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Abstract: In some tracking applications, due to the sensor cha-
racteristic,  only  range measurements are available.  If  this  is  the
case, due to the lack of full position measurements, the observ-
ability of Cartesian states (e.g., position and velocity) are limited
to particular cases. For general cases, the range measurements
can  be  utilized  by  developing  a  state  estimation  algorithm  in
range-Doppler (R-D) plane to obtain accurate range and Doppler
estimates. In this paper, a state estimation method based on the
proper  dynamic  model  in  the  R-D  plane  is  proposed.  The
unscented Kalman filter is employed to handle the strong nonlin-
earity  in  the  dynamic  model.  Two filtering  initialization  methods
are  derived  to  extract  the  initial  state  estimate  and  the  initial
covariance  in  the  R-D  plane  from  the  first  several  range  mea-
surements.  One  is  derived  based  on  the  well-known  two-point
differencing  method.  The  other  incorporates  the  correct  dyna-
mic  model  information  and  uses  the  unscented  transformation
method to  obtain  the  initial  state  estimates  and covariance,  re-
sulting  in  a  model-based  method,  which  capitalizes  the  model
information to yield better performance. Monte Carlo simulation
results  are  provided  to  illustrate  the  effectiveness  and  superior
performance of the proposed state estimation and filter initializa-
tion methods.
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1. Introduction
In many tracking applications, the states of a target (e.g.,
position  and  velocity)  are  estimated  from  full  position
measurements,  which  are  usually  reported  in  polar  or
spherical coordinates. However, in some practical applica-
tions, due to the sensor characteristics, only range and/or
Doppler  measurements  are  available  or  reliable  in  the
tracking process.  For example, in inverse synthetic aper-
ture radar (ISAR), the output of the range-only or range-
Doppler-only tracker is utilized to control the range gate

and antenna pointing for extended data collection [1].  In
high  frequency  surface  wave  radar  (HFSWR),  when
tracking  algorithms  using  only  range  and/or  Doppler
measurements are applied,  efforts  and expenses for buil-
ding  a  large  and  expensive  antenna  array,  which  is  used
to  obtain  a  narrow  beam  due  to  the  large  wavelength  at
high frequency (HF), can be saved [2]. In addition, some
passive  radars,  such  as  Lockheed  Martin’s Silent  Sentry
system, work at low frequencies, which makes them diffi-
cult to provide accurate azimuth measurements for target
tracking [3].

In recent years,  target  tracking with only range and/or
Doppler measurements has attracted increasing attention.
For  the  cases  with  a  single  sensor,  the  observability  of
target  tracking  with  range-only  measurements  is  investi-
gated in [4−7] and it  is  concluded that  some known ma-
neuvers are required to guarantee the observability of Car-
tesian  states.  A Gaussian  mixture  filter  was  presented in
[8] to eliminate inaccurate estimates for range-only track-
ing.  For  the  cases  with  multiple  sensors,  combining  the
data offers the opportunity to locate targets using the tri-
lateration  method  [9].  In  [2,10−18]  ,  target  tracking  or
localization with only range and/or Doppler measurements
provided by multi-static or multi-monostatic sensors was
explored. This can be considered as a crucial technology
of  the  future  for  the  application  of  low-cost  sensor  net-
works to replace large aperture antennas [19,20]. A proof-
of-concept  of  target  tracking  in  range  coordinate  using
range-only  measurements,  which  is  beneficial  to  alle-
viate multi-sensor data association burden by eliminating
clutter  in  the  single  sensor  stage,  was  presented  in  [10].
However, the targets are assumed to move with constant
accelerations  in  range  coordinates,  performance  may  be
degraded due to the usage of inaccurate motion models.

To  find  more  accurate  motion  models,  the  authors
of  [21,22]  take  efforts  to  the  motion  modeling  in  the
range  coordinates.  An  effective  state  estimation  method
using  range  and  Doppler  measurements  is  proposed  to
produce state estimates in the range-Doppler (R-D) plane.
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In  some  practical  applications,  due  to  the  characteristics
of  the sensor system or the effect  of  Doppler  ambiguity,
only  the  range  measurements  are  available  or  reliable.
The motion models  in  [21,22]  also  offer  the  opportunity
to extract more accurate range estimates from range-only
measurements.  The  enhancement  of  range  estimation
benefits  the  tracking  performance  based  on  multisensor
data fusion using the trilateration method [9], which does
not require angle or Doppler information to locate the tar-
get. That is, the efforts on building a large and expensive
antenna array to obtain accurate angle measurements and
solving the Doppler ambiguity to obtain accurate Doppler
measurements  can  be  saved.  Therefore,  a  state  estima-
tion  method  that  effectively  utilizes  the  accurate  R-D
motion  models  and  range-only  measurements  to  obtain
accurate range estimates is  desired,  which motivates this
paper.

