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Abstract: In this paper, an importance sampling maximum likeli-
hood (ISML) estimator for direction-of-arrival (DOA) of incohe-
rently distributed (ID) sources is proposed. Starting from the maxi-
mum likelihood estimation description of the uniform linear array
(ULA), a decoupled concentrated likelihood function (CLF) is pre-
sented. A new objective function based on CLF which can
obtain a closed-form solution of global maximum is constructed
according to Pincus theorem. To obtain the optimal value of the
objective function which is a complex high-dimensional integral,
we propose an importance sampling approach based on Monte
Carlo random calculation. Next, an importance function is de-
rived, which can simplify the problem of generating random vec-
tor from a high-dimensional probability density function (PDF) to
generate random variable from a one-dimensional PDF. Com-
pared with the existing maximum likelihood (ML) algorithms for
DOA estimation of ID sources, the proposed algorithm does not
require initial estimates, and its performance is closer to Cramer-
Rao lower bound (CRLB). The proposed algorithm performs bet-
ter than the existing methods when the interval between sources
to be estimated is small and in low signal to noise ratio (SNR)
scenarios.
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1. Introduction

In the field of array signal processing, such as radar, so-
nar, and communication, one of the most important practi-
cal needs is to estimate the direction-of-arrival (DOA) of
targets. There are two ways to model targets, one being
point source model, the other being the distributed source
model. DOA estimation for point source targets has been
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relatively mature. At present, research directions mainly
include estimations in special cases [1,2], applications of
advanced array structure [3—5] and machine learning in
estimation [6]. As the distance between a receiving array
and a target is shortened, spatial expansion of the target is
observed. The distributed source model is more suitable
to describe spatial characteristics of the target. Distri-
buted sources can be divided into coherently distributed
(CD) sources and incoherently distributed (ID) sources
according to whether different scatterers of a target are
correlated [7]. By extending the classical methods of
point sources, DOA estimation of CD sources has been
well solved [8—10]. However, for ID sources, the energy
of signal is distributed throughout the observation space,
and the covariance matrix of the signal receiver vector is
full rank. If traditional algorithms of point source model
are used to estimate the parameters of ID sources, the per-
formance will decline [7,11].

DOA estimation of ID sources is one of the research
hotspots in recent years. So far, DOA estimators of ID
sources can be divided into five categories. One is sub-
space search algorithms. For example, distributed signal
parameter estimator (DSPE) [7] and dispersed signal
parameter estimator (DISPARE) [11] algorithms are
extended from the classic point source estimator multiple
signal classification (MUSIC). These technologies need
spectral peak search and effective measurement with
respect to dimensions of pseudo signal subspace. The
subspace rotation algorithms which are widely studied at
present [12—20] show great advantages in low complex-
ity estimation. These algorithms mostly use the first order
Taylor series approximation of the array manifold vec-
tors to construct the generalized array manifold (GAM)
vectors and the rotation invariant relationship between
GAM vectors to estimate parameters. Since such methods
are based on the estimate signal parameters via rotational
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invariance techniques (ESPRIT) framework, we call such
methods ESPRIT-like algorithms. In such methods,
[12—14] considered one dimensional ID source while
[15,16] dealt with two-dimensional ID sources based on
L-shaped array and circular array respectively. Refer-
ences [17,18] considered two-dimensional ID sources
under multiple input multiple output (MIMO) systems
background. Another class of low complexity algorithms
is based on beamspace shift invariance structure via
designing appropriate beamforming matrices such as
[19,20] which have considered the noncircular ID sour-
ces. There are a class of nonparametric methods, such as
beamforming and Capon spectral methods [21,22], which
require high-dimensional searches and are ordinary in
estimation accuracy. Covariance matching estimation
techniques (COMET) methods [23—26] have also
achieved good performance. However, [23,24] can only
estimate a single source. In addition, initial estimates are
required for iterative calculation in [25,26]. The maxi-
mum likelihood (ML) estimation has advantages in esti-
mation accuracy, whereas the global optimal solution of
the ML function needs multi-dimensional grid search, the
computational complexity increases geometrically with
the number of sources; instead, several iterative methods
have been proposed for ML approach. In theory, iterative
methods cannot guarantee the convergence to the global
optimal solution, and it needs to provide initial iterative
values. Trump et al. [27] presented the ML estimation of
ID source for the first time, which requires complex nonli-
near optimization and initial estimates. An approximate
ML method for joint estimation of DOA and angular
spread considering multiple sources was proposed in
[28], which also needs to provide initial estimates. Ghogho
et al. [29] proposed an approximate ML estimation
method for a simplified ID source model. Based on the
same source model in [29], two approximate ML meth-
ods were proposed in [30], one of which needs initial esti-
mates, and the other has a mediocre performance in the
case of low signal to noise ratio (SNR); however, both
algorithms handle single-source estimation. As it has sig-
nificant advantages in estimation accuracy, ML method is
widely used in DOA estimation for point sources. Aim-
ing at joint estimation of DOA and other parameters as
well as DOA estimation under special array, [31-35]
achieved good performance by ML methods. References
[36—38] proposed to use importance sampling to conduct
Monte Carlo estimation of parameters, such as DOA and
Doppler frequency. The estimation accuracy of these
methods is significantly improved, and it does not depend
on the initial estimation; nevertheless, the above methods
can only deal with point source.

