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Abstract: Radio  frequency  fingerprinting  (RFF)  is  a  technology
that identifies the specific emitter of a received electromagnetic
signal by external measurement of the minuscule hardware-level,
device-specific  imperfections.  The  RFF-related  information  is
mainly  in  the  form  of  unintentional  modulation  (UIM),  which  is
subtle enough to be effectively imperceptible and is submerged
in the intentional modulation (IM). It is necessary to minimize the
influence  of  the  IM  and  expand  the  slight  differences  between
emitters  for  successful  RFF.  This  paper  proposes  a  UIM
microstructure  enlargement  (UMME)  method  based  on  feature-
level  adaptive  signal  decomposition  (ASD),  accompanied  by
autocorrelation  and  cross-correlation  analysis.  The  common IM
part  is  evaluated  by  analyzing  a  newly-defined  benchmark  fea-
ture.  Three  different  indexes  are  used  to  quantify  the  similarity,
distance,  and  dependency  of  the  RFF  features  from  different
devices.  Experiments  are  conducted  based  on  the  real-world
signals  transmitted from  20  of  the  same  type  of  radar  in  the
same  working  mode.  The  visual  image  qualitatively  shows  the
magnification of feature differences; different indicators quantita-
tively describe the changes in features. Compared with the original
RFF feature,  recognition results based on the Gaussian mixture
model  (GMM)  classifier  further  validate  the  effectiveness  of  the
proposed algorithm.
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1. Introduction
Radio frequency fingerprint is a characteristic intrinsic to
the  hardware  chain  of  an  emitter  device,  that  is  unnten-
tionally  modulated  to  transmitted  signals,  and  thus  can
be  leveraged  to  discriminate  the  specific  transmitter  [1].
Radio frequency fingerprinting (RFF), also known as spe-
cific  emitter  identification  (SEI),  has  a  wide  range  of
applications in wireless network security [2−4], cognitive
radio [3,5], and spectrum management [6]. A typical RFF

system is illustrated [7].
The  core  of  the  RFF  system is  the  effective  discrimi-

native feature [8,9].  Many previous researchers have ex-
plored RFF  features,  which  can  be  roughly  divided  into
time-domain  [10,11],  frequency-domain  [12,13],  time-
frequency domain [14−16],  and other transformation-do-
main  categories  [17−19].  Recently  proposed  methods
based  on  deep  learning  (DL)  have  become  increasingly
attractive  [18,20,21].  However,  these  algorithms  mainly
focus  on  extracting  newly  defined  manual  or  automatic
features,  rather  than  exploring  the  common  distribution
characteristics of the existing RFF features and improving
their performance.

More specifically, little attention has been paid to unin-
tentional  modulation  (UIM).  For  emitters  with  the  same
intentional  modulation  (IM)  on  pulse,  the  identification-
relevant  device-specific  information  of  RFF  is  UIM,
mainly caused by manufacturing tolerances and aging of
the  equipment  in  the  transmitter  [12,22,23].  However,
the  individual  differences  are  so  subtle  that  they  are
effectually imperceptible; they are also submerged in the
useless  main  information,  IM,  which  may  be  harmful  to
RFF [24].

Although UIM is hard to extract, researchers have suc-
ceeded in separating it. In [5], the estimated ideal IM can
be  directly  subtracted  from  the  time  domain  to  obtain
time-domain complex baseband error signals was obtain-
ed. Detailed estimation of all various modulation parame-
ters  is  difficult,  however,  and  the  resulting  estimation
errors markedly affect  the UIM features [12].  A primary
signal  suppression  method  based  on  wavelet  transform
was  proposed  [25].  And  IM  parameters  were  estimated
and then compensated [19].  The shared features and pri-
vate  features  were separated at  the signal  level by a  dis-
criminative  adversarial  networks  (DAN)  [26],  which  is
effective but requires a large amount of learning data.

Existing  algorithms  work  by  extracting  UIM  directly
from the original data waveform at the signal level. There
is an excess of influencing factors in these cases, however,
which makes subsequent analysis very difficult.  IM may
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be reflected  as  the  overall  similarity  of  feature  curves  at
the  feature  level  [12,23].  As  UIM features  are  relatively
weak, it is necessary to enlarge the subtle fingerprint fea-
tures to conduct a successful analysis.

Motivated  by  these  thoughts,  we  mainly  focus  on  the
feature extraction phase of the system in this study, estab-
lish  a  technique  based  on  adaptive  signal  decomposition
(ASD) to analyse the components of RFF features, elimi-
nate  the  IM,  and  enlarge  the  UIM  microstructure  at  the
feature level to optimize the existing RFF features.

ASD, also known as “local wave decomposition”, has
been  widely  applied  in  several  research  fields  [27,28].
For  RFF  problems,  ASD  is  usually  used  to  directly
decompose the time-domain waveform of individual sig-
nals  and  further  extract  new  fingerprint  features  rather
than  distinguishing  UIM  [14,15,22].  Liang  et  al.  [29]
used empirical mode decomposition to obtain stray com-
ponents.  However,  the  eliminated  main  component  va-
ries among signals; it is not strictly the common IM of all
emitters,  therefore  device-specific  information  may  be
lost.  Existing  methods  also  are  restricted  to  the  signal
level.