In this paper, the state estimation problem in range co-
ordinates  using  range-only  measurements  is  investigated
and  a  state  estimation  method  is  proposed.  The  motion
model in the R-D plane for the Cartesian motion in [21]
is adopted to formulate the state equation in the proposed
method.  To  handle  the  nonlinearity  of  the  dynamic  mo-
del, the unscented Kalman filter (UKF) [23−27] is adop-
ted to process range measurements.  For the initialization
of  the  state  vector  in  the  R-D  plane  using  range-only
measurements,  two  filter  initialization  methods  are  pro-
posed. One is derived in an analytical form based on the
well-known  two-point  differencing  (TPD)  approach,
which holds the assumption that the target range changes
linearly with time. However, it is not usually the case, as
stated in [21]. Therefore, this paper may suffer from per-
formance  degradation  when  the  assumption  is  violated.
To overcome this problem, a new model-based (MB) filter
initialization  method,  which  incorporates  the  correct
information  of  the  dynamic  model  into  the  initialization
process, is developed in this paper. By solving a series of
equations  constructed  based  on  the  dynamic  model,  a
nonlinear  function  of  the  state  with  respect  to  the  range
component  is  derived.  Since  the  initial  estimate  of
Doppler cannot be expressed in an analytical form using
range-only  measurements,  the  initial  state  estimate  and
the covariance matrix are  calculated using the unscented
transformation  (UT)  method  [23−24]  according  to  the
nonlinear function. In numerical experiments, the proposed
state  estimation  methods  using  the  two  initialization
methods  are  compared  against  existing  state  estimation
methods  using  approximate  models.  The  posterior
Cramer-Rao lower bound (PCRLB) is calculated as a the-
oretical performance benchmark. The comparison results
demonstrate the effective and superior performance of the
proposed approach of state estimation and filter initializa-

tion using range-only measurement.
This paper is a refined and expanded version of a pre-

vious  conference  paper  [28].  The  contributions  of  this
paper are summarized as follows.

(i) The state estimation method using range-only mea-
surements developed based on the accurate motion model
in the R-D plane and the UKF is introduced in detail.

(ii)  Two  filter  initialization  methods  are  presented.
Besides the TPD-based method, an MB filter initialization
method  is  proposed.  The  derivation  of  the  initial  state
estimate  and  the  calculation  of  the  initial  covariance  are
given.

(iii)  Various  illustrative  examples  in  different  condi-
tions are included to demonstrate the effectiveness of the
proposed  method  along  with  more  in-depth  discussions
about the performance.

This  paper  is  organized  as  follows.  The  state  estima-
tion  problem  using  range-only  measurements  is  formu-
lated in Section 2. In Section 3, the filtering procedure is
presented.  Two  corresponding  filter  initialization  me-
thods are deduced in Section 4. In Section 5, Monte Carlo
simulations  are  provided.  Finally,  conclusions  are  given
in Section 6. 

2. Problem statement
In  Cartesian  coordinates,  the  nearly  constant  velocity
(NCV) motion, which assumes that the target moves with
a nearly constant velocity, can be modeled as

xk+1 = xk + ẋkT +
T 2

2
vx

k

ẋk+1 = ẋk +Tvx
k

yk+1 = yk + ẏkT +
T 2

2
vy

k

ẏk+1 = ẏk +Tvy
k

(1)

xk yk

ẋk ẏk

vx
k vy

k

where  and   are  position  components  along x  and  y
axes respectively at time step k,  and  are correspon-
ding  velocity  components,  and   are  mutually  inde-
pendent  zero-mean  Gaussian  white  noises  along x  and  y
directions with standard deviation q, and T stands for the
sampling  interval.  This  model  is  a  commonly  used  non-
maneuvering model.

In range coordinates,  the motion model corresponding
to the NCV model in Cartesian coordinates has been pre-
sented in [14], where the state vector is defined as

xk =

 rk

ṙk

η̇k

 =


√
x2

k + y2
k

xk ẋk + ykẏk√
x2

k + y2
k

ẋ2
k + ẏ2

k


(2)

rk ṙk

η̇k

where  is the range component,  is the Doppler com-
ponent,  is  the  component  of  the  first-order  derivative
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ηk

rk · ṙk

of  the  converted  Doppler  component  that  equals  the
product of range and Doppler components  [29,30].

Substitute the evolutions of Cartesian states in (1) into
the state vector in range coordinate at  time step k+1, the
range component can be written as

rk+1 =

√
(rs

k+1)
2+∆h (3)

where

rs
k+1 =

√
r2

k +2rk ṙkT + η̇kT 2,

∆h =
T 4

4
(vx

k)
2+

T 4

4
(vy

k)
2+ (xk + ẋkT )T 2vx

k+

(yk + ẏkT )T 2vy
k.

A  Taylor  expansion  is  applied  to  simplify  the  motion
model, resulting in the evolution equation of range as

rk+1 = rs
k+1+

∆h
2rs

k+1

+O(∆h2) ≈ rs
k+1+ r̃k (4)

where

r̃k =
T 4

8rs
k+1

(vx
k)

2+
T 4

8rs
k+1

(vy
k)

2+

(xk + ẋkT )T 2

2rs
k+1

vx
k +

(yk + ẏkT )T 2

2rs
k+1

vy
k

is the random part, i.e., the process noise.
ṙk+1 η̇k + 1The  evolution  equations  of  and   can  be

obtained in the same way as

ṙk+1 =
rk ṙk + η̇kT

rs
k+1

+ ˜̇rk, (5)

η̇k+1 = η̇k + ˜̇ηk. (6)
Note that the means of the process noise are not nece-

ssarily to be zero. To ensure the process noises are zero-
mean, the non-zero means are eliminated from the process
noise vector, resulting in the state equation as

xk+1 =

 rk+1

ṙk+1

η̇k+1

 = f (xk)+u(xk)+ vk =


rs

k+1

rk ṙk + η̇kT
rs

k+1

η̇k

+


q2T 4

4rs
k+1

q2T 3

rs
k+1

2q2T 2


+ vk (7)

f (·) u(·)

xk vk

Qk

where  is the nonlinear transition function,  is the
function  containing  means  of  the  process  noise,  denotes
the deterministic part of range evolved from , and  is
the process noise vector with covariance  given by

