Journal of Systems Engineering and Electronics
Vol. 33, No. 3, June 2022, pp.759 — 770

Failure analysis of unmanned autonomous swarm
considering cascading effects

1,2 1

1 1 1%

XU Bei , BAI Guanghan , ZHANG Yun’an , FANG Yining , and TAO Junyong

1. Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligent Sciences and Technology, National
University of Defense Technology, Changsha 410073, China; 2. School of General Aviation, Nanchang Hangkong
University, Nanchang 330063, China

Abstract: In this paper, we focus on the failure analysis of
unmanned autonomous swarm (UAS) considering cascading
effects. A framework of failure analysis for UAS is proposed.
Guided by the framework, the failure analysis of UAS with crash
fault agents is performed. Resilience is used to analyze the pro-
cesses of cascading failure and self-repair of UAS. Through simu-
lation studies, we reveal the pivotal relationship between
resilience, the swarm size, and the percentage of failed agents.
The simulation results show that the swarm size does not affect
the cascading failure process but has much influence on the
process of self-repair and the final performance of the swarm.
The results also reveal a tipping point exists in the swarm. Mean-
while, we get a counter-intuitive result that larger-scale UAS
loses more resilience in the case of a small percentage of failed
individuals, suggesting that the increasing swarm size does not
necessarily lead to high resilience. It is also found that the temporal
degree failure strategy performs much more harmfully to the
resilience of swarm systems than the random failure. Our work
can provide new insights into the mechanisms of swarm col-
lapse, help build more robust UAS, and develop more efficient
failure or protection strategies.
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1. Introduction

Swarm intelligence is a well-studied phenomenon in bees,
flocks of birds, schools of fish, etc. Physicists, biologists,
and engineers proposed many multi-agent models to
present the collective behaviors of these natural swar-
ms [1-6] and revealed that emergence in the swarm can
be achieved by individual with very limited abilities. This
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decentralized approach of nature has inspired the en-
gineering systems to improve with a paradigm shift from
a centralized control mechanism to a distributed control
mechanism.

Distributed unmanned autonomous swarm (UAS), such
as swarm robots [7,8] and unmanned aerial vehicle (UAV)
swarm [9], is a scientific and engineering field that deals
with the design of collec-tive behaviors for a swarm of
relatively incapable individuals to perform complex tasks.
This non-centralized control mechanism has gained many
potential advantages over a single UAV or robots, includ-
ing increased speed of task completion through paral-
lelism, improved solutions for tasks, cheaper solutions for
complex applications, and often claimed to be scalable,
flexible, and highly fault-tolerant [8]. Thus, many studies
on UAS have limited their research under safe laboratory
settings, where the failure analysis of UAS is rarely con-
sidered in the presence of potential threats such as failures
caused by internal and/or external factors. However, we
find one or more failed agents may suffice to make the
swarm collapse in a cascading process and prevent the
team from achieving its goal. With many different UASs
developed in real-world applications, either in military or
non-military scenarios, special attention should be paid to
the associated failure problem.

The potential threats of UAS can be divided into self-
platform failures and external attacks according to the
causes of failures. The self-platform failures are caused
by internal reasons, while external attacks are conducted
by adversaries or hostile environments. However, few
studies have carried out further studies on how much
these failures can influence the behaviors of swarm sys-
tems. Meanwhile, the UAS as the self-organization system
has a certain ability to self-repair. Up to now, the mecha-
nism of failure propagation and self-repair in UAS is not
yet to be made clear.
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In this paper, we focus on the failure analysis of UAS
to investigate the mechanism of failure propagation and
self-repair. Traditionally, reliability is used to evaluate
the ability of a system to maintain its normal operation
under specific periods and circumstances. However, UAS
is a typical distributed system with self-organization and
self-repair capabilities. Thus, it is not suitable to use tradi-
tional reliability standards. Resilience provides a new
approach that system administrators can use in the design
and analysis of engineering systems to enhance the ability
of such systems to withstand uncertain threats and bounce
back from disruption events [9,10]. Since the concept of
resilience was first proposed by Holling [11], it has been
developed and applied in many fields, including eco-
nomics, complex engineering, and social science [12,13].
There are three main perspectives of resilience, namely
absorption, adaption, and restoration [14 —16]. Thus, com-
pared with the static reliability evaluation, resilience is
more appropriate to measure the fluctuation performance
analysis of UAS.