This paper presents a non-iterative ML estimation for

DOA of ID sources. For ID sources, ML functions de-
pend on DOAs and covariance matrices of receive vec-
tors. In order to reduce parameters in process of likeli-
hood function maximization, a concentrated likelihood
function (CLF) is introduced to decouple the unneces-
sary parameters. To compute the optimal value of the
CLF, we propose to apply the Pincus theorem [39] which
can converge to the global optimal value but requires a
multidimensional integral operation. Elaborating relation-
ship between means of random vectors and the estimated
values, the Monte Carlo random calculation technology
[40,41] can be used to realize the multidimensional inte-
gral. The key solution then is designing an appropriate
importance function as a probability density function
(PDF) from which random vectors are realized. The ML
method proposed in this paper is not limited to estima-
tion for DOA of ID sources under uniform linear arrays
(ULAs), and it can also be applied to different arrays by
modifying the likelihood function. To show the contribu-
tions of this paper clearly, the main differences between
the state-of-the-art methods and our work are listed as
follows:

(1) Reference [12—20] used low complexity calculation
methods, while this paper uses the ML method based on
importance sampling, random calculations is utilized to
find the optimal estimation.

(i1) Although [36—38] used the importance sampling
method to calculate DOA, their research objects are all
point sources, while this paper focuses on ID source.

(iii) Refences [27—28,30] used ML methods to esti-
mate DOA of ID sources, they are all iterative methods
and need to set initial values; the method proposed in this
paper does not require initial values and can be applied to
a wider range of array geometry types. The proposed me-
thod performs well in low SNR estimation and small
snapshots size, especially for the signal source with rela-
tively close distance.

This paper is organized as follows: In Section 2, we
introduce the model of signal and array. In Section 3, the
importance sampling maximum likelihood (ISML) esti-
mator for DOA of ID sources is elaborated. Section 4 dis-
cusses the simulation results. Section 5 presents conclu-
sions.

2. Signal and array model

As shown in Fig. 1, assume that the number of elements
in a ULA is M and the spacing is d. There are K targets
with nominal DOAs 6=[6,,6,,---,6,] incident into the
array, 6,€[—n/2, n/2]. Different from the assumption of
point source, ID source model assumes that the kth target
is composed of L, scatterers. Then the signal vector
received by the array at time ¢ can be written as
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K Ly
H0= ) 50 Y yua@u@) +n@e) (1)
k=1 I=1
where s,(7) is signal of the kth ID source, 6, (¢) is direc-
tion of the /th scatterer in kth ID source at time ¢, y;, (¢) is
the random complex gain of the /th scatterer, n(¢) is the
additive white Gaussian noise with variance o2, and
a(0,(?)) denotes the array manifold of the ULA with
respect to the point source. The ID source model assume
that signal from different scatterers are uncorrelated,
which means that the random complex gain of /th scat-
terer from kth ID sources and /'th scatterer from k'th ID
sources [14,16,18] satisfies the following relationship:

E[yi(0)y 1, ()] = O-L—y:é(k —K)s(I=)o(t=1)  (2)

where J(+) is the Kronecker delta function, and E[-] is the
expectation operation. 0'5/« represents the total power gain
of the kth source. The equation manifests that the power
gain of a scatterer is 1/L; of the total power gain of the kth
source.