Qk =

 σ
rr
k σrṙ

k σrη̇
k

σṙr
k σṙṙ

k σṙη̇
k

ση̇rk ση̇ṙk ση̇η̇k

 (8)

where

σrr
k =

q2T 4

4
+

q4T 8

16(rs
k+1)2 , (9)

σrṙ
k = σ

ṙr
k =

q2T 3

2
+

q2T 4

4(rs
k+1)2 rk ṙk +

q2T 5

4(rs
k+1)2 η̇k +

q4T 7

4(rs
k+1)2 ,

(10)

σrη̇
k = σ

η̇r
k =

q2T 3

rs
k+1

rk ṙk +
q2T 4

rs
k+1

η̇k +
q4T 6

2rs
k+1

, (11)

σṙṙ
k = q2T 2+

q2T 3

(rs
k+1)2 rk ṙk +

5q2T 4

4(rs
k+1)2 η̇k +

q4T 6

(rs
k+1)2 , (12)

σṙη̇
k = σ

η̇ṙ
k =

2q2T 2

rs
k+1

rk ṙk +
3q2T 3

rs
k+1

η̇k +
2q4T 5

rs
k+1

, (13)

ση̇η̇k = 4q2T 2η̇k +4q4T 4. (14)

For more details of the derivation of the motion model,
please  refer  to  [21].  In  the  filtering  procedure,  the  state
estimates  at  time step k  are  substituted into the formula-
tions instead of the unknown true states.

In this problem, only range measurements are assumed
to be available. The measurement equation is given by

zk = rm
k = Hk xk +wk =[

1 0 0
]  rk

ṙk

η̇k

+ r̃k (15)

zk = rm
k Hk

wk = r̃k

Rk = σ
2
r

where  is  the  range measurement,  denotes  the
measurement  matrix,  is  the  zero-mean  white
Gaussian  measurement  noise  with  covariance .
Note that the measurement equation is linear.

Based on the state equation in (3) and the measurement
equation in  (11),  this  paper  aims to  develop an effective
state estimation method to extract range and Doppler esti-
mates  from  range-only  measurements.  The  potential
applications  include  ISAR,  HFSWR  and  some  passive
radars  which  suffer  from  coarse  azimuth  resolution  and
the effect of Doppler ambiguity. Due to the strong nonlin-
earity contained in the state equation, a nonlinear filtering
method is desired. The lack of Doppler measurement also
poses a challenge to the initialization of the Doppler and
converted Doppler components in the state vector, which
has  a  significant  effect  on  the  overall  estimation  perfor-
mance. 

3. State estimation in R-D plane
 

3.1    Filtering

Considering the fact that the state equation in (3) is high-
ly nonlinear, a nonlinear filtering method is needed in the
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k ⩾ 3

estimation  process.  Here,  the  UKF [23−27]  is  employed
to  estimate  state  in  the  R-D  plane  from  the  range-only
measurements. Note that other commonly used nonlinear
filtering  methods,  such  as  the  extended  Kalman  filter
(EKF), the cubature Kalman filter (CKF) [31,32] and the
particle  filter  (PF)  [33−36]  can  also  be  applied.  In  this
paper, the UKF is chosen since it yields better performance
than the EKF when the nonlinearity is strong and requires
less computation load than the PF. Based on (7) and (15),
the filtering procedure of the resulted method at time step

 is given as follows:
Algorithm 1 One iteration of the filter in range coordi-

nate
x̂k−1|k−1 Pk−1|k−1 zkInput , , 

x̂k|k Pk|kOutput , 
2nx+1

x̂k−1|k−1

Step  1　Calculate   sigma  points  according  to
the  state  estimate  and  corresponding  weights  to
approximate the prior distribution:

ξ0
k−1 = x̂k−1|k−1

ξi
k−1 = x̂k−1|k−1+ (

√
(nx+λ)Pk−1|k−1)i

ξi+nx

k−1 = x̂k−1|k−1− (
√

(nx+λ)Pk−1|k−1)i

, (16)


W0 =

λ

nx+λ

W i =
1

2(nx+λ)

W i+nx =
1

2(nx+λ)

, (17)

i = 1,2, · · · ,nx nx

xk λ nx+λ , 0
(
√

(nx+λ)Pk−1|k−1)i √
(nx+λ)Pk−1|k−1

where ,  is the dimension of the state vec-
tor ,  is a scaling parameter satisfying , and

 is the ith row or the ith column of the
root mean square matrix .
Step 2　State prediction:

ξi
k|k−1 = f (ξi

k−1) + u(ξi
k−1), (18)

x̂k|k−1 =

2nx∑
i=0

W iξi
k|k−1, (19)

∆xi
k|k−1 = ξ

i
k|k−1− x̂k|k−1, (20)

Pk|k−1 =

2nx∑
i=0

W i∆xi
k|k−1(∆xi

k|k−1)′+Qk−1. (21)

Step 3　Filter gain:

zk|k−1 = Hk x̂k|k−1, (22)

Pzz = Rk +Hk Pk|k−1 H′k, (23)

Pxz = Pk|k−1H′k, (24)

Kk = Pxz(Pzz)−1. (25)

Step 4　State update:

x̂k|k = x̂k|k−1+Kk(zk − ẑk|k−1), (26)

Pk|k = Pk|k−1−Kk Pzz(Kk)′. (27)

x̂k|k

Generally,  the  Cartesian  state  estimates  cannot  be
determined  using  the  R-D  state  estimate  without
angle  information.  For  the  cases  with  multiple  sensors,
the  trilateration  method  [9]  can  be  employed  to  fuse  the
multiple R-D state estimates to obtain the Cartesian state
estimates. 

