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Abstract: With the development of technology, the relevant per-
formance of unmanned aerial vehicles (UAVs) has been greatly
improved, and various highly maneuverable UAVs have been
developed, which puts forward higher requirements on target
tracking technology. Strong maneuvering refers to relatively
instantaneous and dramatic changes in target acceleration or
movement patterns, as well as continuous changes in speed,
angle, and acceleration. However, the traditional UAV track-
ing algorithm model has poor adaptability and large amount of
calculation. This paper applies support vector regression (SVR)
to the interacting multiple model (IMM) algorithm. The simu-
lation results show that the improved algorithm has higher track-
ing accuracy for highly maneuverable targets than the original
algorithm, and can adjust parameters adaptively, making it more
adaptable.
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1. Introduction

Maneuvering targets are the current difficulty in target
detection and tracking. Due to their strong maneuverabi-
lity, it is difficult for the single-model method to track
them with high precision and it is easy to lose targets.
The interactive multi-model (IMM) method proposed by
Blom et al. [1] is one of the methods widely used in ma-
neuvering target tracking algorithms. This method simu-
lates the movement of the targets by establishing a set of
models and assumes that the switching of different mod-
els follows the Markov process, and the final state of the
target is finally weighted and determined by the filter val-
ues of different models [2].
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The IMM algorithm uses multiple motion models in
parallel and uses a Markov process to simulate the tran-
sition between models, and finally weights the filtered va-
lues of multiple models as an estimator of the target state.
For maneuvering targets, the algorithm’s tracking effect
is better than that of the single model algorithm. Its adapt-
ability is also better. Compared with the single-model
algorithm, the IMM algorithm has many advantages [3]:

(i) The IMM algorithm contains multiple models, and
the number and types of models in the model set can be
set according to actual needs.

(i1) In the process of target tracking, the accuracy of
target tracking can be improved by adjusting the proba-
bility of the model.

(iii) Each model has its own filter, and the filters of
each model can be adjusted according to actual needs to
improve the filtering performance.

However, the IMM algorithm has some shortcomings.
First of all, similar to the early multi-model algorithm and
some other prior models, the performance of the interac-
tive multi-model algorithm depends to a large extent on
the model used. Considering the amount of computation
and the competition between models, the size of the
model set should not be set too large, and it should be set
in advance because different models have different pro-
cessing methods. Moreover, too many models in the mod-
el set will lead to competition between the models, there-
by reducing the accuracy of the algorithm [4]. Therefore,
a model set of proper scale should be established in
advance. Once the model set is determined, the model set
will not be changed in the tracking process. However,
with the development of control technology, the mobility
of various targets is getting better and better, and the pre-
set fixed number of model sets is difficult to meet actual
needs.

To solve the problems caused by the fixed model set,
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Li et al. proposed a variable structure multi model algo-
rithm in 1999 [5], and then proposed several practical
algorithms based on variable structure multiple models:
possible model set algorithm, maximum likelihood func-
tion algorithm, and grid algorithm [6] in 2019. Based on
the above methods, most of the variable structure multi-mo-
del algorithms have been researched [7—9]. Many experts
and scholars have also proposed improved algorithms to
solve the problem of low tracking accuracy of maneuver-
ing targets due to poor adaptive filter. In [10], a fuzzy
adaptive controller was designed to join the nonlinear
system to adjust the adaptiveness of parameters. In [11],
the fuzzy membership function was introduced into the
current statistical model to achieve the adaptive adjust-
ment of the target acceleration. In [12], a fuzzy inference
system was introduced into the tracking algorithm to
reduce the tracking error by adaptively adjusting the
maneuvering frequency.

To solve the problem of poor IMM adaptability, this
paper applies support vector regression (SVR) to the
IMM algorithm. The IMM algorithm using SVR is tested
through simulation. The improved IMM algorithm not
only has low model complexity, but also improves the
tracking accuracy of maneuvering targets.

This paper is organized as follows. Section 2 mainly
introduces the detailed principles and steps of the IMM
algorithm, the SVR algorithm, and the improved IMM
algorithm. Section 3 mainly introduces the IMM algo-
rithm and the improved IMM algorithm simulation re-
sults. Section 4 presents conclusions.

2. Methodology
2.1 IMM algorithm

The basic idea of the multi-model (MM) algorithm is to
give a model set containing one or more motion models
(including non-motion model and motion model) before
the state estimation, and then use multiple models to fil-
ter and estimate separately in parallel. Finally, the state
filter values of each model are weighted and summed
according to the probabilities of each model in the cur-
rent period [13].

