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Image encryption based on a novel memristive chaotic system,
Grain-128a algorithm and dynamic pixel masking
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Abstract: In this paper, we first propose a memristive chaotic
system and implement it by circuit simulation. The chaotic
dynamics and various attractors are analysed by using phase
portrait, bifurcation diagram, and Lyapunov exponents. In parti-
cular, the system has robust chaos in a wide parameter range
and the initial value space, which is favourable to the security
communication application. Consequently, we further explore its
application in image encryption and present a new scheme.
Before image processing, the external key is protected by the
Grain-128a algorithm and the initial values of the memristive sys-
tem are updated with the plain image. We not only perform ran-
dom pixel extraction and masking with the chaotic cipher, but
also use them as control parameters for Brownian motion to
obtain the permutation matrix. In addition, multiplication on the
finite field GF(2 ) is added to further enhance the cryptography.
Finally, the simulation results verify that the proposed image
encryption scheme has better performance and higher security,
which can effectively resist various attacks.
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1. Introduction

Since the 21st century, with the explosive development of
mobile Internet and the continuous progress in technolo-
gies such as artificial intelligence and digital images have
become one of the most popular information carrier in
human social activities. The use of digital images has
been extended beyond social communication to a variety
of fields such as medical, financial, and even military.
Due to the serious security threats to the sending, trans-

Manuscript received March 09, 2021.

*Corresponding author.

This work was supported by the National Natural Science Foundation
of China (61203004), the Natural Science Foundation of Heilongjiang
Province (F201220), and the Heilongjiang Provincial Natural Science
Foundation of Joint Guidance Project (LH2020F022).

mission and reception of information, high requirements
are placed on the confidentiality of images. Images bear
enormous amounts of data, strong correlation between
adjacent pixels, and lots of redundancy, therefore, classi-
cal encryption algorithms perform unsuitably and ineffecti
vely when encrypting images.

In the late 20th century, Matthews [1] and Fridrich [2]
applied the chaos theory to text encryption and image
encryption. The studies of chaos have revealed its
extreme sensitivity to initial conditions and the unpre-
dictability of its dynamical behaviour, which allows fast
and flexible generation of satisfactory pseudo-random
sequences for encryption. Researchers since then beca-
me interested in chaotic cryptography and have produ-
ced many multidisciplinary achievements in combina-
tion with modern science, including modern mathema-
tics [3—6], bioscience [7-9], and quantum science [10].

Chaotic systems have the advantages of ideal random-
ness, superior confidentiality, and rich key changeability
in cryptography, so it is a hot topic to explore chaotic sys-
tems that are more suitable for image encryption algo-
rithms. Natiq et al. [11] proposed a new hyperchaotic
map based on the sine map and the Henon map and
designed a row-column permutation operation on the
basis of this novel two-dimensional Sine-Henon alteration
model. Wang et al. [12] introduced a new logistic modu-
lation map derived from logistic map and piecewise linear
chaotic map (PWLCM), named LP map. Wang et al.[12]
further designed a pseudo-random coupled LP map latti-
ces (PCLML) spatiotemporal chaos in pseudo-random
coupling method based on the LP map for image encryp-
tion. It was experimentally proved that the LP chaotic
map and the PCLML model with strong bifurcation and
the security of this encryption algorithm had a good per-
formance. Liu et al. [13] mitigated the dynamical degra-
dation of the complex hyper chaotic Lii chaotic system by
injecting impulse into control parameter. This randomness
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enhanced chaotic system combined with modulo and ci-
reshift operations to obtain a color image encryption sc-
heme.

Since the first successful fabrication of memristor in
2008 [14], researchers have found that memristor-based
chaotic systems are not only equipped with the good
properties of ordinary chaotic systems, but also have a
richer dynamical behaviour. Thus, memristive chaotic
systems are also used in image encryption algorithms.
Peng et al. [15] discussed that if the Chua diode in the
Chua’s circuit was replaced by a memristor, the derived
chaotic system had coexisting attractors with multistabi-
lity, and Peng et al. further encrypted the image with the
simple XOR operation. Li et al. [16] introduced an image
encryption algorithm based on a simple memristive chao-
tic system and dynamic deoxyribonucleic acid (DNA)
operation. They implemented complex dynamical behav-
iors via simple circuits, including antimonotonicity, multi-
stability and transient chaos.

By observation, chaotic systems typically used in ima-
ge encryption algorithms have several common problems.
One is that the range of initial values and parameters for
chaotic maps is quite small, making it difficult to extend
the flexibility of the key. What is more, most chaotic sys-
tems also have a lot of periodic windows within the avail-
able parameter range. Due to the limited accuracy of
computers, unfavourable occurrences of losing the chao-
tic effect may happen.

To solve the above problems, we take advantage of the
specific non-linearity of the memristor to construct a
memristive chaotic system with an ultra-wide range of
parameters and analyse its dynamics. Further, the out-
standing performance of the proposed chaotic system is
applied to an image encryption algorithm. In this scheme,
not only the Grain-128a algorithm is used to update the
key, but also pixel masking methods such as dynamic
pixel confusion and chaos-based generation of Brownian
motion matrices are implemented. In the final simulation
experiments, the scheme is proven to have excellent se-
curity.