3.2    Performance analysis

The PCRLB is a widely used performance measure [37],
which gives a lower bound of the error covariance given
by

Pk|k = E[(x̂k|k − xk)(x̂k|k − xk)′] ⩾ J−1
k (28)

Jkwhere  is  the  Fisher  information  matrix  (FIM),  E(x)
represents the mean of x. For the state estimation problem
in  the  range  coordinate  using  range-only  measurements,
the FIM [37] can be calculated recursively by

Jk+1 =

[(
∂ f (xk)
∂xk

+
∂u(xk)
∂xk

)
J−1

k .(
∂ f (xk)
∂xk

+
∂u(xk)
∂xk

)T

+Qk

]−1

+ J z
k+1 (29)

∂ f (xk)/∂xk

f (xk) xk

J3 = P3|3 J z
k+1

where  is  the  first-order  partial  derivative  of
 with  respect  to ,  the  FIM  is  initialized  as

. Matrix  represents the measurement contri-
bution to the PCRLB, which is given by

J z
k+1 = HT

k R−1
k Hk. (30)

 

4. Filter initialization
In this section, two filter initialization methods are deve-
loped  for  the  proposed  state  estimation  method.  One  is
derived based on the well-known two-point initialization
approach.  The  other  is  a  model-based  method,  which
incorporates  the  correct  model  information  by  using  the
UT method  [23,24]  to  calculate  the  initial  state  estimate
and covariance. 

4.1    TPD-based initialization

The TPD method is commonly used in filter initialization
of  practical  tracking  applications  due  to  its  simplicity  of
implementation.  In  Cartesian  coordinates,  the  TPD
method  assumes  that  the  target  state  evolves  following
the  constant  velocity  (CV)  model,  in  which  the  target
position changes linearly with time. The position compo-
nent  is  initialized  directly  by  using  the  corresponding
position  measurement  while  the  velocity  component  is
obtained  as  the  differencing  results  of  position  measure-
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ments.  Here,  an  effective  method  is  derived  based  on
TPD for the proposed filter in the range coordinate using
range-only measurements.

For the dynamic model  defined in (7),  the initial  state
estimate is denoted by

x̂3|3 =
[
r̂3|3, ˆ̇r3|3, ˆ̇η3|3

]′
. (31)

The initial covariance is denoted by

P3|3 =


Prr

3|3 Prṙ
3|3 Prη̇

3|3
Pṙr

3|3 Pṙṙ
3|3 Pṙη̇

3|3
Pη̇r3|3 Pη̇ṙ3|3 Pη̇η̇3|3

 . (32)

r̂3|3The range component  in (31) is initialized directly
by using the range measurement at the third time step as

r̂3|3 = rm
3 . (33)
ˆ̇r3|3Based on the TPD method,  in (31) is initialized by

differencing  the  range  measurements  at  two  consecutive
steps:

ˆ̇r3|3 =
rm

3 − rm
2

T
. (34)

η3 = r3ṙ3

η̂3|3

η̂2|2

The component  of  converted Doppler  is  also
assumed to evolve linearly with time in a sampling inter-
val,  thus  the  initial  estimate  of  its  first-order  derivation
can  be  calculated  by  differencing  the  estimates  and

 as

ˆ̇η3|3 =
η̂3|3− η̂2|2

T
=

r̂3|3 ˆ̇r3|3− r̂2|2 ˆ̇r2|2

T
. (35)

ˆ̇η3|3Substitute (33) and (34) into (35), and  can be written
as

ˆ̇η3|3 =
(rm

3 )2− (rm
2 )2− rm

3 rm
2 + rm

2 rm
1

T 2
. (36)

The initial state estimate can be written as

x̂3|3 =

r̂3|3
ˆ̇r3|3
ˆ̇η3|3

 =


rm
3

rm
3 − rm

2

T
(rm

3 )2− (rm
2 )2− rm

3 rm
2 + rm

2 rm
1

T 2

 . (37)

r̃k

σ2
r

The  corresponding  initial  covariance  matrix  can  be
derived based on the formulation of the initial  state esti-
mate. First, the range measurement noise  is assumed to
be zero-mean Gaussian with known variance , that is

E[r̃k] = 0
Rrr

k = E[r̃k r̃k] = σ2
r

E[r̃k r̃l] = 0, k , l
. (38)

Based on (38), it can be obtained thatE[r̃3
k ] = 0

E[r̃4
k ] = 3σ4

r

. (39)

ˆ̇r3|3 ˆ̇η3|3The  estimation  errors  contained  in ,  are
expressed as follows:

˜̇r3 =
rm

3 − rm
2

T
− r3− r2

T
=

rm
3 − rm

2

T
−

(rm
3 − r̃3)− (rm

2 − r̃2)
T

=
r̃3− r̃2

T
, (40)