Resilience in artificial swarms can be understood as the
ability of individuals to repeatedly organize in response
to disruptions so that the swarm can maintain or restore to
an acceptable level of performance [17]. Many different
assessment approaches were proposed to quantitatively
assess the resilience of different complex systems [14].
The resilience triangle model proposed by Bruneau et
al. [15] is used to measure the resilience loss (RL) of a
community to an earthquake, which has been extended to
many systems [18,19]. Smaller RL values indicate higher
resilience while larger RL values imply lower resilience.
However, most of the general resilience measures are
regardless of the structure of the system, while the network
structure and the resilience of artificial swarm evolve
with both space and time. Zhang et al. [20] defined a
resilience metric, namely the spatiotemporal congestion
cluster to evaluate the resilience of the transporta-
tion system, in which the evolution of network structure
was taken into consideration. Accordingly, the artificial
swarm needs a new resilience metric to reflect the spa-
tiotemporal propagation of failures and the adaptive reco-
Very process.

In this paper, we study the emergent behavior of the
systems and reveal the mechanism of failure propagation
and self-repair of UAS. The main contributions of our
study are summarized as follows:

(i) A framework for failure analysis of UAS is pro-
posed.

(i) A multi-agent swarm model and the failure model
are developed.

(iii) Resilience is used to analyze the processes of cas-
cading failure and self-repair of UAS.

(iv) The mechanism of failure propagation and self-
repair in the proposed swarm is investigated.

The remainder of the study is organized as follows:
Section 2 introduces the proposed framework for failure
analysis for UAS. The multi-agent swarm model is given
in Section 3. Section 4 conducts the failure mode and
effects analysis (FMEA) for UAS. The failure model
including the failure behavior model and failure strategies
are developed in Section 5. Section 6 proposes the resil-
ience evaluation metric and measurement. Section 7 pro-
vides the simulation studies and discussion. Section 8§
concludes this study.

2. Framework for failure analysis of UAS

In order to understand the effect of possible threats on
UAS, it is necessary to introduce the definition of UAS.
The UAS in this paper refers to those multi-agent systems
with a relatively incapable single agent designed such as
a desired collective behavior emerging from the local
interactions among agents and between the agents and
the environment, taking significant inspiration from nat-
ure [21]. The main characteristics of UAS are the follow-
ing [21,22]:

(i) Autonomous agents;

(i1) A large number of agents;

(iii) Few homogenous groups of agents;

(iv) Local sensing and communication capabilities.

In this paper, a framework for failure analysis for UAS
is given in Fig. 1. The framework is designed to be
applied to examine how much the different failure modes
influence the emergent behavior of UAS. It consists of
four stages: swarm model development stage, FMEA
stage, failure model stage, and resilience evaluation me-
thod stage.

The first stage of this framework is to develop the
swarm model. The swarm model is designed to exhibit
the expected collective behavior. The collective behavior
that emerges from swarm systems can be classified into
four main categories: spatially-organizing behaviors, na-
vigation behaviors, collective decision-making, and other
collective behaviors [22]. These collective behaviors can
be combined to tackle complex real-world applications,
such as surveillance, tracking, construction, and so on. A
typical swarm model consists of three parts: agents, inter-
action, and individual behavior rule. The agent is the
component unit of the swarm systems, such as an UAV, a
robot, or a missile. The interaction describes the interaction
between agents, such as the topology of the communication
network. The behavior rule denotes the behavior that
individuals decide to take after receiving information,
such as velocity matching, flock centering, or obs-
tacle avoidance [1].
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Fig. 1 Framework of emergent behavior analysis for UAS under threats

The second stage is the FMEA stage. There are many
reasons for the failure of UAS, including internal and
external factors. The internal factors are issues within the
self-platform design. Others are the external factors,
mainly caused by malicious attacks or environmental
effects. FMEA is a typical failure analysis technique for
identifying, assessing, and eliminating potential failure
modes in a wide range of industries [23]. It is used to ana-
lyze the failure mode of the single machine in UAS to
find the critical failure modes. This stage lays the founda-
tion for the subsequent failure model development stage.