The rest of this paper is divided into three parts. Sec-
tion 2 gives the equation and dynamic behavior analysis
of'the new memristive chaotic system. The specific process
and experimental simulations of the image encryption
algorithm are displayed in Section 3, and conclusions are
drawn in Section 4.

2. A novel memristive chaotic system with ul-
tra-wide parameter range (UWPR-MCS)

2.1 Mathematical model

The memristor is one of the basic electronic components
proposed by Chua et al. [17] to characterise the relation-
ship between charge ¢ and magnetic flux ¢. We build a
new chaotic system with the smooth quadratic piecewise
flux-controlled memristor [18], and the p—¢ characteristic
W is given by

{q(so) = —Ap+0.5B¢’sgn(p) 0

W(p) = -A+ Blgl
where 4 and B are positive internal parameters of the
memristor, and sgn(-) identifies the sign function. Then a
new memristive chaotic system is constructed:
X =—-ax+yzWw)

y=-x+by
7= —cz+dy 2)
W=yz

where x, y, z, and w are state variables; a, b, ¢, and d are
parameters to be determined and 4=0.6667, B=1.5.

By changing the parameters and initial values respec-
tively, the chaotic system we design generates different
chaotic attractors. The values in Table 1 correspond to the
three different shapes of attractors in Fig. 1, as shown in
Fig. 1(a)-Fig. 1(c), Fig. 1(d)~Fig. 1(f), and Fig. 1(g)—
Fig. 1(i), respectively.

Table1 Parameters and initial values for memristive chaotic system

Parameter Initial value
Attractor
a b c d (X0,Y0,20sWo)
Fig. 1(a)-Fig. 1(c) 16 9 5 8 (1,0,0,1)
Fig. 1(d)—Fig. 1(f) 16 9 30 8 (1,0,0,1)
Fig. 1(g)-Fig. 1() 16 9 5 8 (1,0,0,40)
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Fig. 1 Phase portraits of three different attractors of the UWPR-MCS with different parameters and initial values

2.2 Circuit implementation

To demonstrate the practicality of the UWPR-MCS, a cir-
cuit is implemented based on the defined differential
equations. As can be seen in Fig. 1, the range of state
variables exceeds the actual saturation voltage of the ope-
rational amplifier. Therefore, the variables in (2) are
transformed by a proportional compression before desig-
ning the circuit as

X =—ax+0.25yz(-A + 5Bw|)

y=-20x+by

3
7= —cz+5dy* ®)
W =5yz
Make the ranges of x, y, z and w as 1/100, 1/5, 1/5 and
1/5 of the original, respectively.
The equations about the voltages and time of the circuit

according to (3) are

dv, R R . R |
=——V,——VV. +—WV.|y,

"dr T R, R, R’

dv R
RC,— =——v, +—v,

det R, R, )
RC dv, R N R ,

— ==y, 4+ —vV

dt ~ R CR,

dv, R
RCy— = Evyvz

where R =100 kQ and C,=C,=C;=C, =10 nF. Then, the
values of the individual resistors are obtained from the
correspondence of the parameters, where R,=6.25 kQ, R,=
1.11 kQ, R, =20 kQ, R, =20 kQ, R, =60 kQ, R;=
53.3 kQ, R, =5 kQ, R, =20 kQ, R,=10 kQ. The circuit
shown in Fig. 2 is built on the basis of the above prepara-
tions. Fig. 3 displays the results of the circuit simulation
and they are identical to the numerical simulation of the
UWPR-MCS.

Fig.2 Circuit implementation of the chaotic system
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Fig.3 Phase diagrams from the circuit simulation
2.3 Dynamical behaviors analysis —a zW(w) yW(w) yzBsgn(w)
J= -1 b 0 0 p
2.3.1 Dissipative analysis 1 o0 2dy —c 0 - ®
. - 0 0
The vector field divergence of the UWPR-MCS is given ‘ Y
by Then, with the identity matrix E, we solve |[AE—J|=0 to
ox Oy 0z O et the characteristic equation of the proposed system at
VV:—X+—y+—Z+—W=—a+b—c. (5) g sy q prop 4
ox dy 09z ow the equilibrium set O as
Apparently, VV is negative while setting the control /1(13 + A+ A +.U3) =0 )
parameters ¢>b—a. In this circumstance, all trajectories of where
the system are limited to a certain area, which means the
UWPR-MCS is dissipative. u=a-b+c
. . . U =—ab+ac—bc . (10)
2.3.2 Equilibrium stability analysis 1ty = —abc
The equilibrium point of the system is obtained by replac- From (9), there is a zero eigenvalue and three non-zero
ing the left side of (2) with 0 and solving eigenvalues of Jacobian matrix (8). For these non-zero

eigenvalues, the Routh-Hurwitz criterion corresponding

—ax+yzW(w)=0
ax+yzWw) to the cubic polynomial in (9) is given by
-x+by=0 >0
—cz+dy* =0 ©) M3 >0 . (11)
Hipa —ps >0
yz=0 . .
Obviously, none of the three cases mentioned above

can totally satisfy (11). Thus, the line equilibrium O is
unstable, resulting in the periodic or chaotic behavior in
the UWPR-MCS.