˜̇η3 =
r̃2

2 − r̃2
3 + r̃3r̃2− r̃2r̃1

T 2
+

(2rm
3 − rm

2 )r̃3+(rm
1 −2rm

2 − rm
3 )r̃2+ rm

2 r̃1

T 2
. (41)

P3|3

Based on (38)−(41),  the corresponding components of
covariance  in (32) can be calculated as

Prr
3|3 = σ

2
r , (42)

Prṙ
3|3 = Pṙr

3|3 = E[r̃3 ˜̇r3] =
σ2

r

T
, (43)

Prη̇
3|3 = Pη̇r3|3 = E[r̃3 ˜̇η3] =

(2rm
3 − rm

2 )σ2
r

T 2
, (44)

Pṙṙ
3|3 = E[˜̇r3 ˜̇r3] =

2σ2
r

T 2
, (45)

Pṙη̇
3|3 = Pη̇ṙ3|3 = E[˜̇r3 ˜̇η3] =

(3rm
3 + rm

2 − rm
1 )σ2

r

T 3
, (46)

Pη̇η̇3|3 = E[ ˜̇η3
˜̇η3] =

[
5(rm

3 )2+6(rm
2 )2

T 4
+

(rm
1 )2−2rm

3 rm
1 −4rm

2 rm
1

T 4

]
σ2

r +
6σ4

r

T 4
. (47)

 

4.2    Model-based initialization

In  the  TPD-based  method,  the  initialization  of  the  Dop-
pler  and  converted  Doppler  components  is  carried  out
based  on  the  assumption  that  the  target  range  varies  li-
nearly with time in a sampling interval. However, in rea-
lity, this is usually not the case, as presented in (7). When
the  assumption  is  violated,  the  application  of  the  TPD-
based  method  may  introduce  significant  errors  into  the
initial  state  estimate,  resulting  in  serious  performance
degradation in the following filtering process. To address
this problem, a model-based initialization method is pro-
posed  in  this  paper.  The  incorporation  of  the  correct
information  may  benefit  the  estimation  accuracy  of  the
new  initialization  method,  especially  in  scenarios  where
the nonlinearity with respect to time is strong.

According to  (7),  ignoring the  process  noise,  the  state
equation  in  the  R-D  plane  for  the  Cartesian  CV  motion
can be written as

 rk+1

ṙk+1

η̇k+1

 =


√
r2

k +2rk ṙkT + η̇kT 2

rk ṙk + η̇kT√
r2

k +2rk ṙkT + η̇kT 2

η̇k


. (48)

It can be obtained that
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r2
k+1 = r2

k +2rk ṙkT + η̇kT 2, (49)

rk+1ṙk+1 = rk ṙk + η̇kT. (50)
Recursively, the following equation can be obtained:

r2
k+2 = r2

k+1+2rk+1ṙk+1T + η̇k+1T 2 =

r2
k+1+2(rk ṙk + η̇kT )T + η̇kT 2 =

r2
k+1+2rk ṙkT +3η̇kT 2. (51)

rk ṙk η̇kConsider  and   as  unknowns,  the  relationships
contained  in  (49)  and  (51)  can  be  reformulated  in  a
matrix-form, given by[

2T T 2

2T 3T 2

] [
rk ṙk

η̇k

]
=

[
r2

k+1− r2
k

r2
k+2− r2

k+1

]
. (52)

rk ṙk

η̇k

Solve  the  above  equation,  the  expressions  of  and
 with respect to range components at three consecutive

time steps k, k+1 and k+2 can be obtained as

rk ṙk =
−r2

k+2+4r2
k+1−3r2

k

4T
, (53)

η̇k =
r2

k+2−2r2
k+1+ r2

k

2T 2
. (54)

rk + 2ṙk + 2 rk ṙk

However,  in  the  filter  initialization,  it  is  more  desired
to  express  the  initial  state  estimate  using  state  compo-
nents  at  current  or  previous  time  steps  rather  than  the
ones at “future” time steps. To this end, according to (48),
the  recursive  relationship  between  and   can
be recursively written as

rk+2ṙk+2 = rk ṙk +2η̇kT. (55)

Substitute (53) and (54) into (55):

rk+2ṙk+2 =
−r2

k+2+4r2
k+1−3r2

k

4T
+

2T
(

r2
k+2−2r2

k+1+ r2
k

2T 2

)
=

3r2
k+2−4r2

k+1+ r2
k

4T
. (56)

Then, the new formulations can be obtained as

ṙk+2 =
3r2

k+2−4r2
k+1+ r2

k

4rk+2T
, (57)

η̇k+2 = η̇k+1 = η̇k =
r2

k+2−2r2
k+1+ r2

k

2T 2
. (58)

For k =3,  the  expression  of  state  using  range  compo-
nents at three consecutive time steps is given by

x3 =

 r3

ṙ3

η̇3

 = g(r3,r2,r1) =



r3

3r2
3 −4r2

2 + r2
k−2

4r3T
r2

3 − r2
2 + r2

1

2T 2


. (59)

In  tracking  applications,  the  true  state  of  the  target  is
usually  not  available.  Thus,  the  initial  state  estimate  can

g(r3,r2,r1)

r3

r3 r2 r1

be  calculated  as  the  expectation  of  function 
conditioning  on  the  range  measurements.  However,
according  to  (59),  also  appears  in  the  denominator  of
the  expression  of  the  Doppler  component,  which  makes
the derivation of the conditional mean and corresponding
covariance  intractable.  Here, , ,  and  are  replaced
by  the  corresponding  measurements  to  obtain  an  appro-
ximate expression of the initial state estimate as

x̂3|3 =

r̂3|3
ˆ̇r3|3
ˆ̇η3|3

 = E
[
g(r3,r2,r1)|ra

3

] ≈

g(ra
3) =



rm
3

3(rm
3 )2−4(rm

2 )2+ (rm
1 )2

4rm
3 T

(rm
3 )2−2(rm

2 )2+ (rm
1 )2

2T 2


(60)

ra
3 = [rm

3 ,r
m
2 ,r

m
1 ]′where  is the stacked vector of range mea-

surements at three consecutive time steps.