The third stage is the failure model development stage,
including the failure behavior model and failure strate-
gies. The critical failure modes obtained from the FMEA
stage have a great influence on collective behavior. The
failure behavior model is built according to these critical
failure modes, which defines the behavior of the failed
agents. Then, simulate the behaviors of these failed
agents in the simulation to observe the evolution of UAS.
The failure strategies are designed to simulate the scope
and location of the failed agents in UAS. An UAS is
often regarded as a network by taking the agents as nodes
and the interactions among them as links [9,24,25]. Thus,

a network-based failure strategy is expected to help us to
grasp the big picture of the whole system. Albert et
al. [26] found the failure of highly connected nodes in a
scale-free network can cause more significant damage to
the topology than those less connected ones. After that, a
series of studies about failure strategies on networks
including static networks and temporal networks emerg-
ed [26-28]. The metrics to identify the significance of the
nodes can be degree, closeness, betweenness, etc. [29].
The fourth stage is the system resilience evaluation
method stage, including system performance metric con-
struction and resilience measurement development. The
emergent behavior of the swarm could be different be-
fore and after a part of agents failed. In this step, accord-
ing to the expected collective behavior, the correspond-
ing performance metrics are primarily developed to mea-
sure system performance. For instance, the order parameter
which is represented by the average normalized velocity
is proposed to measure the ordered direction of swarm-
ing [2]. With the failures of agents, the system perform-
ance could fluctuate before and after the failures. Resili-
ence measurement should give a quantitative method to
capture the fluctuation. In a word, this step demands sys-
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tem administrators construct system performance metrics
based on the expected collective behavior and develop re-
silience measurements according to their concerned sys-
tem’s capabilities, such as absorption, adaption, or resto-
ration.

3. Multi-agent swarm model

According to the first stage of the framework in Section
2, the swarm model is designed to exhibit the expected
collective behavior. In this section, we build a swarm
model for flocking which can be classified as having a
navigation behavior among the four categories of group
behavior. The expected swarm behavior in this swarm
model is the cohesive and ordered motion of a group of
individuals.

Consider a swarm of N agents moving about in a two-
dimensional plane with constant speed v, at initial random
directions. In each time step At, the individual determines
its desired direction d;(¢+ At) by assessing the direction
and position of neighbors,

Each agent has three individual behaviors, namely
avoidance, alignment, and attraction. Obstacle avoidance
has the highest priority. They attempt to maintain personal
space with a radius of r, to avoid collisions with other
individuals,

x; () —x;(1)
d;(t+Ar)=— —_—
i(t+Ar) Z x, 0 —x,0)

JENi ()]
JE

(1

where x;(7) represents the position vector of individual j,
and

No () = {jl]x: (0= x, (0)] < 7).

If there is no neighbor in this personal space, the indi-
vidual will tend to become attracted towards and aligned
with neighbors within a local interaction range r.
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where v/(?) is the direction vector of individual j, and
Nie(0) = {jiro < |xi () = x, (0] < 7).
Finally, we convert d; (1 + Af) to the unit vector
d.(t+A0) =d,(t+Ap) ] |d (1 + Ap)).

4. FMEA

Winfield et al. [30] explored the fault tolerance of a wire-
less-connected robot swarm through FMEA. The FMEA
hazard identified are motor failure, communications fai-

lure, avoidance sensor(s) failure, beacon sensor failure,
control systems failure, and all systems failure. Accor-
ding to the proposed swarm model, internal and external
disturbance acting on a single machine manifest the fai-
lure of the subsystems of UAS, namely communication
subsystem, sensor subsystem, motor subsystem, control
subsystem, etc. We identify the following failure modes,
namely, F1, communications failure, F2, avoidance sensor
failure, F3, motor subsystem failure, F4, control systems
failure, and F5, all subsystems failure.

The effect of each failure mode in the proposed swarm
model is similar to the results of [30]. The detailed
description is given as follows:

(1) F1: communications failure

Failure of communication subsystem in an individual
of UAS means no interaction with others. It becomes
physically lost to the swarm. For the swarm, agents with
communication failure are simply moving obstacles and
have essentially little effect on the collective behaviors.

(i1) F2: avoidance sensor failure

The effect of the avoidance sensor failure on an indi-
vidual is that the agent may collide with others or obsta-
cles. However, the other agents in the UAS with normal
avoidance sensors can avoid it. Thus, when the number of
agents with F2 is small, the overall collective behaviors
remain unaffected.