In this paper, variational mode decomposition (VMD),
a  newly  proposed  ASD  method,  is  used  to  adaptively
decompose  the  autocorrelation  of  benchmark  features  to
obtain different components. We integrate correlation cal-
culation into this process to amplify subtle structural dif-
ferences  and  eliminate  shared  major  components.  We
strictly  control  variables,  delete  the  same  components
from different samples, and minimize the loss of effective
information accordingly.  The major  contributions  of  this
work can be summarized as follows:

(i)  An  innovative  UIM  microstructure  enlargement
(UMME) technique is  established for  RFF.  It  is  the  first
attempt  to  specifically  eliminate  the  IM  at  the  feature
level  and  amplify  subtle  fingerprint  features  to  optimize
the specific emitter identification.

(ii)  Benchmark  feature  is  defined  and  implemented  to
describe  the  main  common  information  shared  by  all
emitters. The correlation calculation is ingeniously intro-
duced  into  RFF  to  amplify  subtle  inter-class  differences
based on the benchmark features.

(iii)  Inspired  by  the  mechanism  of  RFF,  that  is,  RFF
features  contain  both  the  emitter-specific  UIM  and  the
emitter-shared IM, ASD is used to analyze different feature
components, namely, the main trends and the stray high-
frequency items.

(iv)  Three  different  indicators  are  introduced  to  mea-
sure  the  effect  of  RFF  feature  difference  amplification,
including Pearson product-moment correlation coefficient
(PE),  euclidean  distance  (ED),  and  mutual  information
(MI).  Visual  and  numerical  results  on  real-world  dataset

prove  that  the  subtle  UIM  differences  are  effectively
magnified.  The  algorithm  is  validated  by  an  improved
classification recognition rate.

The rest of this paper is organized as follows: Section 2
briefly  describes  the  UIM  signal  model,  the  calculation
process of VMD, and three evaluation indexes for subtle
UIM differences.  In  Section  3,  the  detailed  implementa-
tion of the proposed algorithm is given. Section 4 provides
the visual and numerical results. Section 5 presents a con-
clusions. 

2. Problem formulation
 

2.1    Signal model of RFF mechanism

Theoretically,  the  signals  of  the  same modulation,  trans-
mitted  from  the  same  kind  of  emitter  and  processed  by
the same  pre-procedure,  have  similar  feature  shapes
[12,23]. This is precisely the case in a real-world scenario.
IM is the major component of a signal and is manifested
in  the  common  characteristics  of  signals  with  the  same
parameters from various emitters used for SEI. UIM, con-
versely,  is  caused  by  imperfections  in  different  emitters;
it has lower energy than IM, and is manifested in the stable
differences associated with individuals [24].

S m UIMm

mth
Let  and   denote  the  whole  and  UIM part  of

the  emitter,  the  signal  model  of  the  aforementioned
analysis can be expressed as

S m = IM+UIMm, m = 1,2, · · ·,M (1)

M IMwhere  is the number of the emitters and  represents
the common IM part belonging to all of the emitters.

IM≫ UIMm

UIM  appears  as  a  series  of  slight  differences  among
signals  from  various  emitters  in  many  signal  processing
domains, which is usually embodied in the signals’ micro-
structures.  The  differences  between  transmitters  are  ran-
dom and  independent.  UIM tends  to  be  obscured  by  IM
and thus very difficult  to extract.  It  also satisfies  the en-
ergy relationship .

Theoretically,  as  long  as  there  are  sufficient  signal
observations  accumulated  and  analyzed,  the  general  dis-
tribution rule  of  the IM can be obtained by its  sufficient
statistic [30], as follows:

lim
M→∞

1
M

M∑
m=1

S m ≈ IM. (2)

IM
In  practice,  however,  UIM  cannot  be  directly  derived

by  subtracting  the  accumulation  of  original  features 
owing to its inherent diversity and low energy. The UIM
microstructure must be extracted and enlarged in a parti-
cular manner to properly analyze it. 

2.2    Knowledge of VMD

VMD  technique  decomposes  a  multi-component  signal
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into  a  set  of  intrinsic  mode  functions  (IMFs)  non-recur-
sively [31]. Essentially, it is the construction and solving
of a variational problem, assuming that the non-linear and
non-stationary signals are formed by the superposition of
several mode functions. Each IMF obtained after VMD is
band-limited,  and  can  be  represented  as  a  narrow-band
signal  with  amplitude  modulation-frequency  modulation
(AM-FM) in different center frequencies.

ukThe IMF  is given by

uk = Ak(t)cos(ϕk(t)) (3)

Ak Ak ⩾ 0
ϕk ωk(t) = ϕk

′(t)
where  is the instantaneous amplitude satisfying ,

 is  the  increasing  phase  function,  and  is
the instantaneous frequency.

VMD  can  be  converted  into  a  constrained  variational
problem as follows:

min
uk ,ωk

∑
k

∥∥∥∥∥∥∂t

[(
δ(t)+

j
πt

)
∗uk(t)

]
e−jωkt

∥∥∥∥∥∥2

2


s.t.

