
tomer point label connected to Node o is completed. And
there is no dominance relationship between the labels of
the customers.

In the second round of label expansion: Firstly, put the
customer Node 1 into the label set to be expanded, and
delete the label of Nodeo from the label set to be
expanded. Secondly, the label of customer Node 1 is
L(1,3), the expandable node is Node 2, Node d, and the
labels are set to L(4,9) and L(3,4) respectively. The label
connected to customer Node 1 is expanded. At this time,
the label set of customer Node 2 is L(2,4) and L(4,9),
and the two labels have a dominant relationship, so the
label L(4,9) of customer Node 2 does not need to be
expanded.

In the third round of label expansion: Firstly, put cus-
tomer Node 2 into the label set to be expanded, and
delete the label of customer Node 1 from the label set to
be expanded. Secondly, the label of customer Node 2 is
L(2,4), the expandable node is Node 1, Node d, and its
label is set to L(3,6) and L(5,8). The label connected to
customer Node 2 is expanded. At this time, the label set
of customer Node 1 is L(1,3) and L(3,6), and the two
labels have a dominant relationship, so the label L(3,6)of
customer Node 1 does not need to be expanded. The label
set of Node d is L(3,4) and L(5,8), and there is a domi-
nant relationship between the two labels, so the label of
Node d only retains L(3,4).

Through the three rounds of expansion, the labels of all
customer points in Fig. 4 are expanded. At this time, it
can be seen that the optimal shortest path is 0 - 1 = d,
the smallest cost is 3, and the arrival time is 4.

Next, a label setting algorithm based on the OVRPTW

is given (see Algorithm 2), which can be described as fol-
lows:

(1) ND is the set of customer nodes to be processed;

(i) WL is the label set waiting to be processed;

(iii) TL is the processed label set;

(iv) Extend [ (L;,j) is label extension function: input
the label L; and Node j to be expanded, and compare
the load resources and times windows resources from i to
j. If the constraints (16) and (17) are met, it can be
extended. The function returns the new label and updates
the resource. Otherwise, it does not return.

Algorithm 2  Label setting algorithm

1: Initialization: set a label L, ={0,0,0,0};
{Lo} ;TL=2

2: for all i e ND do

3:set WL=0;TL =02

set WL =

4: repeat

5. select L;e WT

6: for all jeND

7 if L; < Extend_I(L;, j);

8 if L; is not dominated by label in L,
9: set WL = WL +{L;};

10: filter labels dominated by L;
11: end if

12: else

13: set WL = WL +{L;};

14: end if

15:  end for

16: set WL =WL -
17: until WL =2
18: return the set of paths with reduced cost

{L;};TL=TL+{L;}

4.6 PSO algorithm for the large-scale pricing
subproblem

Since the label setting algorithm belongs to dynamic pro-
gramming in essence, its running time is too long for
large-scale subproblem. Fortunately, intelligent algo-
rithms can get better solutions for such problems in a



YU Naikang et al.: Solving open vehicle problem with time window by hybrid column generation algorithm 1005

short time. Thus, when the current results are still unsatis-
factory after the label setting algorithm running a certain
time, the HCGA applies PSO algorithm with a certain
probability to see whether it can further decrease the cur-
rent reduced cost. That is, PSO is used to solve the large-
scale pricing subproblem. PSO was proposed by Kennedy
et al. [35] in 1995. It originated from the research on the
predatory behavior of birds. Its basic core is to make use
of the information shared by the individuals in the group.
The movement of the whole group will evolve from dis-
order to order in the problem solving space, to obtain the
optimal solution of the problem.

In PSO, the set of current solutions is called popula-
tion. Each member of the population (called a particle) is
a feasible solution. The main components of PSO algo-
rithm include particle individual coding (integer coding is
adopted in this paper), fitness function (the algorithm’s
fitness function is related to reduced cost), speed update
and position update. PSO starts with randomly generated
individual particles, which have their positions and veloc-
ities. Then these groups of particles pass through a popu-
lation. The particles in the population update towards the
optimal particle position and repeat the process until the
maximum value is reached. Fig. 4 presents a flow dia-
gram of the developed PSO algorithm.

Begin

Initialize the particle population P
(population size 1), including the
velocity and position of each particle

Evaluate the fitness of each particle
according to the reduced cost of the path

1

Select the best position of individual,
select the best position of population

l

Update position and velocity

Iteration end condition satisfied?