(iii) F3: motor subsystem failure

Failure of the motor subsystem in an individual, or a
small number of agents means they’re not moving. How-
ever, given that their communication subsystem and other
subsystems continue to function, they are still connected
to the swarm. They continue to affect collective behaviors.
Swarm may be anchored by stationary agents with F3
which would either impend or at worst prevent the swarm
from moving [30]. Thus, the F3 motor subsystem failure
is a critical failure mode since one or a small number of
agents with F3 could seriously damage our expected
“cohesive and ordered motion of a group of individuals”
behavior at the swarm level.

(iv) F4: control systems failure

Each agent has three individual behaviors, namely
avoidance, alignment, and attraction. Failure of control
systems in one or a small number of agents means the
agent cannot behave correctly in response to the commu-
nications or sensors. The most likely consequence is that
they get lost in the environment. In this case, the effect of
F4 is transient and can be ignored. The worst case is that
agents with F4 are stationary or turning on the spot [30],
which has the same effect with F3 motor subsystem fail-
ure.

(v) F5: all systems failure

Failures of all systems are the simplest case in which
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the agents with F5 remain stationary and inactive. In this
case, the failed agents are simply static obstacles for the
swarm. Thus, although it is the most serious failure mode
for a single machine, it is the least serious failure mode
for the swarm.

To summarize the above, F3 motor failure causes more
serious damage on our expected collective behaviors and
it is the most critical failure mode.

5. Failure model
5.1 Failure behavior model

According to the FMEA of Section 4, the failure mode,
F3 motor failure, is the critical failure mode. Thus, we
build the failure behavior model for agents with failure
mode F3. F3 motor failure of agents causes the failed
agents stationary but remain in the communication network
of the swarm. In fact, except for motor failure, this indi-
vidual behavior can also be caused by actuators fai-
lure, energy shortage, or any attack that makes individuals
unable to move without damaging the communication
system. Assume all agents in UAS are well-working at
the beginning, and there exists time #, = 0 in the duration
of the mission. The attributes of this behavior are as fol-
lows:

(i) Agenti behaves normally before #, and updates its
state according to the right update rule.

(i1) Agenti stops changing its state for all = ¢, i.e.,
x; (1) =x;(t,) forallt = ¢,.

(ii1) Agent i conveys the same state to each neighbor.

In [31], LeBlanc et al. defined this failure behavior as
crash fault. In the following subsections, we will refer to
this failure behavior as crash fault.

5.2 Failure strategies

To simulate the scope and location of the failed agents in
the swarm, two strategies which are the commonest fai-
lure strategies in complex network are investigated, nam-
ely random failure and malicious failure. The metric chosen
to identify the significance of the nodes in this paper is
degree. Considering the time-varying of the swarm topol-
ogy, the temporal degree failure [32] is selected to model
the malicious failure. Let P denote the percentage of the
failed agents, then the number of the failed agents is
denoted by NxP.

(1) Random failure

In a random failure, the initially failed agents are ran-
domly chosen with the proportion P, ignoring the network
topology and any other properties.

Random failure can mimic failures due to platform
defects and external environmental factors.

(ii) Temporal degree failure

The temporal degree failure is a type of malicious fai-
lure strategy. This strategy is designed as a comparison of

the random failure to investigate the effect of network
topology. We order the agents according to their temporal
degree decreasingly and then select the top NxP agents as
failure agents. According to the dynamical temporal
swarm network, the agent’s degree is the number of its
neighbors who directly interact with it at time ¢, which is
a temporal variable.

Temporal degree failure can mimic failures due to
malicious attacks by the enemy with all the information
about the topology.

6. Resilience evaluation method
6.1 System performance metric

The system performance metric is proposed to measure
the system’s ability to exhibit collective behaviors. In this
view, according to the proposed swarm model in Section
3, the expected swarm behaviors are cohesive and ord-
ered motions of a group of individuals. Taking the failed
agents with the crash fault into the swarm model, the
emergent behavior changed: a part of normal agents or
the whole group is anchored by the failed agents, as
shown in Fig. 2. The reason is that the wrong information
from the failed agents propagated to the rest of the swarm.
While normal agents make decisions about their motion
next updating according to their received information,
including the wrong information from the failed agents. A
large amount of wrong information makes normal agents
anchored around the failed agents and cannot be able to
follow the motion of the swarm. Fig. 2 shows the swarm
behaviors with different percentages of failed agents. The
red, black, and blue particles refer to failed agents with
crash fault, anchored agents, and normal agents respec-
tively. When the percentage of failed agents exceeds 50%,
the whole group is anchored and cannot move. The number
of anchored agents is an important metric to measure the
collapse of the system, and we call these anchored agents
cascading failed agents.