It is observed that the result of (6) is independent of w,
which means that w can be any real number. As a result,
the UWPR-MCS has a line of equilibrium as follows:

O={(x,y,zwW)|x=y=2z=0,w=¢)} 7 2.3.3 Lyapunov exponents spectrum and bifurcation

) diagram analysis
where £ represents an uncertain constant.

The Jacobian matrix J is described as In this case, to explore the influence of parameters on the
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dynamic behavior of the proposed memristive chaotic
system, the Lyapunov exponents spectrum and bifurcation
diagram of state variable z changing with d 6(0,107] are
shown in Fig. 4. The bifurcation diagram reveals that the
state of the memristive system changes when d is in the
interval between (0.8x10°, 2.75x10°% and (8.9x10°, 9.5%
10°.

Lyapunov exponent
|
o

2 4 6 8 10
d x10°
(a) Lyapunov exponents spectrum

o 1 2 3 4 5 6 7 8 9 10

d %106
(b) Bifurcation diagram
—— : Lyapunov exponent 1; —— : Lyapunov exponent 2;
—— : Lyapunov exponent 3; —— : Lyapunov exponent 4.

Fig. 4 Lyapunov exponents spectrum and bifurcation diagram for
increasing parameter d

However, from the details shown in Fig. 4(a), if d is in
range (1.28X106, 2.29><106), one Lyapunov exponent is al-
most 0 and three are negative and the UWPR-MCS is in a
periodic state. If d e(9><106, 9.5><106) , one Lyapunov ex-
ponent is positive and three are negative, the UWPR-
MCS is in a chaotic state. Except for these regions, all
Lyapunov exponents are one positive, one zero, and the
others negative. In this case, the UWPR-MCS is not only
in the chaotic state, but also has an increasingly divergent
attraction domain.

For dynamical behaviour that varies with the initial
state, as shown in Fig. 5, the UWPR-MCS is chaotic if
Wwoe(—60,60).

—12.0 1
-12.5¢ 1

Lyapunov exponent

-80 —-60 —40 —20 0 20 40 60 80
Wo
(a) Lyapunov exponents spectrum

0 n n 1 1 1 n 1
-80 —-60 —40 -20 O 20 40 60 80

Wo
(b) Bifurcation diagram
—— : Lyapunov exponent 1; —— : Lyapunov exponent 2;
—— : Lyapunov exponent 3; —— : Lyapunov exponent 4.

Fig. 5 Lyapunov exponents spectrum and bifurcation diagram for
increasing parameter w,

2.4 Utility of the proposed memristive chaotic system
in image encryption

Thanks to the incorporation of a memristor in this system,
the chaotic state is not only influenced by the parameters
and initial values of the system itself but also by the in-
ternal parameters of the memristor, which makes the
dynamical behaviour of the chaotic system quite enriched.
In comparison with the common chaotic systems in ima-
ge encryption, the proposed memristor-based chaotic sys-
tem not only offers a large set of parameters, but also
maintains a stable chaotic state over a super wide range
of parameters. The robustness of the chaotic cipher
stream is ensured even when the parameters are slightly
changed. Moreover, the proposed system moves over a
broad space and is able to generate pseudo-random
sequences sufficient to satisfy the requirements during the
encryption of images with large amounts of data. These
features give UWPR-MCS outstanding practical value in
image encryption.

3. Image encryption scheme

We focus on the super-wide parameter range and excellent
robustness of the UWPR-MCS and use it to design an
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image encryption scheme. First of all, set the secret key
of this scheme as Key = {ks,x{", v, 20", w’, &7, 3,
72, w), where ks, represents 32 integers in the range of
[0,255], and the other eight float numbers mean two sets
of initial values of the UWPR-MCS.

The size of the plain image P (i, j, k) is identified as
mxnxh, with h =3 for color images and 2 =1 for gray
images. In this case, the total number of pixels in the
plain image is noted as N, and the sum of pixel values S is
calculated as

h
D PG, ji k). (12)

where i, j, and k represent the coordinates of an image in
three dimensions.

Once these basics have been defined,
encryption process begins.

the whole

3.1 External key protection based on Grain-128a

The Grain-128a [19] is a highly secure lightweight
encryption method and is the latest version of the Grain
series of encryption algorithms [20,21] proposed by Hell
et al. in 2011. Grain-128a system consists of a 128-level
linear feedback shift register (LFSR), a 128-level non-lin-
ear feedback shift register (NFSR) and a non-linear filter
function, which supports a 128-bit key and a 96-bit initial
vector. In this paper, the Grain-128a algorithm is used to
generate the plaintext-associated internal key.

Step 1 The first portion of the secret key, &, , is
decomposed into a 256-bit binary sequence, noted as
thos ks o+ koss b Make {ko, ki, <o, kipr } and {kyg, Ky,

-, kyss} as the initial states of LFSR and NFSR respec-
tively. Then consider that {p,, p;1, -, P27} are the con-
tents of the LFSR and {g;, ¢;.1, - -, ¢::107} are the contents
of the NFSR.

Step 2 A new binary sequence is obtained by the
update functions, the filter function and the output func-
tion.