The IMM algorithm uses multiple different motion
models to match the different motion states of the target.
The transition probability between different models is a
Markov chain [14], and the target state is estimated using
a Kalman filter. It mainly has the following components:

Step 1 Input interaction module.

Input the target state filter value and covariance filter
value of each model in the previous cycle period into the
input interaction module and perform input interaction ac-
cording to the model probability transition matrix and the

model probability. Then put interaction values into each
model [15].

) N
X (k=1k=1)= 3" X (k= 1lk=Dwoyer () (1)
i=1

In (1), XOl(k— 1lk—1) is the input of the ith filter at
time k after interactive calculation, P'(k—1lk—1) is the
corresponding state covariance. X[(k— 1|k —1) is the state
estimation of the ith filter at k—1, and P (k—1lk—1) is
the corresponding state covariance. u;_y_; (i|j) is the tran-
sition probability of the ith filter during interactive calcu-

lation.
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Step 2 Model filter estimation module.

Each model uses its own filter to filter the input state
interaction value and input covariance interaction value to
obtain the state estimate and covariance estimate. Xl(klk)
is the state estimate of the ith filter at time k. K(k—1) is
the filter gain at k—1. V(k—1) is the innovation sequence
at time £—1.

Xk = Xkk-1)+K(k-DVk=1)  (3)

Step 3 Update of model probability module.

Update the model probability value according to the
estimated value of each model and the measurement
value received by the sensor at the current moment. A/ is
the probability of the jth model, vi is the filter residual,
S/ is the corresponding covariance. The probability of the
jth model is updated to

M=t ,exp[—é(vi)'(solvi], @
[2nS;]
()=~ AT, ©)
C k)
N
C=> nC. (©)

Step 4 Estimation fusion module.

IMM is an algorithm with data fusion as the core.
Probability weighted summation of the estimated value of
each model is used as the target state estimation for each
cycle [16]. X (klk) and P (k|k) are the interactive output at
time k respectively.
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A filtering cycle of the IMM algorithm mainly includes
four steps: input interaction module, model filter estima-
tion module, update of model probability module, estima-
tion fusion module. The algorithm block diagram is
shown in Fig. 1.
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Step2 —» Z(h)

Filter M1 Filter M2

X, (klk), P,(klk) X, (k|K), Py(klk),

Step 3 —» | Model probability update |
T
L .
Step 4 — | Output data interaction |
X(kb), P(kk)
Fig. 1 IMM algorithm flow chart
2.2 SVR

Support vector machine (SVM) originally came from
classification and then is used to solve regression prob-
lems, called e-SVR of SVR machine model [17].

In regression problems, we give a training data set. The
data set consists of input and label. There are n sets of
data which is G, = {(x,-,y,») cx = (X2, ,x,?’)T, yi €R}L,
in d-dimensional space. Constructing a regression func-
tion f(x;)=w"-@(x;)+b, where ¢(x;) is the nonlinear
mapping function, b € R is the threshold, and w is the
feature weight vector.

Step 1 Set-up of the convex quadratic optimization
problem.
Quote the linear insensitive loss function:

[0 y-fl<e
L(f(x),yﬁ)—{ b=t b f@>e @

where f(x) is the predicted value of the fitting function, y
is the predicted value of the fitting function. Disregard-
ing the small errors that fall within some tolerance, say &,
may lead to a better generalization ability achieved by
utilizing an e-insensitive loss function.

The significance of the insensitive loss function refer-
ence is that if the difference between f(x) and y is within
the allowable error range, then f(x) has no loss.

Introduce slack variable &€ and establish the following
constraints:

: ] T T

<w.rbI}e]1?~+1 Ew w+C1 €], (10)
where 1 denotes the mx1 all-one vector, |£]; € R”, (|€]); =
max{0, |x;"w + b —y;|— &} that represent the fitting errors
and the positive control parameter C here weights the
tradeoff between the fitting errors and the flatness of the
linear regression function f(x). Rewrite the above for-
mula into the following formula:
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Step 2 Lagrange dual problem.
Introduce Lagrange coefficients y; and transform them
into dual form:

1
Lw,b,a,a &€ ) = 5|IW||2+
CZ(&"‘SD‘Z&#[‘Z&#?"‘
i=1 i=1 i=1
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=1 i=1

Then let the partial derivative of L to w,b,&;, and & be
0 to obtain

w= Z(a/jf —;)x;
i=1
Dlaj-a)=0 (13)
i=1
atu=C
@+ =C

Take it back to the Lagrange function, simplify it to get
a function only about ; and a;. The goal is to maximize
this function.