Yes

Output path according to the reduced cost

End

Fig. 4 A flow diagram of the developed PSO algorithm

4.7 Branch strategy

At the end of HCGA, if the current RMP solution is an
integer, this solution is the optimal solution or approxi-
mate optimal solution of the set partitioning model. If the
generated solution contains fractions, then the solution is
a lower bound of the set partition model. The integer
solution of the current scheme is obtained by embedding
the branch and bound algorithm. In the process of build-
ing a branch and bound tree, each child node of the tree is
the lower bound of the set partition model. The integer
solution found in each iteration is updated with the cur-
rent upper bound. A simple and effective branching stra-
tegy is to branch the number of scheduling schemes (ve-

hicles). In other words, if Zx, is a fraction, it branches
reR
by adding constraints Zx, > s or Zx, <'s, where s is

reR reR
the sum of scheduling schemes, and branches continu-
ously until a feasible scheduling scheme is generated.

5. Computational experiments

Our numerical simulation experiment consists of two
parts. The first part is from Solomon’s instance, and the
second part is from a real logistics transportation case.
All experiments are run on Windows 10 platform, which
has 2.5 GHz CPU and 8 GB RAM, and is on a single
thread. The algorithm in this paper is implemented by
Python 3.6. The MP is solved by solver Gurobi9.0.2.

5.1 Soloman’s instances

The Solomon instance covers all aspects of VRP with
time windows. Therefore, in the first part of the experi-
ment, this test set is used to test algorithm’s performance.
The Solomon benchmark test set divides the test data into
three categories according to the position of nodes in
Classes C, R, and RC, the client nodes of Class C data are
centralized, and the nodes are distributed around several
central locations. In Class R data, the nodes are ran-
domly distributed, while the RC data are between them.
Some nodes are randomly distributed and some nodes are
centralized. According to the different test data, the above
three categories can be further divided into six sub cate-
gories, C1, C2,R1,R2, RC1, and RC2. The same sub cate-
gory test data has the same node coordinates, different
time windows, and different vehicle volumes. Since the
OVRPTW and the CVRPTW can be transformed into
each other (see Section 3), the Solomon benchmark test
set is used to illustrate the effectiveness of the proposed
algorithm to a large extent.

In order to verify the performance of HCGA, this sec-
tion compares the HCGA with the simulated annealing
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(SA) [36] and the memetic approach (MA) [37] in inter-
national journals to solve similar problems in Soloman’s
instances. Among them, SA and MA run for 200 gen-
erations, and the optimal value is taken as the ub va-
lue which is the optimal values of SA, MA, and HCGA.
Table 2 shows that C, R, and RC of Soloman’s ins-
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tances select different scale customer points for compari-
son respectively. opt is the known optimal solution,
where