The update function of the LFSR is

DPiv128 = Pit Div7 + Pisss T Pivio t Divst + Divos- (13)

Unlike the LFSR, the update function of the NFSR
contains the state bits of the LFSR, as shown in

qiv128 = Pi+qi + Qiv26 + Girse + Givo1 T Qivos +
qir3qiv61 t Givn1qin13 T Giv179i18 T Giv21qivsot
Gi+409i+48 T Gir61qir65 T Giresqirsa t qirnqiv2aGivast
qi+109i+789i+82 T qi+839i+924i+93i+95 - (14)
Before the final output, a non-linear filter function is

displayed as

h(X) = Gis12Diss + Pis13Pis20 + Qiros Pivart
Piv60Pi+19 T Giv12Gi+95 Pivoa- (15)
Finally, an update binary sequence H; (i€[0,255]€N) is
obtained from

H; = h(X) + pisos + qisa + Gi1s + Ginzet
qisas T Gires T Gis73 + Gisso- (16)
Step 3 The 256-bit H,; is divided into eight 32-bit sub-
sequences. Each sub-sequence is converted into a decimal
number, denoted as H1, H2, ---, H8. To obtain the upda-
ted initial values for the chaotic system, the calculation is
completed as

3 _ W (Hl +S5)
= ,400
X rem(.x 256m
(H2 + S)
(H3+5) a7
zy) =rem (z(” 5en 400)
W = rem ( . (H4+S) )
(4) 2 (H5 +S5)
( “256m 10
o ( . (H6+S) 40)
(H7 + S) (18)
@ = rem (ZE’Z) T256n 400)
w(4> = rem( o (H8S5) 40)
S

where rem(a, B) represents the function that makes the
value of @ within the range (-8, f3).

Step 4 Iterate the proposed chaotic system with initial
values x5, 35, 207, wi’, x5, 37, 23 and w{’ to generate
eight chaotic sequences of length N/4+3000. For elimi-
nating transient effects, the first 3000 elements of the
chaotic sequences are removed and the resulting sequ-
ences are denoted as s,, s5,, ---, sg. They will be handled
in different ways to obtain the chaotic stream cipher for

each of the processes.

3.2 Dynamic pixel masking relying on chaotic ran-
dom selection

The values of image pixels always present visually mean-
ingful information in a certain pattern. The work in this
subsection is to mask such a particular pattern, as shown
in Fig. 6.
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Fig. 6 An example of dynamic pixel masking

Step1 The R, G, and B channels of the original color reshaped into four two-dimensional matrices C4; with m
image P (i, j, k) are spliced side-by-side and the pixels are ~ rows and N/4m columns.
scanned in diagonal order to get C1.

Step 2 The sequence X prepared by (19) is then
sorted in the ascending order, and the index sequence of  Brownian motion is a continuous irregular random mo-
elements is noted as X, tion of particles in a fluid medium, named after the Bri-

X = [(Sl + 85+ 87+55) X 10° + 2'6Jm0dN (19)  tish botanist Robert Brown, who first discovered it. Fig. 7
shows the trajectory of a particle moving 200 times in a
fixed space as Brownian motion, which is simulated by
Monte Carlo method.

3.3 Permutation based on Brownian motion matrix

where |-| means taking an integer to —o.
Four sub-vectors are extracted from C1 with indexes
4X, 4Xin—1, 4X;—2, and 4X,,—3 respectively and are

recorded as C2; (i=1,2,3,4). 5
Step 3 The way to mask each value in C2; is chosen ot
by the elements in the cipher streams Y. -5t
_]0 L
Y, =[5+ (max s.s+min s,.,)x 10°|mod256  (20) sl
where [-] represents taking an integer to +oo. = 0l
As given in (21), when Y(j)mod3=0, a bit-level XOR a5l
operation @ is acted. 30l
C3.() =C2(HeYi()) 21 —35¢
If ¥(j)mod3=1, the value of C2,(j) is executed as a bit- s 0 s 10 15 20
. . . X
cyclic shift left operation, as
i . . Fig. 7 An example of simulating two-dimensional Brownian
C3,(j) = C2(j) < (Yi(j) mod6 +2). (22)

motion using Monte Carlo method
Besides, if Y(j)mod3=2, the value of C2j) is computed

by a bit cyclic shift left operation. The movement direction of the particle is represented

by the two polar angles in polar coordinates, i.e., a and b,

C3:()) = C2,(j) >> (Y;(j) mod6 +2) (23)  from
wherej=1,2, -+, N/4. a=a;-m,  a€l01] (24)
: : b:bi'zns bie[osl] ’
Step 4 The four one-dimensional sequences C3; are
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Then, the position after a single move in Cartesian
coordinates (x, y) is
x=rsinacosb
. . (25)
{y =rsinasinb
where the polar radius r€[0,+o0].

a; and b, in the classical Monte Carlo method are ge-
nerated by the ordinary random number function rand(-).
However, if each pixel of the image is considered as a
Brownian particle, the number of iterations would be so
large that the rand(-) function exhibits periodicity. In this
scheme, two chaotic cipher streams with excellent ran-
domness are used instead of rand(-) to provide a; and b,.
This results in each pixel moving on a different trajectory
from each other.