A
,
ke

(b) P=20% (c) P=30%

v

(d) P=40% (e) P=50% (f) P=60%

Fig. 2 Swarm behavior with different percentages of failed agents
P for the system comprising 100 agents
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According to the above swarm behavior, we divide the
agents into three types: failed agents, cascading failed ag-
ents, and normal agents. Fig. 3 gives the schematic diagram
of three types of agents in swarm systems. The failed
agents keep their state unchanged, and the cascading fai-
led individual is only temporarily controlled by the failed
agents, which can be recovered by interacting with other
normal agents. The failed agents and cascading failed
agents are included in abnormal agents. The number of
cascading failed agents is an important metric to measure
the performance of the system.

Cascading
failed agents

" Crash agents

~~.__ Abnormal agents _‘,—"’

Fig.3 Schematic diagram of three types of agents in swarm systems

6.2 Resilience measurement

The dynamic interaction network of swarms can be
described by G, (V (#),&,(t)) with node set V (r) and edge
set g, (1), where &, (¢) is as follows:

&0 = (G, )1 x 0~ x, 0 < 1) @)

One or a small number of agents with crash fault in the
UAS can anchor a part of normal agents, which may re-
sult in the fragmentation of the whole group into multiple
clusters. The clusters with the failed agent are called fai-
lure clusters. From the perspective of the network, the
cascading failed agents refer to the agents in the same
clusters with at least one failed agent and have a small
displacement.

Specifically, the failure cluster is built with the abnormal
agents (the failed agents and the cascading failed agents)
as nodes, the interactions between these abnormal agents
as links. In light of the evolution of abnormal agents in
the two-dimensional physical space over time, we regard
the failure clusters as a three-dimensional spatiotemporal
network cluster.

During an observation period, the number of abnormal
nodes in each failure cluster at a snapshot of the temporal
layer ¢, N, (t), varies with time, as shown in Fig. 4. Thus,
N, (1) can be regarded as the cross-section area of the fai-
lure cluster at time ¢, which can reflect the cascading pro-

cess of failure and the recovery process. In this paper, we
take the number of agents in failure clusters, N, (f), as the
performance metric.

t t+1 42 t+3

Fig. 4 Evolution of failure cluster

Absorption, adaption, and restoration are the three
main perspectives of resilience. Absorption is the degree
to which a system is able to absorb shocks posed by a dis-
ruption. Adaption is the degree to which a system is able
to adapt itself temporarily to new disrupted conditions.
Restoration is the degree to which a system is able to res-
tore itself if adaptive capacity is not effective respec-
tively. We analyze the time evolution of N, (¥) to evaluate
the resilience performance of the UAS. In the beginning,
all individuals coordinate as a cohesive team to move. At
time #,, some of them fail and affect neighboring indivi-
duals through the dynamic swarm network in a cascading
process. Influenced by the failed agents, some normal ag-
ents may be anchored and become cascading failure age-
nts, that is, N, (¢) is getting to increase until time #,. This
phase reflects the absorptive capacity of the UAS. It is
worth noting that the cascading failed agents are not static,
instead, they move around the failed agents. Subsequently,
with the moving of the cascading failure agents, they
gather. Then, among the neighbors of some of them, the
proportion of failed individuals is getting lower, which
will help the agents get rid of the influence of failed
agents. And N, (¢) starts to decrease. Suppose that at the
time ¢,, the swarm recovers to a new stable performance
level. This is the recovery process triggered by the self-
organization of the individual. Because the swarm recovery
phase starts quickly after the failure, the adaptation phase
is short.

Based on the resilience triangle assessment app-
roach [15], the timespan between ¢, and ¢,, which is the
lifetime of this failure cluster, is defined as the resilience
period (as shown in Fig. 5). The cluster size, which is the
total number of nodes (individuals) in the failure cluster
during its lifetime, can be regarded as RL in the dynamic
swarm network.

RL = j N, (1)dr &
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Fig. 5 Illustration of the evolution of a failure cluster

This measurement takes all three capacities, absorption,
adaption, and restoration, into consideration.
It is normalized to the following form:

. f[l' N, (H)de

K= Na-n ®
where N represents the total number of individuals.