L(a,a") = —% Z((li—a?)(a.i_a;)K(xhxj)—
=1 j=1
e (@ra)+ (@ +a)y (149
i=1 i=1

The constraints are
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where K (x;,x;) = (x)"x ; is the vector inner product. It is
now a linear kernel, and it can also be replaced with a
nonlinear kernel function such as a Gaussian kernel.
In the above process, Karush-Kuhn-Tucker (KKT) con-
ditions must be met, that is,
a;(f(x)—y—0-&)=0
@ (yi—f(x)-0-&)=0

a =0
(C-a)&=0
(C-a)& =0

From (16), we know
(1) When a; > 0, there must be

et&E+Wx+b-y =0, &>0. (17)

These points are located at the upper boundary of the
pipe, or above the pipe. The predicted value is smaller
than the true value.

(i1) When o} > 0 , there must be

g+§j>—(wa,-+b)+yf=O, & 20. (18)

These points are located at the lower boundary of the
pipe, or below the pipe. The predicted value is greater
than the true value [18].

At the same time, from (16) we know that for any data
point, since & > 0, it is impossible for both @ and b to be
greater than 0 at the same time, and to get a point inside
the pipeline, there must be ; = 0,a; = 0.

Step 3 Hyperplane computing.

According to the previous calculations, we can get

w:Z(aﬁ—ai)x,-. (19)
i=1

From the above analysis, the point that affects the
hyperplane parameters is located at the pipe boundary or
outside the pipe. Regarding the calculation of b, it can be
considered that a point at the upper boundary of the
pipeline must have

{ 6=0 . (20)

e+t &+wix,+b—y =0

It can be solved that

b=y —e-w'x;=
e 3 o) =
=1
y;‘—s—Z(a/j—aj)K(x,-,xj) (21)

J=1

Then the prediction function is

yx)=wix+b=

D (@i—a))x) x + b=
i=1

D (@i =a))K (x;, %) + ;-

6= (@-a)K (x.) (2)

where x is a point on the plane boundary of the hyper-
plane pipe.

Step 4 Proof of convergence.

In our smooth approach, we change the model slightly
and solve it as an unconstrained minimization problem
directly without adding any new variable and constraint.
That is, the squares of 2-norm g-insensitive loss. In addi-
tion, we add the term 2*/2 in the objective function to
induce strong convexity and to guarantee that the prob-
lem has a unique global optimal solution [19].

Therefore, (11) can also be rewritten as

min %(wTw + )+ % Z xw+b—yl.  (23)
Inspired by smooth support vector machine (SSVM)
for classification, the squares of e-insensitive loss func-
tion in the above formulation can be accurately approxi-
mated by a smooth function which is infinitely differen-
tiable and defined below:

|x], = max{0, |x| - &} =
(x—¢&),+(-x—-¢),. (24)

Furthermore, (x—¢),-(—x—¢), =0 for all xe R and
£> 0. Thus, we have

Ixl=(x—e); +(-x—&).. (25)

In SSVM, the plus function x, is approximated by a
smooth p-function, p(x,a)= p(x—s,a))2+(p(—x—8,a))2,
a>0.

Therefore,

pi(x,@) = (p(x—&,@) +(p(-x—&,@))*.  (26)

The original objective function can be expressed as

1 C
min z(wTw +b)+ ElTpi(xw +1b-y,@). (27)

(w.b)eRn* !

Rewrite (23) and (27) as

1 C<
h@)= S 0w+ 0+ = Z. leow +b -y, (28)
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1 C
gx.@)= w'w+b)+ 120w + 170 —y.0). (29

Combine w and b into a vector ¢ =(w,b)". Mark ¥ =
(x : 17). Therefore, the formula is rewritten as

_1 2Cm~ 2
) = glE+ 3 ) e~k (30)

_1 2anz~
&@@—ﬂ%+5;mmt%®- (1)

To prove the convergence, three lemmas and a theo-
rem are introduced as follows:

(i) |x|* and p*(x,a) are given by (25) and (26), there-
fore,

pi(x,a) > |x|’. (32)

(i1) The objective function is defined as shown in (30)
and (31), then the optimization problems min/.(x) and
ming,(x,a) have solutions. ’

x(iii) Assume that the solutions of the optimization
problems mxinhg(x) and mxinga(x,a) are ¥ and ¥,, there-
fore,

1
h.(x) —h.(X) > Ellx—illi, (33)

1
8:(%, @) = 8.(¥,) > Sl = Xll3- (34

(iv) For any C >0, the solution of the optimization pro-
blems ming.(x,a) are globally convergent to the solu-

tion of min/,(x).