The chaotic sequences used to generate the Brownian
motion matrices are given by

Z=(5;x10% mod 1, i=1,2,---,8. (26)

Make Z; and Z,.,(i =1,2,3,4) correspond to a; and b,

respectively, and iterate (25) for R times to obtain the
four chaotic Brownian motion matrices BM,(l,l,)

(==1,2,3,4). The elements in C4; are relocated according
to BM(l,,1,) to get C5; as

C5,(x,y) = C4,(1,,1,). 27

3.4 Multiplicative diffusion over GF (28)

To extend the impact of a single pixel, C5; are first recon-
structed as a sequence C6, and one more multiplicative
diffusion operation over GF(28) is performed according to
(28). In particular, multiplication “®” over the finite field
GF(28) is calculated in advance and stored in a table, so
that diffusion operations can be executed by looking up
the table, effectively increasing the computational speed.

C7(1)=C6(1)
{ Ci(i)=C6(H@CT(i—1)® V() 28)

where i = 2, 3, ---, mxnxh, and V={W,, W,, W;, W,} of
length N. W, is given by
W, =[5, 107 + [ ;.4 X 2'%] | mod256 (29)
where i =1,2,3,4.
3.5 Overall process of the encryption and decryption
scheme

The image encryption scheme proposed in this paper can
be summarised according to the above mentioned compo-
nents and illustrated in Fig. 8.

Grain-128a P ks, External
algorithm secret key
— > .[J-pdate the
Plain image H1. H2. ---. HS initial values
\ 4 X Chaotic system
| Pixels extraction with super-wide
¢ ¢ ¢ ¢ parameter range
Chaotic cipher
| Dynamic chaotic pixel masking Idy— streams (1) v
¢ ¢ ¢ ¢ Chaotic cipher
| Brownian motion permutation l{— Ciz‘;gii;‘gizn 4—,_ streams (2)
zZ
v 4
| Diffusion over GF (2°) I: = Cl;?r(g;fncslﬁ();; T

\ 4

Cipher image

Fig. 8 Flowchart of the proposed image encryption scheme

Step 1 Enter the external secret key and the image to
be encrypted.

Step 2 Update the external key to the internal key via
the Grain-128a algorithm and the plain image as
described in Subsection 3.1. Eight initial chaotic pseudo-
random sequences are generated based on the new inter-
nal key and the proposed memristive chaotic system.

Step 3 From Fig. 6, the subsequences C2,(i=1,2,3,4)
are extracted from the original image in the order deter-

mined by the chaotic cipher streams. Then, the values
of the pixels are masked to get C4; according to Subsec-
tion 3.2.

Step 4 Firstly, we generate the Brownian motion
matrices using the chaotic cipher streams as the directional
control parameters. Afterward, change the positions
of the elements in C4; one by one based on the result-
ing Brownian motion matrices, as explained in Subsec-
tion 3.3.
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Step 5 The resulting submatrices C5; are converted
into a one-dimensional sequence C6 in the order in which
they are extracted. Each pixel in C6 is diffused by a mul-
tiplicative look-up table method over a finite field, as in
Subsection 3.4.

Step 6 Finally, the sequence C7 is reshaped to size
mxnxh to obtain the encrypted image.

The decryption of a cipher image is defined as the
reverse of the encryption process.

Step 1 Enter the external key and the cipher image.

Step 2 Update the external key and get the chaotic
sequence for decryption.

Step 3 Make the image into a one-dimensional
sequence C7' and reversely diffuse the elements of the se-
quence by the division lookup table method on a finite
field GF(2").

Step 4 The resulting sequence C6’ is decomposed in-
to subvectors by the method explained in Fig. 6 and
reshaped into sub-matrices C5(i=1,2,3,4). Generate the
chaotic Brownian motion matrices and recover the posi-
tions of the permuted elements in C5;.

Step 5 The obtained matrices C4; are turned into one-
dimensional sequences C3/, which is then processed into
C2! with chaotic key streams.

If Y(j)mod3=0, C2; are derived from
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C2(j)=C3/(H®Y.()) (30)

wherej=1,2, ---, N/4, and @ is bitwise XOR.
Unlike the encryption process, if Y,(j)ymod3=1, then

C2()) = C3(j) > (Yi(j) mod 6 +2), (31
and if Y(j)mod3=2,
C2(j) = C3)(j) << (Y,(j)mod 6 +2).  (32)

Step 6 These sequences are recomposed and recon-
structed into the decrypted image.

3.6 Simulation results and security analysis of the
encryption scheme

As shown in Fig. 9(a) to Fig. 9(d), the classical Baboon,
Peppers, Girl, and Black-to-White are used to test the
encryption and decryption of the proposed image encryp-
tion algorithm, and to further security analysis. The
cipher images after encryption by this cryptosystem are
displayed in Fig. 9(i) to Fig. 9(1). The decrypted images
are shown in Fig. 9(q) to Fig. 9(t). It is clear from these
examples that the cipher images are all noise-like and the
decrypted images cannot be visually identified as different
from the original images, implying that the proposed
cryptosystem is capable of a great encryption.

(d) Black-to-White
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-

(q) Decrypted Baboon image (r) Decrypted Peppers image

(s) Decrypted Girl image (t) Decrypted Black-to-White image

Fig. 9 Encryption, decryption experiments and histograms

3.6.1 Histogram analysis

The histogram describes the distribution of each gray-
scale in the image. The longer a grayscale rectangle is,
the more frequently it appears in the image.