∑
k

uk(t) = f (t) (4)

uk kth f (t)
ωk

δ(t) ∂t

t ∗

where  is the  mode,  is the original signal to be
decomposed,  is  the  corresponding  center  frequency,

 is  the  impulse  function,  is  the  gradient  with
respect to , and  represents the convolution operation.

α

λ(t)

α

λ(t)

l2

The  secondary  penalty  parameter  and  augmented
Lagrange  multiplier  are  introduced  to  solve  the
aforementioned  constrained  variational  problem.  The
quadratic penalty parameter  makes the variational dis-
persion problem highly nonlinear and non-convex, which
ensures  that  the  signal  can  be  decomposed  accurately
under  the  Gaussian  noise.  The  Lagrange  multiplier 
guarantees  the  strictness  of  obtaining  the  optimal  band-
width solution per IMF. The squared -norm of the base-
band-shifted  Hilbert  analytic  function  with  non-negative
frequencies reveals the bandwidth of each mode [24].

α λ(t)After introducing  and , the constraint variational
problem can be converted into an unconstrained variational
problem as follows:

L = ({uk}, {ωk},λ) =

α
∑

k

∥∥∥∥∥∥∂t

[
δ(t)+

j
πt
∗uk(t)

]
e−jωkt

∥∥∥∥∥∥2

+∥∥∥∥∥∥∥ f (t)−
∑

k

uk

∥∥∥∥∥∥∥
2

2

+

⟨
λ(t), f (t)−

∑
k

uk

⟩
(5)

⟨·⟩where  represents the inner product operation.
uk ωk λNext, , , and  are iteratively updated by using the

alternating direction multiplier method to solve the saddle
points  of  the  upper  augmented  Lagrange  function.  This
equals the optimal solution of the constrained variational

model. The decomposed modes and their center frequen-
cies can be obtained from the solution. The modes in the
spectral domain can be given as

ûk(ω) =

f̂ (ω)−
∑
j,k

ûk + (λ̂(ω))/2

1+2α(ω−ωk)2 . (6)

The  sequence  of  the  specific  steps  involved  in  VMD
can be summarized as follows:
Step 1　 Update mode
The  modes  are  updated  in  the  Fourier  domain.  Con-

versely,  the  mode  in  the  time  domain  is  obtained  as  the
real  part  of  the  inverse  Fourier  transform of  this  filtered
analytic signal.

ûn+1
k (ω) =

f̂ (ω)−
∑
j,k

ûn
k + (λ̂n(ω))/2

1+2α(ω−ωn
k)2 (7)

Step 2 　Update center frequency
Again,  the  optimization  takes  place  in  the  Fourier

domain, and we end up calculating,

ωn+1
k =

w ∞
0
ω|v̂k(ω)|2dωw ∞

0
|v̂k(ω)|2dω

(8)

ωkwhere the new  falls at the center of gravity of the cor-
responding mode’s power spectrum.
Step 3　 Cyclic processing

K
Repeat  Step  1  and  Step  2  until  the  number  of  modes

equals the present value .
Step 4 　Update multiplier
Update the Lagrange multiplier as follows:

λ̂n+1 = λ̂n+τ

 f̂ −
∑

k

ûn+1
k

 (9)

f̂ ûk

kth
where  is the spectrum of the signal and  is the spectrum
of the mode.
Step 5　 Check convergence conditions∑

k

∥∥∥ûn+1
k − ûn

k

∥∥∥2

2
/
∥∥∥ûn

k

∥∥∥2

2
< εIf ,  the  calculation  results

including all IMFs, center frequencies, and spectra of the
modes are output; otherwise, return to Step 1. 

2.3    Evaluation index

We choose three measurements to evaluate the similarity,
distance, and dependency of RFF features. 

2.3.1    PE

X Y
PE reflects  the  degree  of  linear  correlation  between  two
variables  and  as a measure of the similarity between
curve shapes [32]. The value of PE is between −1 and 1.
The curves in question are more similar when the absolute
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PE is  close  to  1,  and  less  similar  when  it  is  closer  to  0.
The PE of X and Y can be expressed as

PE =
E(XY)−E(X)E(Y)√

E
(
X2

)
−E2(X)

√
E
(
Y2

)
−E2(Y)

=

E((X−µX) (Y−µY))
σXσY

=
cov(X,Y)
σXσY

(10)

E{·} µwhere  denotes the mean operator,  denotes the ave-
rage, σ is the variance, and cov(X,Y) is the covariance. 