1
h(x,) - h(x) > Ellx—fllﬁ (35)

8(Xo, @)~ g(X,) > 5 |I% — %oll3 (36)

N —

Formula (35) plus (36) gets
Combine the three lemmas to get

1%, = %; < g (F.) — 1, (%) =
Cxh L. .
[5 D PLEE-y.@) - B, —yilﬁ] : (38)
i=1

Convergence has been proved as

s . (2y 2p
p.(x,@)—Ix[;<2{—| + —1n2 39)
a a
where p is a constant.

Bring (39) into (38) to get

1%, — %[5 <

2\ p
mC|[— ] +=1In2]. (40)
a a
It is proved that the support vector regression machine
is globally convergent.

2.3 Improved IMM algorithm

Finally, an improved IMM algorithm is introduced, which
is improved based on the IMM algorithm [20]. As shown
in Fig. 2, on the basis of the original IMM algorithm, an
SVR machine network is added as a feedback network.
The model set is still preset, but the feedback network
will monitor the matching degree of different models
with the actual movement of the target in real time. Then,
adjust the process noise covariance matrix coefficients of
different model filters according to the degree of match-
ing. Finally, the tracking error can be reduced when the
model does not match.

Based on the above discussion, we should first deter-
mine the matching degree of the model in real time. The
simulation shows that in target tracking, when the target
is maneuvering, the filtering residual becomes larger and
the greater the maneuvering intensity, the larger the filter-
ing residual [21]. Therefore, the filtered residual informa-
tion is an important parameter for testing the strength of
the target’s maneuverability, and it is also an important
parameter for testing the degree of model matching. The
following formula is now used as the real-time monitor-
ing of the network.

Ax
_ o,
d(k)=z(k)—z(k) = 41
Ay

ay

In addition, simulation shows that when the model
does not match, reducing the process noise covariance
coefficient can reduce the overall tracking error. There-
fore, different matching degrees must correspond to a
coefficient. Taking innovation as the input of the net-
work, the optimal coefficient as the output value, supple-
mented by a large amount of training data, the feedback
network can be obtained.

The module of coefficient adjustment based on SVR is
responsible for receiving the relevant parameters of the
IMM model, thus output the coefficient of the error
covariance matrix (ECM), and then return this parameter
to the IMM model for estimating the current state of the
target. The coefficient about ECM is actually used as an
intermediate coefficient of the overall tracking model.
Therefore, the real state of the target at the current
moment can be used as the label, and the loss function for
the training of the constraint network is set as the mean
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square error (MSE) between the estimated state of the tar-
get based on the ECM and the real state. The formula for
the loss function is as follows:

foss = J iz (h (@) =)' “2)

In the simulation conditions, there are cases of model
matching and mismatch, with different adjusting coeffi-
cients. Adjusting coefficient and model training are con-
strained by the above loss function. Thus as long as
Monte Carlo simulation is carried out for several times,
the corresponding training set and label can be generated.
The model training set is the innovation corresponding to
different models for several times, and the label is the real
state of the target at the current moment.

Since the simulation scenario and model set only
involves two simple models, the size of adjustment coef-
ficients is only two. Therefore, the function of adjust-
ment about ECM (SVR module) is not a very complex
function. Therefore, a limited training set can fully train a
well-performing SVR module. In addition, the training
and test scenarios are separate. In the training scenario,
the time series involved in motion is 400, which contains
scenarios with different model matching degrees. After
several Monte Carlo simulations, 1000 sets of data are
collected as the training set.

Now suppose that two models are set up in the model
set, then the improved IMM algorithm schematic dia-
gram is shown in Fig. 2.