b—opt
Gap = =« 100%.
opt

Table2 Comparison of HCGA with SA and MA

I SA MA HCGA
nstance " oPt ub Gap/%  Time/s ub Gap/%  Time/s ub Gap/%  addcolumn  Time/s
25 191.3 194.18 1.51 1.00 198.9 3.97 6.55 1914 0.05 1351 1.31
C101 50 3624  489.08 34.96 1.50 448.9 23.87 14.77 363.24 0.23 3280 8.85
100 827.3 866.16 4.70 1.11 1104.8 33.54 27.82 828.94 0.20 11188 78.35
25 190.3 192.36 1.08 1.05 256.1 34.58 6.78 190.3 0.00 5516 22.82
C102 50 361.4 539.43 49.26 1.06 574.8 59.05 14.35 362.17 0.21 14705 24.27
100 827.3 994.56 20.22 1.11 1317.4 59.24 28.73 828.93 0.20 90 644 4138
25 191.3 196.81 2.88 1.06 202.4 5.80 6.53 191.3 0.00 1835 1.47
C105 50 362.4 472.3 30.33 2.13 435.6 20.20 12.22 363.24 0.23 5291 9.37
100 827.3 830.67 0.41 3.13 1288.5 55.75 28.83 828.93 0.20 15398 19.59
25 191.3 195.71 2.31 1.06 214.4 12.08 6.4 191.8 0.26 1542 1.32
C106 50 362.4  497.13 37.18 2.17 450.6 24.34 12.33 363.24 0.23 4184 11.27
100 827.3 945.36 14.27 2.12 1194.2 44.35 27.96 828.93 0.20 49817 210.7
25 214.7 219.82 2.38 1.05 255.7 19.10 6.42 215.54 0.39 4303 3.64
C201 50 360.2 598.24 66.09 1.09 413.7 14.85 13.52 361.79 0.44 18633 13.27
100 589.1 762.6 29.45 2.26 1038.9 76.35 27.87 591.56 0.42 122465 268.01
R101 25 617.1 772.38 25.16 0.10 656.9 6.45 6.86 618.32 0.20 171 0.10
50 1044 1044 0.00 1.10 1344.5 28.78 13.52 1046.70 0.26 839 0.50
R102 25 547.1 764.68 39.77 1.24 590.1 7.86 6.98 547.40 0.05 556 0.45
50 909 972 6.93 2.87 936.72 3.05 15.25 911.44 0.27 2930 3.98
R103 25 454.6 454.6 0.00 1.45 470.8 3.56 7.28 455.69 0.24 1500 1.60
50 772.9 795.02 2.86 2.81 832.5 7.71 13.14 771.9 * 8591 17.82
R104 25 416.9 417.89 0.24 0.49 490.3 17.61 7.57 417.96 0.25 1797 4.69
50 625.4 752.32 20.29 1.04 1091.4 74.51 16.79 - - - -
R105 25 530.5 533.72 0.61 0.54 534.6 0.77 7.02 531.53 0.19 407 0.13
50 899.3 901.57 0.25 1.77 901.07 0.20 13.17 - - - -
RC101 25 461.1 494.01 7.14 1.59 461.1 0.00 6.57 409.24 * 621 0.67
50 944 944 0.00 2.63 1078.4 14.24 12.79 - - - -
RC103 25 332.8 337.41 1.39 1.43 543.7 63.37 6.97 333.91 0.33 6933 25.52
50 822.5 822.5 0.00 2.05 1168.9 42.12 13.22 647.36 * 24232 572.67
RCI105 25 411.3 419.56 2.01 1.49 417.1 1.41 6.63 412.37 0.26 1611 1.88
50 855.3 915.12 6.99 2.87 994.97 16.32 12.59 763.42 * 5301 8.3
The “addcolumn” column in the table is the total num-  performance.

ber of columns added by the HCGA. The optimal ub
value and Gap value corresponding to each example in
Table 2 are shown in bold. In Table 2, “—" means that the
optimal solution is not found within one hour. “*” means
a better solution than the known optimal solution
obtained by HCGA.

As can be seen from Table 2, the test results of SA and
MA on most problems run faster than the HCGA. How-
ever, for small-scale instances, the optimal value obtained
by the HCGA in the same order of magnitude is better
than the other two algorithms. On large-scale instances,
the HCGA runs for a long time. However, the ub value
obtained by the HCGA is better, and the maximum Gap is
no more than 1%, which verifies that the HCGA has good

5.2 Case analysis of enterprise logistics scheduling

In this part, we apply the HCGA to a real logistics distri-
bution case. In small and medium-sized cities, many
enterprises cannot afford to build a complete logistics
department. The solution usually adopts outsourcing
logistics or only relies on its own distribution vehicles.
Usually, the enterprise only pays the cost from the depot
to the last customer point. This is a real application case
of the OVRPTW.

We investigate the distribution process of a large floor-
ing enterprise in Qingdao. The enterprise has three
depots. The customer node is based on real-world longi-
tude and latitude coordinates. According to the different
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needs of distribution customers, we abstract three differ-
ent sizes of distribution customer sets: small (5,10,15),
medium (20,25,30,35), and large (40,45,50). Table 3
shows the characteristics of the case. The first column
gives the name of the case, and the second and third

1007

columns show the number of vehicles available V,,,, and
the vehicle’s carrying capacity V., respectively. The
third to fifth columns give the range of customer demand
Cliemana» fixed service time Cguyicerimes @nd time window

CTimeWindOW'

Table 3 Parameters in enterprise logistics scheduling

Instance Voum Veap Ciemand CerviceTime/MIN CrimeWindow/MIN
C501 15 300 [10-50] 45 [50-70]
C502 15 300 [10—-110] 30,45 [20-80]
C503 15 300 [30-110] 45 [20—100]