2.3.2    ED

ED  is  a  common  distance  measurement  tool  for  patten
recognition;  it  has  translation  invariance  and  rotation
invariance [33]. ED facilitates classification in techniques
such  as  the K -nearest  neighbors  (KNN)  algorithm.  We
use ED to analyze the distribution characteristics of RFF
features:

ED = d(X,Y) =

√√
n∑

i=1

(xi− yi)2. (11)
 

2.3.3    MI

In information theory, MI is a measure of the interdepen-

(X,Y) p(xiyi)
dence between two random variables. If the joint distribu-
tion of two random variables  is , then MI is

MI =
∑
yi∈Y

∑
xi∈X

p(xiyi) log2

p(xiyi)
p(xi)p(yi)

. (12)
 

3. Algorithm implementation
The typicle RFF system is shown in Fig. 1. The curve of
the  RFF  system  is  the  procedure  of  feature  extraction.
The  implementation  of  the  proposed  method  consists  of
two phases: feature component analysis of the benchmark
feature  and  microstructure  enlargement  of  each  original
feature,  as  is  shown  in Fig.  2.  The  upper  branch  in  the
flow  chart  represents  the  feature  component  analysis
stage,  including  benchmark  feature  calculation,  feature
autocorrelation,  VMD,  and  IMF  acquisition  of  different
types of IMF. On the other hand, the UIM-related micro-
structure  enlargement  involves  calculating  the  cross-cor-
relation  between  the  original  feature  and  the  benchmark
feature,  then  removing  the  IMFs  unrelated  to  individual
information or  of  high frequency to  obtain  the  final  fea-
ture. The final feature is marked as “UMME”.

The key steps of the scheme are described in detail.
 
 

Antenna

Receiver
Data

preprocessing
Feature

extraction
Classification Result

Fig. 1    Typical RFF system
 

 
 

Received
signal

Original
feature

Y i
m(k) Bench-

mark exist?
No Benchmark

feature
Auto-

correlation

Training

VMD Component
analysis

Yes
h′( j)

Microstructure
enlargement

Cross-
correlation

UMME
feature Z i

m(j)

Y(k)

Fig. 2    Flowchart of the proposed UMME method
 
 

3.1    Original feature

s(t)

ϕ

The  instantaneous  parameters  of  signal  include
instantaneous  amplitude  (IA) A(t ),  instantaneous  phase
(IP) (t), and instantaneous frequency (IF) f(t), which are
defined as 

A(t) =
∣∣∣s(t)+ jH[s(t)]

∣∣∣
ϕ(t) = angle

(
s(t)+ jH[s(t)]

)
f (t) =

1/2πdϕ(t)
dt

(13)

|·| l2 H[·]where  is  the -norm;  is  the  Hilbert  Transform,
characterized by

H[s(t)] =
w +∞
−∞

s(τ)
π(t−τ)dτ = s(t)∗ 1

πt
. (14)

ŝ(t) = H[s(t)]
ϕ(t)

For  the  analytic  discrete-time series ,  the
arctangent phase  can be given as

ϕ(t) = arc tan
q(t)
i(t)

(15)

q(t) i(t)

ŝ(t) NT ϕ(t)

where  and   are  the  real  and  imaginary  compo-
nents of ;  is the length of .

△ φ(t)

△ φ(t) (−π,π]

Calculate  the  phase  difference  between  two
points, and map  into  to get
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△ φ(t) =


△ ϕ(t)−2π, △ ϕ(t) > π
△ ϕ(t)+2π, △ ϕ(t) < −π
△ ϕ(t), △ ϕ(t) ∈ [−π,π]

. (16)

δ(t) =△ φ(t)− △ ϕ(t)
δ(t)
ϕu(t)

Calculate  point  by point  to  obtain
the  correction  amount  of  the  phase  difference 
between  adjacent  samples.  The  unwrapping  phase 
can be expressed as

ϕu(t) = ϕ(t)+
t−1∑
k=0

δ(k). (17)

ϕu(t)

In  [34],  the  performance  of  IF  and  IP  was  compared,
and the conclusion that IP is better than IF in unique radio
device  identification  is  given.  IA  is  susceptible  to  the
noise and multi-path effects. Similar to [35], the instanta-
neous  phase  is  chosen  as  the  original  feature  [10].
Note  that  the  UIM enlargement  method proposed in  this
paper is not limited to the IP feature. 

3.2    Benchmark feature calculation

Y(k) (k = 0,1, · · · ,K)
K

Y(i)

Let  denote the original RFF feature,
while  is  the  dimension  of  the  feature.  As  mentioned
above, the original feature  is the combination of IM
and UIM. IM is undoubtedly a common characteristic of
every emitter while UIM denotes the individual differences
among them. To enhance the intuitiveness of this process
and to fully incorporate the emitter identity tags, the fea-
tures can be rewritten as follows:

{Ym
i (k)}, m = 1, · · · ,M; i = 1, · · · ,Nm;k = 0,1, · · · ,K

m mth Nm

mth
where  represents the  emitter and  is the sample
number of the  emitter.

To  accurately  reflect  the  main  trend  of  the  features,
outliers  are  deleted  based  on  normalized  residual  me-
thod [28].

Ŷ

{Ym
i (k)}

Let  be  the  weighted  accumulation  of  all  training
sequences [22], which reflect the basic distribution of the
original feature .

Ŷ(k) =
M∑

m=1

αm ·E{Ym
i (k)}, k = 0,1, · · · ,K (18)

αm

mth
where  represents  the  weighting  coefficients  for  the

 emitter which satisfies
M∑

m=1

αm = 1,

K
αm

and  is the dimension of the current feature. The coeffi-
cient  can be calculated by the distribution of features.
For instance,  the weight of features with lower PEs than
other features can be set to be smaller. In general, the fea-
tures of different transmitters are equally weighted.