X, (k=1lk=1), P,(k=1}k=1) X (k—1}k—1), Py(k—1[k—1)

(k) fo(k)
o
Data interaction module
X0G-1k-1), P(k-1k-1) | X3-1k=1),
dy|  PYEUED gk SVR
| Filter M1 | | Filter M2 |

X, (klk), P,(kik) X, (k[k), Py(klk)
| Model probability update |

| Output data interaction |

X(kik), P(k{k)

Fig.2 Improved IMM algorithm flow chart

It mainly has the following components.

Step 1 Input the filtered value of each model in the
previous cycle to the input interaction module for input
interaction, and then input the interaction value of each
model into each model for a new round of filtering.

Step 2 Each model performs filtering according to
the measurement of the current period, inputs interaction

value, and outputs the state estimate and estimate of co-
variance.

Step 3 Each model updates the model probability
value according to the relevant result parameters.

Step 4 The prediction error d,(k) and d,(k) of two
models are used as the input of SVR, and the coefficients

fi(k) and £,(k) of the covariance matrix are output, which

can feed back to Step 2 to adjust the estimation results.

Step 5 Calculate the overall state output using the
current target state estimates of each filter and the proba-
bility of each model.

The specific steps of the improved IMM algorithm are
basically the same as those of the standard IMM algo-
rithm, which are also divided into: (i) filter initialization
and data interaction; (ii)) model filter estimation;
(iii) model probability update; (iv) data estimation fusion.
Among them, Step 1, Step 3, and Step 4 are the same as
the original algorithm, and the covariance part prediction
of the original algorithm in Step 2 is replaced by

?(i) (k|k— 1) — F(i) (k_ 1)
y2ul (k— 1]k — 1)(F(i) (k— 1))T+f(i) (k— 1)Q(i) k—1) (43)

where f®(k—1) represents the output component of the
SVR system, and its initial value is 1.

3. Experiments

Assume that the target moves in two-dimensional space,
the sampling period 7=1 s, the measurement noise is a
Gaussian sequence with a mean value of 0 and a standard
deviation of 100 m, and the number of simulations is 200.
If the IMM is composed of two single models, one is the
constant velocity model, the other is the constant turning
model. The initial probabilities of the models are 1/2, and
the model transition probability matrix is

09 0.1
A‘[ 0.1 09 ]

A total of 200 Monte-Carlo simulations are used, and the
evaluation index is the target root mean square error
(RMSE) of position and speed, which can be represented
as

N

1 R
RMSE = | Z (X -X (klk)) (44)

J=1

where N is the number of Monte-Carlo simulations; ; is
the jth simulation; x and y respectively represent the true
value and filtered estimated value of the tracking target
state at time £.

In addition, the velocity RMSE is treated by taking rela-
tive method, and the formula is as follows:
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N 2

1 i
N Z (X (k) - X (k|k))

RMSE(®) = . (45)
VVi+v;

In (45), the square root values of the two dimensions of
velocity are calculated at each moment, and then the
value is used to normalize the RMSE of velocity.

Scenario 1 Target turning maneuver: The target
movement process lasts 400 s, initial state: (1 000,10,
0,1 000,10,0). The target starts to move in a straight line
at a constant velocity (CV), with an initial speed of
10 m/s. It then executes a maneuver with constrant acce-
leration (CA) of 1 m/s” from 101 s—191 s. Then it exe-
cutes a constant turning (CT) motion in 191 s—270 s, and
the centripetal acceleration is —m/270 m-s2. Finally, it
goes back to constant velocity motion. The target trajec-
tory is shown in Fig. 3.

10 000 - - - : :
9000 CV CA | CT (6%
8000
7000
6000
5000 |
4000
3000 t
2000
1 000

0

Y position/m

0 05 1.0 15 20 25 30 35
X position/m x10*

Fig.3 Track diagram in Scenario 1

It can be seen from Fig. 4 and Fig. 5 that in the case of
turning maneuver, the RMSE of position and speed of the
improved IMM algorithm is obviously lower than that of
the IMM algorithm. Since the target moves at a constant
speed in the initial stage, the model set can match it, the
position and velocity RMSEs of the two algorithms are
relatively low. In 101 s—190 s, the target moves at a con-
stant acceleration, and the model sets cannot match.
Therefore, the RMSE of the position and velocity of the
two algorithms increases greatly, and reaches the peak
after a period of time, but the improved IMM algorithm is
lower than the IMM algorithm. In 191 s—270 s, the target
makes a constant turning motion and the model sets
match, and the RMSE of the position and velocity errors
of the two algorithms begins to decrease. In 271 s—400 s,
the target moves at a constant speed and the model sets
match, and the RMSE of position and velocity continues
to decrease and then floats at a lower level. Under the
premise of retaining the low RMSE when the model is
matched, it can be seen that the improved IMM algo-
rithm can effectively reduce the RMSE when the model

does not match. Finally, the variation trend of adaptive
parameters is shown in Fig. 6.