Histograms of the plain images are exhibited in
Fig. 9(e) to Fig. 9(h), where the R channel, the G channel
and the B channel of the color image are differentiated by
red, green, and blue.

Distinct distributional features are presented in the his-
togram of the plain image because the frequency of the
grayscales makes up a variable and smooth curve.
Fig. 9(m) to Fig. 9(p) show the corresponding histograms
for the cipher images. Obviously, the variation in the fre-
quencies of the grayscales of the cipher image is so slight
that no valid information is available from the histogram.
It illustrates that the proposed image encryption scheme
has excellent scrambling performance and is effective in
resisting known/chosen plaintext attack.

3.6.2 Information entropy analysis

Image information entropy is a statistic related to the
probability of occurrence for each gray level in an image,
and is defined by (33). Consider the grayscale i(i€[0,255])
and its probability as m; and p(m;), respectively. Then,
H(m) is given by

255

H(m) = =" p(m))log, p(m;) (33)
i=0

where p(mg)tp(m))+ ---+p(m,ss)=1. According to (33),
the ideal value is 8 for an image containing 256 gray le-
vels.

Table 2 lists the information entropy results for this
encryption scheme. Compared to the plain image, the
information entropy of the cipher image increases signifi-
cantly and is very close to the ideal value. The uniform
distribution of grayscales in the cipher image is proven
numerically.

Table 2 Results of information entropy
Information entropy
Image
R G B

Girl 6.4200 6.4457 6.3807
Cipher of Girl 7.9974 7.9975 7.9973
Baboon 7.7067 7.4744 7.7522
Cipher of Baboon 7.9994 7.9994 7.9992
Peppers 7.3388 7.4963 7.0583
Cipher of Peppers 7.9994 7.9994 7.9993
Lena 7.2531 7.5940 6.9684
Cipher of Lena 7.9993 7.9993 7.9994
Lena in [22] 7.9993 7.9993 7.9993
Lena in [23] 7.9994 7.9994 7.9993
Lena in [24] 7.9896 7.9885 7.9899
Lena in [25] 7.9972 7.9972 7.9975

3.6.3 Key space analysis

The set that contains all the secret keys of an encryption
system is known as the key space. On the one hand, the
capacity of the key space measures whether the encryption
algorithm provides the user with sufficient changeable
keys and, on the other hand, whether the encryption system
is robust against exhaustive attacks.

We set the secret key as Key = {ks, x\", 3\, 20", w(’,
Xy, 27, wi?). If the initial values of the chaotic system
have an effective precision of 10714, the total key space of
256X1014X8: 189

10 7. We effectively
extend the time required for brute-force attacks by setting

the introduced scheme is 2

the key space much larger than 2'° thus achieving out-
standing performance against exhaustive attacks, as
shown in Table 3.

Table 3 Key space comparison of several methods

Method Space
Proposed method 2%%10'"
Method in [5] 10%
Method in [16] 27
Method in [22] 2
Method in [23] 2% 10'%
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3.6.4 Key sensitivity analysis

An image encryption system which is extremely sensitive
to the secret key is effective and practical. The values of
the three representative keys, Key,, Key,, and Key,, are
listed in Table 4 and they are used as control groups to
analyze the key sensitivity.

Table 4 Several keys for key sensitivity analysis

Secret key Value
Key, tky + Lko, -+ k32, xf,”,yﬁ,”,zﬁ,”,wﬁ“,xﬁz),yﬁf), g2)7 22)}
Key, {k32, x )+ 10" 14, (1)’Z§‘1)’W§‘1)’XE)Z)’yE\Z),ZE)Z), 5\2)}
Key; {kaa, xﬁ”,yﬁ”,zﬁ%wﬁ”,x +10°14 yE\Z) ZE\Z) Wn)}

It is necessary that only the exactly correct secret key
can reconstruct the original image. Fig. 10(a)—Fig. 10(c)
show the images obtained by decrypting Fig. 9(i) with
Key,, Key,, and Key; respectively. None of them succeed
in restoring the correct plain image.

(a) Decrypted (b) Decrypted (c) Decrypted
image of Fig. 9(i) image of Fig. 9(i) image of Fig. 9(i)
with Key, with Key, with Key,

(d) Cipher (e) Cipher (f) Cipher
image of the image of the image of the
Baboon with Baboon with Baboon with
Key, Key, Key,

(g) Pixel-by-pixel
difference between
Fig.10(d) and

Fig. 9(i)

(h) Pixel-by-pixel
difference between
Fig.10(e) and Fig.10(f) and
Fig. 9(i) Fig. 9(i)

Fig. 10 Key sensitivity analysis

(i) Pixel-by-pixel
difference between

Additionally, the secret key has an impact on the gene-
ration of the cipher for the encryption process, which fur-

ther influences the encrypted image. We encrypt Baboon
with Key,, Key,, and Key; respectively, and subtract the
resulting cipher image (as in Fig. 10(d)—Fig. 10(f)) from
Fig. 9(i) pixel by pixel. If the pixel values at the same
position in both images are the same, then this position in
the difference image is marked by black, and conversely
is colored. It can be seen that the difference image display-
ed by Fig. 10(g)—Fig. 10(i) has a large number of colored
dots. Thus, the two keys with a slight variation lead to
quite different results.