M X

Fig.1 Array structure of ULA with two ID sources

Let u=2nd/A, where 4 is wavelength of signal, then the
mth element of a(8, (¢)) can be expressed as follows:

[a(0(1))],, = exp{ju(m = 1D)sin (6,(1)} - 3)

The direction of the /th scatterer within the kth ID
source can be expressed as a sum of a deviation angle
from nominal DOA of the kth source and nominal DOA,
which can be expressed as follows:

O.(1) = (1) + ra(1) )
where 6,(¢) is the nominal DOA of kth ID source and
@;(?) is the deviation from nominal DOA with zero mean
and variance o7. o can be called angular spread of the
kth source. Then we can obtain

a(0.(0) ~ a(0) + a' (O i) (5)
where a’(6,) is the partial derivative of a(6,) at 6,
According to the ID source model [7], scatterers of each
source are assumed to be enormous, which may obey
Gaussian, uniform, or other form distributions according
to spatial geometry characteristics of targets.
According to (5), (1) can be expressed as follows:

r(t) =~ Z Sk(t)Z’}’k,l(Z) (a(6) + @' (0)er(1) + n(r). (6)

k=1 =1

Consequently, the receiver vector of ULA can be writ-
ten as follows:

r0)~ ) (@(B)uio(d) + @ @) +n)  (7)

where
Uo(0) = 51(0) ) yi(0), @®)
v (D)= 5:t) D 7@, ©)
Apparently
E{vio()v ()] =

Ly

E{lsu(0) Z}E{Z ykﬁl(r)zkyz,m} =P, (10)

=1

where (-)* means the conjugate of a complex variable,
and P, =E{|s:(0) [} oﬁk is power of the kth ID source.
Based on distribution characteristics of ¢,,(f) and signal
propagation characteristics described by (2), we have

E{vii (v, (1)} = Po. (11)

Equation (1) can be overwritten as a linear form
approximately

r(t) ~ B(6)g(1) + n(1) (12)
where
B(0) = [A(6,),A(6>),--- , A(0x)], (13)
A(6) = [a(0),a'(6)], (14)
g =1gl.&. &l (15)
& = [, v (0], (16)

where (-)T means the transpose of a matrix, B() is Mx2K
dimensional and is regarded as the GAM of the ULA;
g(?) is 2Kx1 dimensional and is generalized signal vector.
The covariance of g(¢) can be expressed as follows:

A=E{g(ng" (0} = diaglA,, Az, . Ax)  (17)
where (-)H means Hermitian transpose of a matrix, and
Ak =Pk[1,0'i]

Therefore, the covariance of the received signal r(¢)

given by (12) can be derived as follows:

R~E[r()r'(1)} = BOAB"©O) + *L,.  (18)
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3. Proposed algorithm
3.1 ML estimation

The receiver vector of the ULA obeys a mean of 0 and a
variance of B(0)AB(0)H+JZI w complex Gaussian distribu-
tion, which can be expressed as
r(f) ~ CN(0, B(0) AB(6)" + oI ,,). (19)
Suppose that the ULA receives N snapshot data, define
vector F=[r (1), r (2)",---, r (N)']". Then the joint PDF
of N samples can be written as
1

S 0 = e BOABO o T

N

exp —Zr(r)“(B(e)ABw)“wzzM)”r(r)]. 20)

t=1

Then the logarithmic likelihood function of the
observed data can be written as

L(6,A) = —NIn |B(O)AB()" + o*I,,|-
N
Z r(" (BOAB®)" + *I,) ' r(2). 1)
=1
It can be seen that the unknown variables in above
likelihood function include A and noise variance o2 in
addition to . Reference [42] decouples the likelihood
function from A and derives a CLF. The CLF with
respect to @ can be rewritten as

N

1
5 0, (06O~

t=1

Lc(0) =

In |G(0)SG(8) + (I, — G(6))| (22)
where
S = E[r()r(n"],
G(6) = B(a)[B(a)“B(a)]”B(a)“.