180
160
140 ¢

CcvV CA CT (0\%

Position RMSE/m
S IR = )
S S 3 &5 3 S

(=]

-
0 50 100 150 200 250 300 350 400
t/s
— :IMM; — : Improved IMM.

Fig. 4 RMSE of position in Scenario 1
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O

10 +
51 ]
w/w
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Fig. 5 Root mean square error of speed in Scenario 1
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Fig. 6 Adaptive parameter changes in Scenario 1

Scenario 2 Target continuous maneuver: The target
starts to move in a straight line at a constant velocity,
with an initial speed of 10 m/s. It then executes a ma-
neuver with an acceleration of 1 m/s’ from 51 s—100 s.
Then it executes a constant turning motion in 101 s—300 s,
and the centripetal acceleration is —m/270 m-s~2. After
that, conduct constant acceleration motion in 300 s—350 s,
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X-axis acceleration is 1 m-s™ and Y-axis acceleration is
—1 m-s™2. Finally, it goes back to constant velocity mo-
tion. The target trajectory is shown in Fig. 7.

6 000 . :

4000 CVICA
2000 -
0 L
2000 } !
—4 000 | |
~6 000 i
-8 000 |
—10 000 +
—12 000 +
—14000F o\
0 02 04 06 08 1.0 1.2 1.4 1.6 1.8 2.0
Position/m x10*

— : Real value.

Position/m

Fig. 7 Track diagram in Scenario 2

It can be seen from Fig. 8 and Fig. 9 that when the tar-
get is continuously manipulated, the improved IMM algo-
rithm can effectively reduce the RMSE when the model
does not match. At the same time, the RMSE is kept
small when the model is matched. Since the target mo-
ves at a constant speed in the initial stage and the model
sets match, the position and the velocity RMSE of the
two algorithms are relatively low. Within 51 s—100 s, the
target moves at a constant acceleration, and the model set
cannot be matched. Therefore, the RMSE of the position
and the velocity of the two algorithms are greatly increa-
sed, and they reach a peak after a period of time, but the
RMSE of the improved IMM algorithm is lower than that
of the IMM algorithm. In 101 s—300 s, the target makes a
constant turning motion, and the model set can be match-
ed. Therefore, the RMSE of the position and the velocity
errors of the two algorithms begins to decrease. Within
300 s—350 s, the target moves at a constant acceleration
and the model set does not match, so the RMSE of the
position and the velocity rises again. Within 350 s—400 s,
the target moves at a constant speed and the model set
matches, so the RMSE of the position and the speed
drops again. Finally, the variation trend of adaptive
parameters is shown in Fig. 10.

The above two examples illustrate that the improved
IMM algorithm mainly plays the following roles.

(1) When the model is matched, the tracking accuracy
of the traditional IMM algorithm is guaranteed.

(i) When the model does not match, the feedback net-
work adjusts the degree of trust to the measured value,
corrects the covariance prediction value in real time, and
eliminates or reduces the filtering tracking accuracy drop
and filtering divergence caused by the sudden change of
the target state.
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Fig.8 RMSE of position in Scenario 2

0.6

05LCV | CA cT CA! CV|

041
031

02+

AN

0 50 100 150 200 250 300 350 400
t/s
— :IMM; — : Improved IMM.

Fig. 9 RMSE of speed in Scenario 2
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Fig. 10 Adaptive parameter changes in Scenario 2

4. Conclusions

This paper proposes an improved IMM algorithm based
on support vector regression. The traditional IMM algo-
rithm, the SVR method and the improved IMM method
based on the above are discussed.

Two types of scenarios are simulated for the tradi-
tional IMM algorithm and the improved IMM algorithm.
From the experimental results, the following conclusions
can be drawn. By using SVR to improve the traditional
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IMM algorithm, the estimated RMSE of the traditional
IMM algorithm in the case of model mismatch is
reduced, and the adaptability of the algorithm is
improved. The ideas presented in this paper can also opti-
mize and improve single model tracking algorithms and
other multi-model tracking algorithms.
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