Both experiments reveal that the proposed encryption
scheme is equipped with a high level of key sensitivity.

3.6.5 Correlation analysis

One of the significant properties of images is the high
correlation between the adjacent pixels. In order to keep
the information in the plain image confidential, the image
encryption operation should serve to break this correla-
tion.

We analyse the correlation between adjacent pixels in
two ways, i.e., the correlation graph and the correlation
coefficient. Then, 4000 pairs of pixels adjacent to each
other horizontally (H), vertically (V), diagonally (D), and
anti-diagonally (A) are randomly selected from the Pep-
pers.

For correlation graphs, the points are plotted with one
of the pixel pairs as the coordinate on the x-axis and the
other as the coordinate on they -axis. As shown in
Fig. 11(a), Fig. 11(c), Fig. 11(e), and Fig. 11(g), the
points of the plain image are clustered around y=x, which
implies that the values of two adjacent pixels are almost
equal. However, the points of the cipher image in
Fig. 11(b), Fig. 11(d), Fig. 11(f), and Fig. 11(h) are uni-
formly distributed over the entire region, confirming the
randomness of the adjacent pixels in the encrypted image.

Apart from these graphs, the correlation coefficient
(CC) also reflects the correlation of the adjacent pixels.
Consider a certain two adjacent pixels as x and y, the CC
is given by

- cov(x,y) (34)
" VD) /D)
where
1 N
cov(xy) =+ D (6~ E(@)0:~EG))
i=1
O
By = . (39
N
D i —E(x)?
J0JE ) e —

N
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In Table 5, the numerical results for the CC of the plain
image are close to 1, but those for the cipher image are
approximately 0, which proves that the proposed image
encryption algorithm makes adjacent pixels almost inde-
pendent.

Table 5 CCs of original and cipher images

Continued
Correlation coefficient
Image
H \Y D A
R 08670 09203  0.8609  0.8600
Baboon G 0.7651 0.8739  0.7406  0.7362
B 08795 09084  0.8430  0.8458
R -0.0009 —0.0015 -0.0019 0.0023
Cipher of Baboon G 0.0019  0.0040 —0.0001  0.0039
B —-0.0004 0.0027 -0.0079 —0.0017
R 09693 09625  0.9620  0.9598
Peppers G 09829 09743  0.9685  0.9689
B 09610 09670  0.9483  0.9452
R -0.0003 —0.0028 -0.0058 0.0066
Cipher of Peppers G —0.0025  0.0044 —0.0053 —0.0037
B 0.0053 —0.0027 -0.0017 —0.0028
R 09892 09817 0.9707 0.9780
Lena G 09834 09703  0.9580 09621
B 09600 09306 09147 09116
R -0.0005 —0.0072 —0.0049 0.0077
Cipherof Lena G —0.0025 -0.0055 0.0007  0.0046
B 0.0030 —0.0019 -0.0004 0.0068
R 00128 —0.0031 -0.0033 -
Lena in [22] G -0.0170 0.0160 —0.0093 -
B 00001 —0.0190 -0.0130 -
R 00001 —0.0064 -0.0214 -
Lena in [23] G 00010 —0.0314 -0.0662 -
B 0.0603 0.0005 —0.0019 -
R 0.0083 —0.0049 -0.0095 -
Lena in [25] G -0.0054 0.0100 -0.0017 -
B -0.0010 0.0124 -0.0042 -

3.6.6 Resistance to differential attacks analysis

Once the resistance of an image encryption algorithm to
differential attacks is discussed, it is important to eva-
luate how sensitive it is to plain images. That is, even tiny
changes occurring in the plain image produce a much dif-
ferent cipher image. The number pixel change rate
(NPCR) and the universal average change intensity

(UACI) are two metrics defined for this purpose, and are
given in (36) and (37). Two images, P,(i, j) and P,(i, j),
are identical except that the pixel values at a random
position (x, y) are different. Using the same secret key
and the same cryptosystem to encrypt these two images,
the corresponding cipher images C, and C, are obtained.
Then, the NPCR and UACI are computed as

M-1 N-1
ZD(i, 7)% 100%
NPCR = =2 : (36)
MN
M-1 N-1 .. ..
C\(, j)— Cy(i,
SHEGD = Clid g
i=0 j=0
ACI = 3
UAC N , (37)

where M and N are the length and width of the image,
respectively. Besides, if the values of C,(i, j) and C,(i, j)
are equal, D(i,7)=0. If they are not, then D(i, j)=1.

The theoretical NPCR and UACI are 99.6094% and
33.4635% respectively. The results in Table 6 and
Table 7, which are very close to the theoretical values,
demonstrate that the proposed image encryption scheme
is equipped with excellent resistance to differential
attacks.