Noise variance o*can be estimated by eigendecompo-
sition of R, taking an average of the 2K+1 to M eigen-
values of R [13].

3.2 Global maximization of the likelihood function

In order to obtain the ML estimate of #, we need to maxi-
mize (22) with respect to 6. Actually, (22) is high-dimen-
sional and nonlinear, the iterative optimization approach
cannot guarantee the convergence to the global optimal
solution theoretically. To obtain the optimal value, the
direct realization requires multi-dimensional grid search,
and the computational complexity increases exponen-
tially with the number of sources. For multivariable func-
tions with multiple local maxima, Pincus [39] proposed a
closed expression of the global maximum.

According to Pincus theorem [39], it is assumed that x
is an n-dimensional vector, and f{x) is a continuous func-
tion on a bounded domain closure in n-dimensional Euc-
lidean space, and the global maximum of f{x) is obtained
at [x,, Xy, -++, X,].

Then, as the weight parameter p reaches infinity, the
estimated value of the variable x; can be obtained as

) . I . .fxiexp(pf(x))dx
X; = lim ’
pseo f...jexp(pf(x))dx

The degree of integration in (23) is the dimension of
vector x. A normalized function can be defined as fol-
lows:

i=12,n  (23)

F(x) = lim exp(pf(x)) (24)

o= [ [ exp(of (x))dx
The above equation is nonnegative, and it satisfies
j j f(x)dx =1. Thus, f(x) can be considered as a
pseudo PDF of x. Thus, (24) can be rewritten as

Ai=1. i_ dx’ .:192:'“5 . 2’5
% pggf fxf(x) i n (25)

In this case, Pincus theorem can be regarded as finding
the expectation of x which satisfies the PDF of f(x).

Therefore, we can obtain the estimated DOA of the kth
source by Pincus theorem as follows:

ékzlimj-..feki(a)da, k=12, ,K  (26)
,m

where
p(Le(B)
[+ [ exploLc(6))d0

Equation (26) can be considered as the solving expecta-
tion of the random vector @ whose pseudo PDF is L(6).
Unfortunately, L(6) is a nonlinear high-dimensional func-
tion. The Monte Carlo random calculation technology
[40,41] can be applied effectively. Its basic principle can
be considered as 8 is the unbiased estimate of (26), which
has the following expression:

s 18
0= Zoq (28)

where 0, is the gth sample generated by the pseudo PDF
L(6). The sample mean converges to the optimal estima-
ted value when Q goes to infinity. Thereafter, the key
question is how to get samples of random vector 8 obey-
ing the high-dimensional nonlinear distribution L(6).

o) = 27)

3.3 Importance sampling method

The importance sampling method is a random calcula-
tion approach to realize a complex integral by a designed
and easily implemented pseudo PDF.
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Integral jh(x)?’ (x)dx can be expressed as follows:

jh(x)?'(x)dx fh(x)m p(x)dx 29)

where ¥ (x) and p(x) both satisfy the requirement of
PDF, that is, they are non-negative, and the integral in
domain is equal to 1. Equation (29) can be regarded as
expectation of A(x)¥ (x)/p(x) as the PDF of x is p(x).
p(x) is named as importance function. When the number
of samples is large enough, according to the Monte Carlo
random calculation principle, the expected value can be
obtained by sample mean, which can be written as fol-
lows:

Fx) ﬂx}
o] aSme oo

Now we consider designing the importance function
p(x). On one hand, the ideal p(x) should be as similar to
¥ (x) in shape as possible to reduce the variance of estima-
tion by (30); on the other hand, the structure of p(x)
should be simple to facilitate the generation of random
vector x. Therefore, there is a trade-off between the two
aspects when designing p(x). We consider the first term
of CLF shown in (22) as follows:

N
Nirz Z r)"B@O)® ' B@O)'r(r). (31)

In (31), entries in di=[B(19)H

follows:

L'c(6) =
B(6)] can be written as

Dy1 =M
Dy 5 = Ajucos 6
2%-1,2k 2J,U ) k (32)
Doy o = Bucos” 0,
Dy 51 = —Ajucos 6,
where A=M(M—1)/2, B=—(M—1)M(2M-1)/6. If k#k', the
following relationships can be proven:
| Doy 21| < M
|¢2k—l,2k'| <
| Do | < |B/J2C0S2 91(‘ ’
|¢2k,2k’—l| <
Then @ can be approximately equal to the following
expression:

|Ajucos 6|
| (33)

|Ajpucos 6,

where
Moy | M Ajucos 6,
Av= Vi Ve ]_ [ —Ajucos 6,  Bu?cos® 6, 35)
Therefore, if normalization is not considered, the

importance function is selected as

N

= D r0"BO)®BO)'r()| (36)

L'¢(6) = exp (pl

where p, is another weight parameter.
According to (34),

Z ()" B(0)® ' B(0)'r(1) ~

1

N K
Z Z {|F1(9k;tam)|2akl + |F2(9katam)|2ak3+

t=1 k=1

Fy(B,t,m)F5 (O t,m)a, + Fo (Ot m)F I(Gk,t,m)akz} (37

where
ap = Visz
= Vi
38
ap = M&, (38)
&= My, - Vleltl)_l
F\(6,,t,m) and F,(6,,t,m) can be expressed as
Fy(6u,tym) = Z r (f)exp(jmysin 6y), (39)

M
Fo(6u,t,m) = Z mipcos 0" (Hexp(jmusin 6,).  (40)

m=1

Then the importance function (36) can be written as

Le® =] [exp(pil(60)

where

N

Z {lFl(‘gkatam)|2akl+

t=1

1
1(6,) =
0=
|F2(9k9tnm)|2ak3 + F1 (Ot m)F5 (6.t m)a, +
Fy(0,t,m)F(0,,t,m)a,}. 41

Considering its normalization, the importance function
can be written as

= exp(pi(6))
0) = .
e Djexpww'k»de'k

Thus, each 6, can be considered independent and has
the same PDF as follows:

(42)

xp(p 0)
[ exp(out())der

It can be seen that the importance sampling method can
transform the problem of generating random vectors from

p(6) = (43)

a complex high-dimensional PDF into generating ran-
dom variables from a number of one-dimensional PDFs
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in the context of calculating the estimated value through a
large sample of random numbers.

3.4 DOA estimation

Circular mean can effectively reduce bias and computa-
tional complexity [43]. Since 6, is a cyclic random vari-
able, we introduce the circular mean to calculate the esti-
mated DOA. The circular mean of a random variable a
with PDF expressed by (44) and period [—n,n] is defined
as

E(a)=1¢ j_n exp(ja)p(a)da (44)

where 7 represents the angle of a complex variable.
Define variable w;=sin 8,. The range of the variable w, is
[=1,1]. Then the circular mean form of A(x) in (29) can be
expressed as follows:

hw) = exp(jnw) (45)
where o=[w,,w,,-- ,a)K]T. Variable substitution for (27)
and (42) are made as follows:

Flw) = exp(pL(w)) (46)
f exp(pL.())dw’
w) = exp(p11(wy)) (47)

= fexp(pll(w'k))dw'k'

In the same way, each w, can be considered indepen-
dent and has the same PDF as follows:

exp(p (@)
j exp(o/(w"))dw’

From the definition of the circular mean, according to
importance sampling approach described by (29), we get
the estimated w, as follows:

0
exp(nfw,],) Flw,) )
p(w,)

plw)= (43)

&)k =—/—
n Q o

o, is the gth random vector realized by p(w). [e,], is
the kth variable in @,. Since the circular mean is the mean
of angles of complex variable, the estimate of w, can be

equivalent to the following expression:

(49)

1 Q
bn= 45 D explimlw,] (@, (50)
y(w) = M. (51)
[ Jexptort@u)

k=1
y(w) is given by dividing (46) and (47) but omitting the
K
constants fexp(pLC(w'))da/ and H fexp(p.[(w’k))da/k

. . . .. k=1
in their denominators. This is because a complex angle
after summation operation of complex variables does not

change when the magnitude of each complex variable
cancels out a constant term together. In this way, using
the circular mean can reduce the complexity of the estima-
tion calculation. It is worth noting that both the numera-
tor and denominator in (51) are of an exponential form,
which is prone to overflow during calculation. Hence,
considering

¥(@) = exp(pLu(@)=py Y I(wy), (52)

k=1
we use y'(w,) as a substitute, which can be written as fol-
lows:

V(@) = exp|pL@))~pi ) I([@,])-
max (oL (@,) = py ;I[wq]k)]. (53)

@, denotes the estimated value of w;, which can be
obtained as follows:
0

A l l . ’
=05 ;expon[wq]k)y @) (59
Due to the nature of the circular mean, y'(w,) only
changes the amplitude of a complex variable and does not
affect the complex angle.