Ŷ(k)Therefore,  is  utilized  as  a  benchmark  feature  in
this algorithm. 

3.3    Autocorrelation and cross-correlation

To properly reflect the similarity while enlarging the dif-
ference between two signals, which are essentially identical
in the outline, we use a correlation algorithm.

R̂( j)
Ŷ(k)

The  autocorrelation  function  of  the  benchmark
feature  can be defined as

R̂( j) =ℜ{Ŷ(k), Ŷ(k)}, j = 0,1, · · · , J (19)

J J = 2K −1 ℜ{·, ·}where  is the length of the result, ,  rep-
resents the correlation operation:

R(n) =ℜ{x(m),y(m)} =
∞∑

m=−∞

x(m)y(n+m).

Rm
i ( j)

Ym
i (k) Ŷ(k)

We calculate the cross-correlation result  between
each  sequence  and  the  benchmark  feature 
here as follows:

Rm
i ( j) =ℜ{Ym

i (k), Ŷ(k)} (20)

Rm
i ( j) ith

mth j
where  is the correlation feature for the  sequence
of  the  emitter  and  is  the  dimension of  the  current
feature. 

3.4    VMD and component analysis

R̂( j)Decompose  in (20) self-adaptively using VMD:

{V, V̂,Ω} = VMD{R̂( j),L} (21)

VMD{·, ·}
L V
V̂ Ω

where  represents  the  VMD  operation  in  Sub-
section  2.2,  is  the  number  of  modes,  is  the  time
mode matrix,  is the spectral mode matrix, and  is the
series of the center frequencies.

The VMD results can be more clearly expressed as
V̂ = [v1( j),v2( j), · · · ,vL( j)]
V̂ = [v̂l( j), v̂2( j), · · · , v̂L( j)]
Ω = [ω1,ω2, · · · ,ωL]

(22)

j = 1,2, · · · , J vl( j) lth
v̂l( j) lth ωl

lth

where ,  represents  the  time  mode
(namely,  IMF);  is  the  spectral  mode,  and  is
the center frequency of the  mode.

R̂( j)Therefore,  can be written as

R̂( j) =
L∑

l=1

vl( j) (23)

L vl( j)where  is the number of decomposed modes, and  is
the  IMFs  with  different  amplitudes  and  center  frequen-
cies.

vl( j)(l = 1,2, · · · ,L)IMFs  can  be  sorted  by  energy
value  and  frequency.  IMFs  with  the  highest  energy  and
lowest  center  frequency  (potentially  the  same  individual
IMF) are selected as the representatives for IM. Similarly,
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Rm
i ( j)

v̂l

ℓ

the correlation features  are scrupulously decomposed
by  the  above  methods.  All  chosen  IMFs  with  weights
assigned by (18) are accumulated and placed with  into
the corresponding results set .

h( j)Let  be  the  sum  of  these  representative  IMFs,
which can be defined as

h( j) =
∑
v̂l∈ℓ

v̂l( j). (24)
 

3.5    Microstructure enlargement

ℓ h( j)
h′( j) h( j)

Rm
i ( j)
h′( j) (IM+ε)

ε

Another VMD is performed, and the IMF with the highest
center  frequency  is  regarded  as  a  high-frequency  stray
item,  which  is  added  into  the  set ,  is  updated  as

. As mentioned above,  is the essential common
component  of  all  conforming  to  the  basic  charac-
teristics  of  IM,  so  can  be  expressed  as ,
where  is the decomposition error.

Zm
i ( j) ith

mth
Further,  the  final  UMME  feature  of  the 

sequence for the  emitter can be written as

Zm
i ( j) = Rm

i ( j)−h′( j)=Rm
i ( j)−

∑
v̂l∈ℓ

v̂l( j) (25)

jwhere  is the feature dimension.
FUIMAs described in  Subsection 2.1,  the  final  feature 

can be abstracted as

FUIM = S m− (IM+ε) = UIMm+ε (26)

IM >> UIMm UIMm > εwhere  and  .  The  algorithm
improves the proportion of UIM energy in the final feature
and amplifies the UIM in terms of effect. 

3.6    Computation analysis

The  whole  system  can  be  divided  into  two  parts  which
include  two  different  types  of  VMD  and  the  correlation
computation.  In  the  training  phase  (given  as  the  upper
branch in Fig. 2, the VMD decomposes the autocorrelation
of  the  benchmark  to  obtain  the  main  trend;  this  requires
only one round of  training.  The cross-correlation feature
between the original feature and the benchmark feature is
decomposed  by  anther  VMD  to  obtain  the  stray  item.
This  procedure  is  conducted  separately  for  each
sequence.

O(J×L×T ) J
L T

J O(J)
O(J×L×T )

Therefore, for each original feature, the main computa-
tion  burden  of  the  proposed  method  arises  from  one
VMD and cross-correlation operation. In the VMD stage,

 operations are required, where  is the feature
dimension,  is  the  number  of  the  modes,  and  is  the
iterations [22].  For cross-correlation,  it  is  linear  with the
feature  dimension ,  namely, .  Overall,  the  main
computational burden is . 