ˆ̇r3|3 ˆ̇η3|3

rm
1

2nr +1

ra
3

Due to the incorporation of the correct dynamic model,
the  expression  of  and   in  (60)  is  different  from
those  in  (37).  It  can  be  seen  that  is  involved  in  the
expression  of  Doppler  estimate  in  (60),  which  implies
that more information is utilized in the initialization pro-
cess.  The UT method [23,24]  is  adopted to  calculate  the
initial  state  estimate  and  the  initial  covariance  matrix
according  to  (60).  First,  sigma  points  and  corre-
sponding  weights  are  calculated  based  on  the  stacked
vector  as 

γ0
3 = ra

3

W0 =
λ

nr +λ
γi

3 = ra
3+ (

√
(nr +λ)Pr

3)i

W i =
1

2(nr +λ)
γi+nr

3 = ra
k − (

√
(nr +λ)Pr

3)i

W i+nr =
1

2(nr +λ)

(61)

i = 1,2, · · · ,nr Pr
3 = diag{ σ2

r ,σ2
r ,σ

2
r} nr

ra
3

where , ,  is  the
dimension of the stacked vector .

Then,  according to (60),  the posterior  sampling points
can be obtained as

γ̂i
3|3 = g(γi

3), (62)
and the state estimate is given by

x̂3|3 =

2nr∑
i=0

W iγ̂i
3|3. (63)

P3|3At last, the initial covariance matrix  can be calcu-
lated as

P3|3 =

2nr∑
i=0

W i(γ̂i
3|3− x̂3|3)(γ̂i

3|3− x̂3|3)′. (64)
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5. Simulation results
Numerical  experiments  are  performed  to  examine  the
effectiveness of the novel approach to estimate range and
Doppler  of  the  target  using  range-only  measurements.
The proposed methods using the TPD-based and MB ini-
tialization  methods  are  compared  with  two  standard
Kalman  filters  with  approximate  dynamic  models  in
range coordinates: the approximate NCV (ANCV) model
and the approximate nearly constant acceleration (ANCA)
model  [10,38].  Before  the  accurate  dynamic  model  was
established  in  [21],  these  models  were  used  to  describe
the target motion in the R-D plane. That is, the comparison
algorithms  selected  in  this  paper  are  classic  solutions  to
the  state  estimation  problem  in  range  coordinate,  which
are also employed as competitors in [2,21] in cases with
measurements  of  range  and  Doppler.  The  state  equation
of the ANCV model is given as[

rk+1

ṙk+1

]
=

[
1 T
0 1

] [
rk

ṙk

]
+

[
T 2/2

T

]
vr

k, (65)

while the counterpart of the ANCA model is rk+1

ṙk+1

r̈k+1

 =
 1 T T 2/2

0 1 T
0 0 1


 rk

ṙk

r̈k

+
 T 2/2

T
1

vr
k

(66)
r̈k

vr
k

q2
r

where  denotes range acceleration in range coordinate,
 stands  for  the  process  noise  in  range  direction,

assumed to be zero-mean Gaussian white noise with vari-
ance .

The traditional two-point differencing method for one-
dimensional  models,  such as  the NCV and NCA models
in  the x  or  y  axis  of  Cartesian  coordinates,  is  employed
here  to  initialize  the  Kalman  filters  [39].  The  formula-
tions are omitted here for brevity. A total of 1 000 Monte
Carlo  runs  are  performed  over  100  time  steps.  The
PCRLB is calculated to indicate the theoretical benchmark
in a given scenario [37]. The normalized estimation error
squared (NEES) [39] is adopted to test the consistency of
filters.

q =

qr =

qr = 0.01

The  target  follows  the  Cartesian  NCV  motion  mo-
del. The process noise is with the standard deviation 
0.01 m/s2. The standard deviations of process noises used
in  the  filters  with  the  ANCV  or  ANCA  model  are 
0.1  m/s2 or   m/s2 ,  respectively.  Note  that  when
the process noises become larger, the approximation error
contained  in  the  expression  of  the  process  noise  in  (3)
may  increase  and  harm  modeling  accuracy,  leading  to
performance  degradation  of  the  proposed  method.  This
flaw may limit the application of the proposed method in
cases  with  large  uncertainty  on  the  prior  information  of
the motion model. A feasible way to mitigate the effect of

the approximation error is to use higher-order approxima-
tion  techniques  in  motion  modeling.  For  more  detail,
please refer to [21].

T = 5

σr = 50

The  location  of  the  sensor  is  at  the  origin,  reporting
range measurements with a sampling interval of  s.
The  standard  deviation  of  range  measurement  noise  is

 m. Two examples with different initial  headings
of the target are provided to evaluate the performance of
the  proposed  method  under  conditions  with  different  le-
vels of nonlinearity of the range component. 