3.5 Computational procedure and
complexity analysis

The ML algorithm proposed in this paper can be summari-
zed as follows:

Step 1 Calculate F,(a), which is the approximate
probability distribution function of p(w). Take a suffi-
cient number of discrete points to approximate the proba-
bility distribution function. Set 2000 discrete points.
w,=-1+z/1000 (z=1, 2,---, 2000). Then the probabi-
lity distribution function of p(@) can be expressed as fol-
lows:

Ful@)= | ple)dw~

1 —1+z/1 000
o0 Z exp(pil(w,))- (55)
>lexploilw))

z=1

Step 2 Generate random vectors @ from p(®).

Substep 2.1 With the previous analysis, realize a sin-
gle vector @ from PDF p(®) which is equivalent to gener-
ate K random variables from PDF p(w). To do this,
according to the inverse probability integration method
n [41], first operation is generating random number u;
(k=1,2,--- ,K) from [0,1] uniform distribution, then calcu-
late
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Wy = F'(u) (56)

Substep 2.2 Repeat Substep 2.1 Q times to generate
random vectors @, (¢g=1,2,---,0).

Step 3  Estimate the value of DOA.

Substep 3.1 Calculate an estimate of the circular
mean &, (k=1,2,--- ,K) from (54).

Substep 3.2 Estimated DOA of the kth ID source as
0, =arcsin w,. The flow of the algorithm is shown in Fig. 2.

Calculate probability distribution function of p(w)
Forg=1,2, -, 0

Generate random mumber u,
from (1, 0) uniform distribution
Fork=1,2, K |

Ly Obtain circular variable

w, from (56)

Generate random
vectors @,

Calculate circular mean é\)k from (54)

Obtain DOA as #,=arcsin w,

Fig. 2 Flow of the proposed algorithm

We analyze the computational complexity of the me-
thod proposed in comparison with representative ML me-
thods [27,28] and a representative ESPRIT-like algo-
rithm [14]. Reference [27] solves the optimal value of like-
lihood function through Newton search, which is a high-
dimensional optimization process. Complexity of the al-
gorithm are as follows: complexity of calculating the co-
variance matrix is O(MN2 ) and complexity of the optimiza-
tion procedure is 0(80LNKM3 ) where L, is number of ite-
rations of Newton search. Reference [28] separates the
source power and noise power from the likelihood func-
tion, and seeks the optimal value of likelihood function
through a 2K dimensional search. The main calculation
processes include calculating the covariance matrix, sepa-
rating the power and noise power from the likelihood
function and searching operation. Complexity of the three
parts is O(MN2 ), O(M6 F3KM ), and 0(2KL9L0M3) respec-
tively where L, and L, are the search points of DOA and
angular spread. Reference [14] is a low complexity esti-
mation method using the rotational invariant relationship
of signal subspaces. The main calculation processes con-
sist of calculating the covariance matrix, obtaining the
signal subspace from the covariance matrix, conducting
the polynomial root operation, and solving DOA from a
linear equation. Complexity of the four parts is O(MNz ),

O(M), OBK’M+8K’) and O(4MK +2KM’) respectively.
The computational cost of the proposed method mostly
lies in calculating the approximate probability distribu-
tion function F,(a), generating a large number of random
vectors @ and calculating DOA. Complexity of the three
parts is O(6L.NM) where L. is number of discrete points
of F(a), O(OK) and O(KM2 +6KM) respectively. In light
of above analysis, compared with [14], the computa-
tional complexity of ML algorithms is relatively high on
the whole. The computational complexity of [27] depends
on the number of iterations Ly, and that of [28] depends
on the grid density of 2K dimensional search L,and L.
Nevertheless, both methods need to provide initial esti-
mates, consequently, the scale of iterations Ly and grid
density L,and L, depend on the quality of the initial
value. If the initial value is estimated well, the computa-
tional complexity is low, on the contrary, the computa-
tional complexity is high. The method proposed in this
paper mainly depends on the number Q of random vec-
tors and the fineness of the constructed distribution func-
tion F(a).