RL is a normalized value between 0 and 1. The closer
it is to 1, the smaller the resilience is. RL not only cha-
racterizes the cascading effect of failed agents in the spatial
dimension but also includes the duration of cascading
failed individuals. Thus, the larger the cluster size is, the
less resilient the swarm becomes.

7. Simulation studies and discussion
7.1 Parameter settings

Consider a swarm of N agents moving about in a two-
dimensional plane with constant speed vy = 157!
random directions. They start in a random position, in
which each individual can detect at least one other indi-
vidual. The zones of repulsion and interaction are centered
on the individual, with radii of 1 and 6, respectively. Indi-
vidual motion is subject to random disturbance, which
follows a uniform distribution with the interval
[-9/2,—9/2], where ¥ = 0.1. The max turning angle of

individuals is 9,,,,Af, where 9, = 2.

Ten randomly initialized configurations are created for
each system comprising 10, 50, 100, 200, 500 indivi-
duals respectively. Assume the failed agents are randomly
distributed and the failure occurs at time 10004z The
simulations are run 200 times, with different percentages
of failed individuals. The failure cluster N, (¢) is mea-
sured at t,4t — 504¢, where the final time step, #,=3 000.
Simulation parameters are listed in Table 1.

at initial

Table 1 Simulation parameters

Parameter Symbol Value
Speed/(m/s) Vo 1
Zone of interaction/m T 6
Zone of repulsion/m o 1
The max turning angle/(rad/s) Dmax 2
Time step/s At 0.2
10, 50, 100
Number of individual N SR
umber of individuals 200, 500
Failure proportion P 0—1

7.2 Resilience with different percentages of
failed agents

It is shown in Fig. 6 that the snapshots of the simulated
failure spread from the failed agents to the whole system
and are finally self-repaired to a new stable state. The
blue, red, and black particles represent normal agents,
failed agents, and the cascading failed agents respec-
tively. Fig. 6. (b)—Fig. 6(d) show the process of cascading
failure and Fig. 6. (e)—Fig. 6(f) show the self-repair pro-
cess. It can also be seen that the agents with a spatial
location closer to the failed agents firstly begin to be cas-
cading affected. The failure begins to spread with time
until it reaches the system’s boundary. Then, the reco-
very process is started. The agents with spatial location
farther from the initially failed agents firstly begin to
recover and lead more agents away from the crash fault
agents.

$ & &

(a) =900 At (b) =1 000 At

® = ¥

P
PEEN

(c) =1 020 A

(d) =1 100 At (e) =1 200 At (f) =1 400 At

Fig. 6 Spatiotemporal evolution of cascading failure in the swarm
system with 100 agents and 10% failed agents

Fig. 7 shows the evolution of N, (¢) over time. When
some agents fail (# = 1 000A¢), a cascading process takes
place, the number of abnormal agents N, (¢) increases ra-
pidly to a max value, implying a growing number of
agents are anchored by the failed agents. Then, the reco-
very process occurs and N, (¢) decreases. This is because
some agents regroup and get rid of the anchoring of failed
individuals. The recovery duration increases as the percen-
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tage of failed agents increases, while the new steady-state
declines. However, when the percentage of failed agents
P = 50%, N, (t) is unable to change after reaching the
maximum value of 100, which means the whole swarm is
anchored by the failed agents and unable to recover.

0
-10
20
-30

_ —40

= 50

-
-70
-80
—90

-100

— 00— p=10%; —>—: p=20%; —<>— : p=30%);
1 p=40%; —O0— : p=50%.

Fig. 7 Evolution of N; (f) with different P for the system comprising
100 individuals