5.1    Example  with  the  initial  heading  perpendicular
to the radial direction

−45◦

In  this  example,  the  target  is  first  assumed  to  start  from
the position of (5 km, 5 km) in the x-y plane of Cartesian
coordinates  with  a  high  initial  speed  of  300  m/s  and  an
initial heading of , which is perpendicular to the ra-
dial direction. The target trajectory in Cartesian coordinates
and the ground truth of the R-D state along with the range
measurements are depicted in Fig. 1.
 

0

5

10

15

R
an

ge
/m

0 20 40 60 80 100
Scan

(b) Ground truth and measurements of range and Doppler (one run)

0 20 40 60 80 100

0

100

200

300

D
op

pl
er

/(m
·s

−1
)

×104

: Ground truth; : Measuerment.

0 20 40 60 80 100 120
X/km

(a) Target trajectory (one run)

−100

−80

−60

−40

−20

0

20

Y/
km

: Starting point.: Target trajectory;

Fig.  1      Ground  truth  and  measurements  in  the  example  with  the
initial  heading perpendicular to the radial  direction and the initial
speed of 300 m/s
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It  can  be  seen  that  the  nonlinearity  of  the  range  com-
ponent with respect to time is pronounced in the first 10 s,
thus can be used to show the advantage of the MB initial-
ization  method  over  the  TPD-based  method.  The  root
mean squared errors (RMSEs) of the filters are shown in
Fig.  2(a)−Fig.  2(c).  It  can be seen that  the two proposed
methods  outperform  the  two  filters  with  approximate
models,  which  diverge  at  the  early  stage  of  the  filtering
process. As shown in Fig. 1(b), the nonlinearity of range
evolution  is  strong  in  the  early  stage.  The  ANCV  and
ANCA  models  seriously  diverge  from  the  true  target
motion,  leading  to  performance  degradation.  However,
after 40 scans, the evolution of range with respect to time
is close to a linear function. The divergence between the
approximate  models  and  the  true  target  motion  becomes
small. Furthermore, as shown in Fig 2(d), the state cova-
riance  becomes  much  larger  than  the  estimation  error
(NEES is  much smaller  than 2)  in  the  later  stage,  which
helps  the  Kalman  filter  to  gradually  correct  the  estimate
using  measurements  over  time,  resulting  in  a  relatively
stable result. 
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Fig. 2    Comparison of filter RMSEs in the example with the initial
heading perpendicular  to  the  radial  direction and the  initial  speed
of 300 m/s
 

It  can  be  observed  that  the  RMSE  curve  of  the  filter
using  the  ANCA  model  has  two  peaks.  The  first  one
appears due to the performance degradation arising from
mismatch  between  the  ANCA model  and  the  true  target
motion.  The  appearance  of  the  second  peak  is  probably
because of the effect of the inaccurate estimate of the sec-
ond-order  derivative  of  range  (only  included  in  the
ANCA  model).  As  shown  in Fig  1(b),  the  second-order
derivative  of  range  decreases  from  the  beginning  of  the
filtering and is close to zero after 50 scans. However, the
filter  using  ANCV  assumes  a  nearly  constant  accelera-
tion, thus may not be able to capture the change of acce-
leration timely, resulting in the second RMSE peak arou-
nd the 50th scan. As shown in Fig. 2(d), in the early sta-
ge, the state covariance of the filter using the ANCV mod-
el is much smaller than the estimation error (NEES is mu-
ch larger than 2),  which means the filter is “optimistic”.
That  is,  the filter  overly trusts  the dynamic model  rather
than  the  measurements  in  the  update  of  state  estimates.
As shown in Fig 1, in the very beginning, the divergence
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between  the  true  target  motion  and  the  ANCA model  is
slight. Thus, the RMSE first decreases. As the divergence
becomes pronounced, the RMSE turns to increase.

Among  the  two  proposed  methods,  the  one  using  the
MB  initialization  method  shows  better  performance  and
meets  well  with  the  PCRLB  during  the  whole  filtering
process.  The  RMSE of  the  TPD-based  method increases
first because it suffers from a model mismatch while the
model-based  method  incorporates  the  correct  informa-
tion of the dynamic model. However, the model mismatch
only  exists  in  the  filtering  initialization.  In  the  fil-
tering  procedure,  the  state  estimate  and  estimate  covari-
ance  are  continuously  updated  using  the  accurate  dyna-
mic model and range measurements over time. During the
process,  the  effect  of  the  mismatch  will  be  gradually
reduced. Thus, the RMSE stops increasing at some point
and  starts  to  decrease.  With  enough  time,  the  proposed
method  using  the  TPD initialization  method  finally  con-
verges  and  achieves  comparable  performance  with  the
one using the MB method.

Fig.  1(d)  depicts  the  NEES values  of  the  filters  along
with the 98 % probability regions. It can be seen that only
the  state  estimates  produced  by  the  proposed  method
using  the  MB  initialization  method  are  consistent  in  all
scans.  Both  the  RMSE  and  NEES  results  illustrate  the
validity and correctness of the proposed method.