4. Experimental results
Experiments  based  on  real-world  data  are  conducted  to
evaluate  the  proposed  method.  Note  that  this  work
focuses more on the enlargement of the subtle UIM con-
tained  in  RFF  features,  instead  of  extracting  newly-
defined features. More attention is paid to the improvement
of original feature performance for RFF in this section. 

4.1    Dataset

Real-world  signals  emitted  by  secondary  surveillance
radars (SSRs) of 20 civil aircrafts working in Mode S are
used to test the effectiveness of the proposed method. All
signals  have  the  same  intra-pulse  intentional  modula-
tion [36]. The channel environment and receiving equip-
ment  remain  unchanged  during  signal  reception.  The
sampling frequency is  set  to  250 MHz and the sampling
intermediate frequency to 60 MHz. At least 300 samples
of high quality are gathered for each SSR emitter. For 20
transmitters,  there are a total  of 6 210 samples.  The con-
figuration parameters are listed in Table 1.
 
 

Table 1    Configuration parameters

Parameter Value

Radio frequency/MHz 1 090

Sample frequency/MHz 250

Intermediate frequency/MHz 60

Samplesper/transmitter ⩾300

Transmitter ID R01 to R20
  

4.2    Visualization and computational time

The  original  feature  distributions  of  emitters  R1  and  R3
as examples are shown in Fig. 3.
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Fig. 3    Original feature curves of emitters R1−R3
 

There is a high degree of similarity between the shapes
of  the  curves  with  a  few  local  and  weak  differences
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reflecting device-specific information. R2 and R3 can be
discriminated by the feature value between 20−40 on the
abscissa;  the  feature  value  of  R1  at  80−100  is  different
from R2. Although it can be classified with the naked eye,
the  differences  between  classes  are  not  yet  sufficiently
obvious. As the number of transmitters increases, the dif-
ficulty of identification will increase greatly.

The curves of the benchmark feature and its four IMFs
after VMD are shown in Fig. 4, where the horizontal axis
represents  the  feature  dimension  and  the  vertical  axis  is
features values. The top subgraph shows the autocorrela-
tion  curve  of  the  benchmark  feature;  others  are  the
decomposed components, that is IMF1−IMF4.
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The UMME feature  curves  of  emitters  R1 to  R3 after
enlarging  the  UIM  microstructures  via  the  proposed
method  are  shown  in Fig.  5.  The  individual  differences
are significantly magnified compared to those in the orig-
inal curves.
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Fig.  5      UMME  feature  curves  of  emitters  R1  to  R3,  UIM
microstructures enlarged by proposed method

Additionally,  we  record  the  average  computational  ti
me of different processes per sample, as listed in Table 2.
These experiments are performed on a computer with an
i5  processor,  8  GB  of  RAM.  Its  computational  burden
mainly comes from VMD.

 
 

Table 2    Computational time s

Process Time

Auto-correlation 0.012

Cross-correlation 0.013

VMD 0.210

Original feature 0.073

 

Consistent  with  the  above  analysis,  the  computational
burden  mainly  comes  from  VMD,  but  this  process  only
needs  to  be  done  once  in  the  training  phase.  Only  the
original feature calculation and cross-correlation calcula-
tion  are  required  for  one  sample  in  the  identification
phase. 
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4.3    Numerical results
 

4.3.1    Feature changes between emitters

f =
F(Ri ·R j) F(·)

i, j ith jth
(i , j)

Three  evaluation  indexes,  PE,  ED,  and  MI,  are  used  to
quantitatively describe the similarities and differences of
features  to  determine  the  effectiveness  of  the  proposed
algorithm.  The  results  for  the  five  emitters  R1−R5  are
given  in Table  3−Table  8,  where  the  content  represents
the  corresponding  index  value  of  two  emitters. 

 where   is  abbreviation  of  the  indexes  in
(10)−(12)  and  represent  the and  emitters  re-
spectively . For instance, the value 0.972 in Table 3
means that the PE of the original features between emitters
R1 and R2 is 0.972.
  
Table 3    PE of pairwise emitters for original features of R1−R5

f R2 R3 R4 R5

R1 0.972 −0.881 0.959 0.940

R2 − −0.879 0.942 0.910

R3 − − −0.727 −0.864

R4 − − − 0.869
 

  
Table 4    PE of pairwise emitters for UMME features of R1−R5

f R2 R3 R4 R5

R1 0.545 −0.316 0.921 0.763

R2 − 0.601 0.42 0.919

R3 − − −0.344 0.316

R4 − − − 0.587
 

  
Table 5    ED of pairwise emitters for original features of R1−R5

f R2 R3 R4 R5
R1 0.177 1.008 0.197 0.234
R2 − 0.879 0.284 0.184
R3 − − 1.047 0.844
R4 − − − 0.366

 

  
Table 6    ED of pairwise emitters for UMME features of R1−R5

f R2 R3 R4 R5
R1 0.694 2.446 0.340 0.470
R2 − 1.778 0.861 0.295
R3 − − 2.545 2.013
R4 − − − 0.701

  
Table 7    MI of pairwise emitters for original features of R1−R5

f R2 R3 R4 R5
R1 0.852 0.815 0.867 0.805
R2 − 0.804 0.860 0.814
R3 − − 0.822 0.791
R4 − − − 0.825

 