Table 6 NPCR of the proposed algorithm for different images %

Image NPCR
R G B

Baboon 99.6088 99.6077 99.6070
Peppers 99.6008 99.6152 99.6093
Girl 99.6111 99.6016 99.6022
Lena 99.6110 99.604 1 99.608 4
Lena in [22] 99.6000 99.6000 99.6000
Lena in [23] 99.606 5 99.6147 99.6235
Lena in [24] 99.6399 99.5987 99.6307
Lena in [25] 99.6078 99.667 99.607 8

Table 7 UACI of the proposed algorithm for different images %

UACI

Image R G B
Baboon 33.4644 33.4690 33.4543
Peppers 33.4560 33.4633 33.4781
Girl 33.4955 33.4847 33.4735
Lena 33.4592 33.4626 33.4548
Lena in [22] 33.2500 33.2800 33.3100
Lena in [23] 33.4108 33.4653 33.4901
Lena in [24] 33.6190 33.5406 33.5727
Lena in [25] 33.5644 33.4458 33.5055
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3.6.7 Robustness analysis

Unfortunately, interference is an unavoidable problem
when messages are transmitted over open channels. A
practical image encryption method should be able to
recover images with valid information although the
cipher image is affected by noise or corruption.

The most common types of noise include Gaussian wh-
ite noise, Salt & Pepper noise, and Speckle noise. These
three types of noise are overlaid on Fig. 9(i) individually,
as shown in Fig. 12(a)-Fig. 12(c). Besides, Fig. 13(a)—
Fig. 13(c) present images subjected to different levels of
corruption attacks. Decrypt the attacked images and the re-
constructed images are exhibited by Fig. 12(d)—Fig. 12(f)
and Fig. 13(d)—Fig. 13(f) respectively.

(a) Attacked by
Gaussian noise
of intensity 3x107

(b) Attacked by
Salt&Pepper
noise of intensity 0.1

(c) Attacked by
Speckle noise of
intensity 5x107

(d) Decrypted
image of Fig.12(a)

(e) Decrypted
image of Fig.12(b)

(f) Decrypted
image of Fig.12(c)

Fig. 12 Noise attacked images and corresponding decrypted images

(b) 25% affected
cipher image

(a) 12.5% affected
cipher image

(¢) 50% affected
cipher image

(f) Decrypted
image of Fig.13(c)

: o
(e) Decrypted
image of Fig.13(b)

Fig. 13 Cropped cipher images and corresponding decrypted images

(d) Decrypted
image of Fig.13(a)

To quantitatively measure the quality of the decrypted
images under attack, the peak signal to noise ratio (PSNR)
is calculated and presented in Table 8 and Table 9.

The PSNR is given by
2
2°-1
PSNR = 101g| ——— 38
8| MSE (3%
where MSE is the mean square error, and
| Mo
PR o2
MSE = — 3" 3" (P(i, )~ C(i, j))"
MN & £
i=0 j=0
Table 8 PSNR of images attacked by different noises dB
PSNR
Image  Gaussian noise Salt&Pepper noise Speckle noise
(3x107% (0.1) (5x107%
Baboon 12.4589 16.1340 14.5581
Peppers 11.6110 15.2191 13.7482
Girl 10.7942 14.4801 12.9366
Lena 12.1042 15.8221 14.2614

Table 9 PSNR of images attacked by different levels of cropping

dB
PSNR
Image
12.5% attacked =~ 25% attacked ~ 50% attacked

Baboon 17.9758 14.8644 11.9696
Peppers 17.1096 14.0529 11.0862
Girl 16.1824 13.1821 10.2404
Lena 17.6411 14.5278 11.5540
Image in [25] 17.1595 14.3720 11.3589

It can be clearly seen that meaningful images are
restored, reflecting the strong robustness of the present
image encryption scheme and its effectiveness against
noise and corruption attacks.

3.6.8 Time complexity analysis

Time complexity is essential for evaluating image
encryption algorithms. For a color image of size MxNx3,
O(Mx*Nx3/2) iterations are required to generate the random
number sequences in the proposed scheme. During the
dynamic pixel masking operation, O(Mx*N X9) iterations
are consumed. Besides, the Brownian motion-based per-
mutation process requires O(MXN x6) iterations. In the
diffusion process, O(MxNx3) iterations are taken for the
computation over the finite field GF(28). In this condition,
the total time complexity of the algorithm in this paper is
O(M%Nx9). Specifically, the runtime of encrypting a 256%
256 Lena color image is 2.92 s.

The computational complexity of the proposed method
is less than O(MxNx24) of [7] and the computational
time is less than 3.4095 s. However, our scheme is larger
than the time complexity 0(22") of the quantum image
encryption method [10], and the image encryption of the
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orthogonal Latin cube method [25] with a running time of
0.669 s. In the future, we will continue to work on the
balance and improvement between encryption effective-
ness and operational efficiency.

4. Conclusions

In brief, a novel memristive chaotic system is designed
using a classical memristor and its dynamical behaviour
is analysed. This memristive chaotic system is possible to
generate three different types of chaotic attractors and to
maintain a stable chaotic state over a super wide parame-
ter range of [3X106,9X106]. Furthermore, based on the
proposed memristive chaotic system, we present a chaotic
image encryption scheme. The external key is protected
with the Grain-128a algorithm before the image is
encrypted, and the information from the plain image is
also used to update the initial state of the chaotic system.
The scheme involves the cryptographic stream generated
by the chaotic system in all stages of the encryption pro-
cess, including the random extraction and scrambling of
pixels, the generation of the Brownian motion matrix and
the diffusion operation over the finite field GF(28). Simu-
lation test results reveal that the image encryption scheme
proposed in this paper has a larger key space and better
security performance.
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