4. Numerical simulation

In this part, the performance of the proposed method is
investigated by numerical simulations. Firstly, the influ-
ence of parameters of the ISML algorithm proposed in
this paper is discussed. Secondly, two ML algorithms in
[27,28], an ESPRIT-like algorithm [14] are compared
with the proposed algorithm. The array structure of ULA
is with nine elements, although the method in this paper
is not limited to ULA. The SNR is defined as 101g(1/02).
In order to evaluate the estimation effect of different
algorithms, we compare the root mean square error
(RMSE) of the estimated results with the Cramer-Rao
lower bound (CRLB) value in [27].

For the proposed method, p and p, need to be manu-
ally selected. In the following experiment, the influence
of the two parameters will be examined: Two ID sources
to be estimated are set as —4° and 9°, angular spreads are
all 2°, O =2000, SNR= 5 dB, the number of snapshots is
set as 200. RMSE takes average of the two sources by
100 Monte Carlo simulations. The estimation results
under different parameters are shown in Fig. 3. As can be
seen from Fig. 3(a), when p exceeds 8, the estimated
result does not change significantly. However, as can be
seen from Fig. 3(b), with the increase of p,, the RMSE
changes slowly at the beginning, then increases, and
tends to remain unchanged when it achieves a certain
extent. As parameter p tends to infinity, (27) takes the
shape of a K-dimensional Dirac-delta function at the
global optimal value point. There is a significant differ-
ence between other extreme points and global extreme
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points. In fact, when the value of p exceeds a certain
range, the global maximum points can already be sepa-
rated from other extreme points. For p,, the requirement
is satisfied as long as some similarity between the impor-
tance function and the CLF is ensured. Since the impor-
tance function is a simplification of CLF, its extreme
value point is different from that of the CLF. If p, is too
large, the random samples will be generated around some
points which deviate from the real extreme value, conse-
quently, there will be errors in estimation.
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Fig. 3 RMSE versus parameter p and p,

Theoretically, the larger Q is, the closer it is to the true
value, but more computation is required. In this experi-
ment, the parameters of sources to be estimated are the
same as the first, SNR=5 dB, the number of snapshots is
equal to 200. Fig. 4 shows the RMSE estimated by 100
Monte Carlo simulations. When Q is insufficient, the esti-
mation is invalid, whereas the error will decrease with QO
increasing. In practice, when the difference between se-
veral successive estimates is less than a given value, gene-
rating of random vectors will stop. When Q is insuffi-
cient, there is a risk that not all sources to be estimated
will be identified. Therefore, the number of unknown

sources should be determined first, and then the decision
conditions can be used to determine whether the random
vector continues to be generated.
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Fig. 4 RMSE versus parameter Q with p=10 and p,=0.7

We discuss the performance of different estimators
varies with SNR and number of snapshots when the
sources are all distinguishable. The DOA of the two
sources to be estimated are —8° and 9°. Angular spreads
are all set as 2°. For ULA with nine array elements, the
3 dB beam width is approximately 12.8°, so the two
sources are considered to be well apart. We choose p=10,
p,1=0.7, and we use 100 Monte Carlo simulations to calcu-
late RMSE. ML algorithms [27,28] take the initial estima-
tes as —11° and 13°. Fig. 5 shows the estimated results
when the number of snapshots is 100, Q is selected as 2 000,
the SNR varies from —10 dB to 10 dB. Fig. 5 also shows
that estimation results of the proposed method are closer
to CRLB compared with other methods. Especially, the
method presented in this paper shows superiority under
the condition of low SNR. Fig. 6 shows the RMSE estima-
ted with SNR of 0 dB, where experiment conditions
remains the same as before and snapshots changes from
20 to 200. The results indicate that the proposed method
shows advantages in the case of small snapshots.
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Fig. 5 RMSE versus SNR with number of snapshots equal to 100
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Fig. 6 RMSE versus number of snapshots with SNR equal to 0 dB