Table 4 shows the distribution optimization results
between cities. The MIPsolved column gives the optimal
solution (shown in bold) obtained by GUROBI solver
based on the mixed integer programming model given in

proposed in this paper to find the shortest path of distri-

bution. The calculation method of Gap is

B CGsolved — MIPsolved

. . Gap = x 100%.
Subsection 3.2. The CGsolved column gives the HCGA MIPsolved
Table 4 Results of the algorithm for enterprise logistics scheduling
Instance Scale n MIPsolved Time/s CGsolved Time/s Gap/%
5 3.24 0.46 3.24 0.012 0.00
Small 10 5.72 2.95 5.72 0.026 0.00
15 14.33 12.58 14.73 0.11 2.79
20 21.20 51.87 21.20 0.377 0.00
C501 25 36.46 68.03 36.46 1.07 0.00
Medium 30 48.17 63.25 49.5 2.16 2.76
35 70.12 59.17 70.655 3.47 0.76
40 81.59 125.49 81.657 5.78 0.08
Large 45 103.98 242.82 104.77 13.21 0.76
50 119.24 644.77 119.24 13.8 0.00
5 12.8 0.64 12.8 0.013 0.00
Small 10 40.19 2.15 40.19 0.019 0.00
15 60.52 14.56 60.52 0.027 0.00
20 62.05 30.62 62.93 0.128 1.42
C502 25 69.11 103.79 70.28 0.216 1.69
Medium 30 81.02 89.21 81.91 0.562 1.10
35 85.34 144.93 86.22 1.08 1.03
40 89.99 201.01 91.67 2.17 1.87
Large 45 96.8 396.54 101.86 2.48 5.23
50 111.07 365.71 116.41 3.61 4.81
5 10.31 0.45 10.68 0.009 3.59
Small 10 18.52 1.7 19.37 0.0169 4.59
15 32.35 8.07 333 0.0319 2.94
20 58.86 49.42 61.08 0.055 3.77
25 106.66 88.58 107.63 0.147 0.91
C503 Medium 30 142.37 56.83 146.84 0.339 3.14
35 179.33 103.35 189.02 0.97 5.40
40 209.95 179.48 220.9 1.47 5.22
Large 45 227.32 282.85 241.25 1.61 6.13
50 234.75 1228.245 251.38 2.69 7.08

It can be seen from Table 4 that the solving time of the
proposed algorithm in three cases is less than 1 min, and
the Gap is less than 10%. In the case of intercity and
intercity, the optimal solution time is better than that of
the GUROBI solver.

Fig. 5 shows the box diagram of Gap between the so-
lutions of the mixed integer programming model and the
column generation model under the scale of C501. It can

be seen from Fig.5 that the Gap is usually less than
1%, which shows that the HCGA is very effective in
solving the problem of this scale. Fig. 6 shows the con-
vergence of the HCGA for the C501 50 case. It pro-
ves that the HCGA can converge to the optimal value in a
short time, while the mixed integer programming model
usually needs a long time to converge.



1008
0.04
0.03 +
0.02
g
© 001} .
0.00
—0.01 -
C501
Fig. 5 Box diagram of Gap in C501
130
"
125+ ™
8 p
S 120 "
[ - u-8----888
2 d
5 S
21st
o =
1ot T
105 A 1 1 1 1 1
0 100 200 300 400 500 600 700
Time/s
—m--ub; --e- :lb.

Fig. 6 Convergence of C501-50

6. Conclusions

This paper considers the OVRPTW, which is an NP-hard
problem widely existing in the real world. Due to the NP-
hardness of the OVRPTW, we propose an HCGA to
address it. The proposed HCGA not only utilizes the col-
umn generation method to decompose the OVRPTW into
a series of subproblems, thereby obviously reducing the
scale of the problem and reasonably determining the
search regions, but also designs a label setting algorithm
and a PSO algorithm to quickly solve the decomposed
subproblems and obtain quality-assured columns. Fur-
thermore, a problem-dependent branch strategy is devised
and embedded in the HCGA to generate a high-quality
feasible solution as the final output. The test results and
comparisons based on the benchmark instances and a real-
life instance manifest the effectiveness of our HCGA.
The future research is to extend the proposed algorithm to
other complex logistics scheduling problems.
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