Then,  the  simulation  is  carried  out  in  another  case
where the initial speed of the target is reduced to 20 m/s
without changing other parameters. The target trajectory,
ground  truth,  and  range  measurements  are  depicted  in
Fig.  3.  It  can  be  observed  that  the  nonlinearity  of  range
with  respect  to  time  becomes  weak.  The  RMSEs  of  the
filters are shown in Fig. 4(a)−Fig. 4(c). It can be seen that
the  two  proposed  methods  using  different  initialization
methods  have  almost  the  same  level  of  RMSE  close  to
the  PCRLB,  except  for  the  initial  phase,  where  the  MB
method yields larger estimation errors compared with the
TPD-based method. This is because when the nonlinearity
of range is weak, the effect of the model mismatch in the
TPD-based  method  on  the  performance  is  mitigated.
While  the  strong  nonlinearity  in  the  formulation  of  the
Doppler  component  in  (56)  has  a  detrimental  impact  on
the estimation accuracy of the MB method, resulting in a
higher  level  of  RMSE  compared  with  the  TPD-based
method. On the contrary, the performance of the methods
using  the  ANCV  and  ANCA  models  starts  to  degrade
after 20−30 scans since they fail to correctly describe the
Cartesian NCV motion in range coordinate. It can also be
seen  that  in  the  first  20  scans,  the  RMSEs  of  the  filter
using the ANCV model  are lower than those of  the pro-
posed  method.  However,  according  to  the  consistency
testing  results  shown  in Fig.  2(d),  the  filters  using  the

ANCV and ANCA models are inconsistent. Fig. 2(d) also
shows that both the two proposed methods produce con-
sistent state estimates.
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Fig.  3      Ground  truth  and  measurements  in  the  example  with  the
initial  heading perpendicular to the radial  direction and the initial
speed of 20 m/s
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5.2    Example with the initial heading in
the radial direction

45◦The initial heading of the target is changed to , which
is  away from the  sensor,  to  examine  the  performance  of
the  proposed  method when the  nonlinearity  of  the  range
component  with  respect  to  time  is  weak.  The  other

parameters remain the same as the previous example.
First, the target is assumed to have a high initial speed

of 300 m/s. The target trajectory, ground truth, and range
measurements are depicted in Fig.  5.  The RMSEs of the
filters are shown in Fig. 6(a)−Fig. 6(c). It can be seen that
the  RMSEs  at  the  steady  state  can  be  sorted  into  two
groups with  a  descending order  of  magnitude:  the  filters
using  the  ANCV  model  and  the  ANCA  model,  the  two
proposed filters. The two proposed filters outperform the
filters using the approximate dynamic models because of
the incorporation of correct model information. Although
different  initialization  methods  are  employed  in  the  two
proposed filters, they produce state estimates with almost
the  same  level  of  RMSE  that  is  close  to  the  PCRLB,
which  demonstrates  the  effectiveness  of  the  two  initiali-
zation  methods.  The  filter  using  the  ANCV  model  con-
verges  the  most  quickly.  However,  this  filter  along  with
the  one  using  the  ANCA  model  is  demonstrated  to  be
inconsistent by the NEES results shown in Fig. 6(d). It is
also  shown in Fig.  6(d)  that  the  two proposed filters  are
consistent in all scans.
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Fig. 5    Ground truth and measurements in the example with the ini-
tial heading in the radial direction and the initial speed of 300 m/s
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Fig. 4    Comparison of filter RMSEs in the example with the initial
heading perpendicular  to  the  radial  direction and the  initial  speed
of 20 m/s
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In the following simulation, a much lower initial speed
of 20 m/s is assumed for the target, which means the true
dynamic model  of  the  target  is  closer  to  a  linear  one,  as
shown in Fig. 7. The RMSE and NEES results shown in
Fig.  8 are  similar  to  those  displayed  in Fig.  8,  which
again illustrates the effectiveness of the proposed method.
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Fig. 6    Comparison of filter RMSEs in the example with the initial
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(b) Ground truth and measurements of range and Doppler (one run)
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Fig.  7      Ground  truth  and  measurements  in  the  example  with  the
initial heading in the radial direction and the initial speed of 20 m/s

 

0 20 40 60 80 100
Scan

(a) RMSE of range estimates

15

20

25

30

35

40

45

50

55

R
M

SE
/m

LI Keyi et al.: State estimation in range coordinate using range-only measurements 507



heading in the radial direction and the initial speed of 300 m/s
 

6. Conclusions

The  state  estimation  problem  in  range  coordinate  using
range-only  measurements  has  been  investigated  in  this
paper.  A state  estimation method,  which is  implemented
based  on  the  corresponding  state  equation  in  the  R-D

plane  for  the  Cartesian  NCV  motion  and  the  measure-
ment  equation  with  range-only  measurements,  is  pro-
posed. The UKF is employed to address the nonlinearity
contained in the dynamic model. Two filtering initializa-
tion  methods  are  developed.  One  is  derived  in  an  ana-
lytical  form  based  on  the  two-point  differencing  ap-
proach. While the other uses the UT method to calculate
the initial state estimate and covariance from range mea-
surements according to the nonlinear formulation derived
using  the  correct  dynamic  information,  resulting  in  a
model-based method. Due to the incorporation of correct
model information, the MB method exhibits superior per-
formance  compared  with  the  TPD-based  method,  espe-
cially in the case when nonlinearity of the range compo-
nent with respect to time is pronounced. The effectiveness
and superior performance of the proposed estimation and
initialization  methods  are  demonstrated  through  nume-
rical experiments in two examples.

In future works, it is of interest to extend the proposed
state  estimation  method  to  cases  with  more  complex
motions of the target, such as maneuvering target tracking
problems.  Furthermore,  how  to  integrate  the  proposed
method  into  the  framework  of  multiple  target  tracking
deserves investigation.
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