In next experiment, we investigate the computational
complexity of different algorithms simultaneously. All
the codes are written in Matlab, and the processor is the
11th Gen Inter(R) Core (TM) i7-1165G7. Table 1 shows
the average estimated time for the different algorithms. It
can be seen that ESPRIT-like algorithm [14] has higher
computational efficiency than all other algorithms.
Among the ML estimation methods, the calculation time
of the proposed method is longer than algorithms [27,28].

Therefore, the application scenarios of calculation need to
be considered with respect to these estimators for ID
sources. If the requirement for accuracy is high, the me-
thod proposed in this paper has advantages; if the require-
ment for real-time computing is relatively high, the algo-
rithm proposed needs to be further studied to improve the
computational efficiency. It should be noted that in esti-
mation implementation, the algorithms [27,28] needs ini-
tial estimates, calculation of initial estimates also requires
the calculation time; however, the process is not included
in the statistics in this experiment.

Table 1 Estimation time of different algorithms

Method Average computing time Relative speed
ESPRIT-like [14] 0.0101 1.00
MLI1 [27] 0.1430 14.16
ML2 [28] 0.0970 9.60
Proposed method 0.1550 15.35

Since the distances of sources to be estimated have a
great influence on estimation, we investigate the perfor-
mance of estimators when the distance between sources is
different. The DOA of the first source 6, is —8°. The DOA
of the second source is (0,+4), where 4 is the interval of
the two sources. Angular spreads are all 2°. SNR=5 dB,
snapshots number=100, 0=4 000, p=10, and p,=0.7. The
initial estimate of first source of ML algorithms [27,28] is
—11° and the second is 4° apart from the true value. Fig. 6
shows RMSE with angles interval varying from 1° to 20°.
As can be seen from Fig. 7, the different estimators perf-
orm well beyond 9°. However, as the interval falls within
8°, the ESPRIT-like method [14] begins to deteriorate.
Comparatively, ML algorithms [27,28] are robust to the
variation of intervals between sources. It can be seen that
the algorithm proposed in this paper can distinguish two
sources even when the interval between two sources is 5°.
Therefore, we can conclude that the method proposed has
significant advantages compared with other methods in
the context of near distance between two ID sources.
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. | |
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—=—:MLI [27]; : ML2 [28]; —— : ESPRIT-like [14];
—— : Proposed method; —— : CRLB.

Fig. 7 RMSE versus angles interval
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In above experiments, the ML methods [27,28] require
initial estimates. In order to investigate the effect of ini-
tial estimates on estimation, we discuss the relationship
between initial estimates and RMSE. To get the best per-
formance, we set SNR as 5 dB and the number of snap-
shots as 200. The DOAs of the two sources are —8° and
9°. Angular spreads are all 2°. Assume that the initial
estimate for the first source is —11°. Fig. 8 shows the
RMSE curve as the initial estimate of the second source
changes from 1° to 20°. It can be seen from Fig. 8 that for
algorithm in [27,28], if the initial estimate is significantly
different from the real value, the estimated performance
will be poor, whereas the algorithm in [28] is slightly bet-
ter than the algorithm in [27]. The ESPRIT-like algo-
rithm does not need the initial estimation. Among ML
algorithms, only the proposed algorithm can guarantee
the robustness without relying on the initial estimation.
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a—: MLI1 [27]; : ML2 [28]; —— : Proposed method.

Fig. 8 RMSE versus initial estimation value

5. Conclusions

In this paper, an importance sampling ML method for
DOA estimation of ID sources has been developed, an
objective function is constructed from the decoupled CLF
which can achieve global optimal points according to the
Pincus theorem. In the light of importance sampling, a
selected important function is designed to realize random
vectors in Monte Carlo random calculation while the cir-
cular mean concept is used to reduce the complexity. The
method proposed does not require setting initial values
and can be applied to a wider range of array geometry
types. The proposed method performs well in low SNR
estimation and small snapshots size, especially for the
sources with relatively close distance.
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