Table 8    MI of pairwise emitters for UMME features of R1−R5

f R2 R3 R4 R5
R1 0.724 0.706 0.708 0.733
R2 − 0.744 0.731 0.778
R3 − − 0.720 0.739
R4 − − − 0.740

 

Table  3 and  Table  4 show  the  changes  in  PE  values
between  the  original  features  and  final  features.  The  PE
between  the  original  features  is  relatively  high  and  con-
centrated at about 0.9, which is consistent with the previous
expression  that  the  fingerprint  features  are  highly  simi-
lar. After amplifying the individual differences by the pro-
posed  method,  the  PE  value  is  greatly  reduced. Table  5
and Table  6 illustrate  the  results  of  the  average  ED  be-
tween  different  features  of  various  emitters,  where  there
is  a  dramatic  increase  in  the  distance  between  different
classes. Table 7 and Table 8 show the MI values,  which
relate to the changes of dependence between the features.
For  UMME  feature,  the  MI  between  pairwise  emitters
obviously declines. These three indicators altogether indi-
cate  that  a  significant  improvement  in  the  feature  distri-
bution  after  the  proposed  algorithm  is  imposed  and  the
device-specific difference is distinctly enlarged. 

4.3.2    Overall change of features

The  normalized  difference  description  index  values  of
fingerprint  features  under  different  target  numbers  of
radiation sources I  (I=3,5,10,15,20) is shown in Table 9,
where X  represents  the  original  IP  feature, Y 0  is  the
enlarged feature without correlation calculation, and Y  is
the  enlarged  UMME  feature  calculated  by  the  proposed
method.

The values in the table are the average values of different
combinations of normalized parameters between pairs of
all targets, which can be expressed as

f̃ =
1

M′ fi j =
1

M′

I∑
i=1

I∑
j=1

F(Ri ·R j), i , j (27)

M′

C2
I

where  indicates  the  total  number  of  pairwise  combi-
nations .  The  first  row  of  the  table  (I=3)  shows  the
changes  in  the  evaluation  indexes  of  the  features  of  the
three transmitters in Fig. 3 and Fig. 5.

As can be seen in Table 9, the degree of correlation PE
between  features  significantly  decreases  to  about  0.6,
while the distance expands to more than twice the original
at  an  average  of  2.4  times.  The  amount  of  MI  also
decreases significantly. In the case of different number of
targets,  the  changes  in  the  three  indexes  all  indicate  that
the  subtle  structure  between  the  characteristic  curves  is
enlarged  after  operating  the  proposed  method.  In  effect,
our algorithm is valid.

Without  performing  correlation  operations,  that  is,
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while only performing feature amplification by removing
the intentional modulation and spurious components after
VMD decomposition, as shown as Y0 in Table 9, the dis-
tance of the features does not change significantly and the

mutual information does not decrease. Although the cor-
relation degree of the characteristic curve (PE) decreases,
the  effect  is  similar  to  the  proposed  correlation  magnifi-
cation method; there is no obvious superiority.

 
 

Table 9    Feature similarity, distance, and dependency metrics for various numbers of emitters (I=3,5,10,15,20)

f̃
PE ED MI

X Y0 Y X Y0 Y X Y0 Y

I=3 0.958 0.678 0.609 0.220 0.266 0.632 0.86 0.861 0.740

I=5 0.894 0.539 0.573 0.522 0.524 1.214 0.826 0.842 0.732

I=10 0.745 0.530 0.567 0.537 0.550 1.235 0.820 0.833 0.735

I=15 0.637 0.543 0.568 0.598 0.600 1.396 0.817 0.841 0.732

I=20 0.641 0.546 0.577 0.583 0.590 1.349 0.817 0.836 0.733
  

4.3.3    Improvement on identification accuracy

The  identification  performance  of  the  original  features
and  the  proposed  UMME  features  for  various  emitters
(I=5,10,15,20) after 200 Monte Carlo simulation is shown
in Fig. 6. The Gaussian mixture model (GMM) classifier
is chosen for classification [37]. The accuracy is calculated
as the average value of all emitters of all trials. Due to the
proposed UIM enlargement analysis method, the identifi-
cation accuracies markedly improve in all cases of various
numbers  of  emitters,  which  verifies  its  effectiveness.
When I=20, the recognition rate increases by 4%.
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The 3-dimensional (3D) feature distribution in the case
of I = 10 (emitters R1 to R10) after t-distribution stochastic
neighbour  embedding  (t-SNE)  method  is  illustrated  in
Fig. 7. It  can be seen that all emitters can be clearly dif-
ferentiated.

In addition, we test the influence of the numbers of the
Gaussian  models  and  the  setting  of  benchmark  features
on the identification accuracy under 10 dB. The impact of
GMM models is given in Fig. 8. As can been seen, as the
model  number  grows  more  than  10,  the  accuracy  de-
grades rapidly. When there are 4 or 6 GMM models, the

Ŷ(k)

influence of the setting of benchmark feature is illustrated
in Table 10, where “R1” and “R4” represent that the aver-
age feature of emitter R1 or R4 is chosen as benchmeark
feature,  and  is  for  the  method  proposed  in  Subsec-
tion 3.2. It can be seen that our proposed benchmark cal-
culation method is better for both 5 and 10 emitters.
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Table 10    Identification accuracy of different benchmark features
under 10 dB %

Benchmark
feature

4 GMM 6 GMM

I=5 I=10 I=5 I=10

R1 90.640 67.378 92.836 74.132

R4 91.728 69.652 93.704 75.998

Ŷ(k) 93.248 70.762 94.992 76.678
  

4.3.4    Comparison with other works

The  identification  performance  in  additive  white  Gaus-
sian noise (AWGN) channel  compared with other  works
is  examined,  as  illustrated  in Fig.  9.  This  experiment  is
based on 10 transmitters (R1−R10) after 200 Monte Carlo
simulation. AWGN is added to the signals, and the signal
to noise ratio (SNR) ranges from 10 dB to 20 dB. Different
numbers (10 or 20) of outliers are deleted when calcula-
ting  benchmark  features.  OIP-x in  Fig.  9 represents  a
method without UIM enlargement, where UMME-x is the
proposed  one  (x represents  10  or  20  outliers).  In  this
experiment, it can be seen that this method is better than
other  methods  under  various  SNRs.  Compared  with  the
OIP-x,  the  performance  improvement  of  the  UMME-x
proves the superiority of the UIM enlargement strategy.

Additionally,  we  also  compare  the  proposed  method
with the DL-based method, which is based on the convo-
lutional neural network (CNN). The layers of the identifi-
cation  baseline  CNN are  similar  to  [5,38],  referred  to  as
DL in this work.
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The input of DL is the received signal waveforms and
the output is the predicted class label. In the experiment,
the  size  of  the  training  dataset  is  set  according  to  the
requirements ranging from 50 to 200 per class. There are
50  samples  per  class  selected  as  the  test  dataset  and  50

samples as the validation set. The setting on the dataset of
the UMME algorithm is  consistent  with that  of  DL. The
rest of the parameter settings are the same as above. The
training accuracy and loss of DL are shown in Fig.10.
  

3.0

2.5

2.0

1.5

1.0

0.2

0

100

80

60

40

20

0

0 50 100
Epoch

A
cc

ur
ac

cy
/%

Lo
ss

150 200

0 50 100
Epoch

150 200

(a) Training loss

(b) Training accuracy

Fig. 10    Training loss and accuracy of DL
The performance of the UMME and Net on the validation

dataset  under  different  SNRs  and  training  data  sizes  are
shown in Fig.11. Numbers in the legend mean the training
data  size  per  class,  that  is  the  number  of  samples  in  the
training set of each class.
  

10 15 20 25
SNR/dB

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

cy
/%

: DL-50; : DL-100;
: DL-150;

: DL-200;

: UMME-50;
: UMME-100; : UMME-150;

: UMME-200.

Fig. 11    Identification performance of UMME and DL with different
SNRs of R1−R10

SUN Liting et al.: Unintentional modulation microstructure enlargement 531



It  can  be  seen  that  the  proposed  UMME  outperforms
DL. When the SNR degrades, the performance decline of
UMME  is  relatively  flat.  However,  DL  drops  faster
which indicates that the performance of DL has a higher
requirement on the signal quality. And there is no signifi-
cant  performance  difference  of  UMME  with  respect  to
the  training  data  size,  which  shows  that  UMME  is  not
sensitive  to  the  changes  in  the  number  of  the  training
samples.  Since  the  training  scale  is  small  (no  more  than
200),  DL,  as  a  data-driven  method,  does  not  work
robustly,  and  its  performance  curves  are  relatively  scat-
tered.  However,  in  the  actual  application  of  RFF,  the
effective  data  available  for  training  is  generally  limited,
and  due  to  the  complicated  receiving  environment,  the
signal  quality is  hard to guarantee.  Therefore,  UMME is
more accurate and practical than DL. 

5. Conclusions
In  RFF,  individual-specific  UIM  information  is  more
important,  but  it  is  relatively  small  and  submerged  in
intentional  modulation.  To  reduce  the  influence  of  IM
and  expand  the  miniscule  differences  between  emitters
for  RFF,  a  UMME method is  developed in  this  study to
enlarge  the  microstructures  of  the  extracted  UIM  based
on feature-level VMD. PE, ED, and MI indexes are utilized
to  respectively  quantify  the  similarity,  distance,  and
dependency  of  the  RFF  features  from different  emitters.
Experiments  based  on  real-world  data  qualitatively  and
quantitatively  demonstrate  that  the  proposed  method
magnifies  subtle  differences,  reduces  the  similarity,  and
improves the independency among UIM features. Finally,
the  GMM-based  identification  experiments  verify  the
performance  improvement  of  the  proposed  algorithm  on
RFF. In addition to being inherently suitable for RFF fea-
ture  distribution,  the  working  concept  of  UMME  could
also  be  applied  to  other  types  of  RFF  features,  signals,
and scenes in the future.
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