Fig. 8 reveals that resilience loss RL increases as the
percentage of failed agents increases. The solid blue line
represents the RL of the swarm calculated by (5) based
on the simulation data. RL is monotonically increasing
with the increase in the percentage of failed agents P.
When P exceeds 50%, RL is approximately 1, that is,
the whole swarm collapses. Hence, P = 50% can be taken
as the tipping point of the collapse of the swarm with 100

t,
agents. Besides, the dotted red line y:I (PxN)dt/N
1

(t,— ty) = P represents the resilience loss vglithout taking
cascading failures into account. The area between the
solid blue line and the dotted red line represents the dif-
ference of RL whether considering the cascading failures.
When P<10%, the effect of cascading failures is relatively
small. It may be explained by the “many wrongs principle”
which holds that individual orientation error is suppressed
by group cohesion [33]. When P > 20%, the effect of cas-
cading failures experiences a rapid increase. When P=0.5,
the whole swarm fails.
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Fig.8 RL with different P for the system comprising 100 individuals
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In order to observe the distribution of the number
of cascading failed agents N., we calculate the pro-
portion of cascading failed agents in 200 experiments,
I=N./(1-P)N. As shown in Fig. 9, the distribution of
[ is not uniform and presents two levels. The vast majority
of [ fall in the interval of /> 0.9 and [<0.5. When
P <10%, the percentage of /=0 is approximately 1,
implying there is almost no cascading failed agents. With
P increasing, the percentage of /=1 increases. When
P=50%, [>0.9 is found in 96 of 100 experiments,
implying that the statistical probability that the swarm
system collapse is approximately 94%.
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Fig. 9 Distribution of ! with different P for 1000 experiments
where [=N. /| 1-P)N

7.3 Resilience with different swarm sizes

The simulation results in Fig. 10 reveal the influence of
failed agents on swarms of different sizes. The ratio
—N;(#)/N is used to measure the influence of different
swarm sizes instead of N, (¢). It can be seen that the
swarm size can affect the lowest performance level, the
duration of self-repair, and the final steady-state. When P <
30%, swarms with 10, 50, 100, 200, 500 individuals all
experienced a significant recovery process. The recovery
duration increases as the size of the swarm increases.
Meanwhile, the new steady-state declines as the size of
the swarm increases. The situation changes when P =
40%. Swarms of large sizes, such as 200 agents and 500
agents, reach a higher new steady-state than that of
swarms of small sizes. Nevertheless, all swarms fail with
0.5 failed agents. It also can be seen that the propagation
velocity is independent of the swarm size. However, the
swarm size can affect the lowest performance level, the
duration of self-repair, and the final steady-state.

Fig. 11 shows the resilience loss RL calculated by (6).
When P < 30%, RL increases as the size of the swarm
increases. The main reason is that the larger the swarm is,
the longer the recovery time is needed, and the lower the
new steady state is. However, when P > 30%, RL of the
small swarm increases faster than that of the large swarm.
From the perspective of resilience, the swarm with a
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small size has the advantage in the case of a small per-
centage of failure individuals (P < 30% ), while the
swarm with a large size is better in the case of the large
percentage of failure individuals. However, when P
reaches 60%, RL of all the swarms of different sizes is

(a) P=10%

approximately 1. Combined with the analysis in Subsec-
tion 2.2, we can conclude that the tipping point of collapse
of the swarm (P = 50%) is related to the interaction
mechanism of the swarm model and independent of
swarm size.

(b) P=20%
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Fig. 10 Evolution of —N; ()/ N with different P for the systems comprising 10, 50, 100, 200, 500 individuals

7.4 Resilience with different failure strategies

The proportion of abnormal agents N, (¢)/N under random
failure and temporal degree failure with various failure
proportions P has been investigated. Normally, no matter
what kind of failure strategies, the final state of N, (£)/N
increases as the failure proportion Pgrows, and the duration
of recovery increases as P increases (Fig. 12). The final
steady-state under temporal degree failure is lower than
that under the random failure with fixed failure proportion

P. While the recovery process starts earlier under degree
failure. Fig. 13 shows the comparison of RL under the
two failure strategies, which indicates that the temporal
degree failure leads to a greater RL than random failure
under different failure proportions.

The results in Fig. 12 and Fig. 13 suggest that, in com-
parison with the random failures, the temporal degree
failure can break down the swarm system more effi-
ciently. The reason is that the agents with high degrees
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are able to influence more agents. An agent with a high

degree means that it can interact with more neighbor

agents. Once it fails, the wrong information will be 0.2}

quickly transmitted through its neighbor agents, so the . 04}

temporal failure performs much harmfully to the resi- =

lience of swarm systems than the random failure. = 04y
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In this study, we propose a framework to describe the
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method of failure analysis of UAS. A multi-agent swarm
model and the failure model are built. In addition, a defi-
nition of UAS resilience based on the spatiotemporal evo-
lution of the failure cluster is proposed. Based on the pro-
posed model and method, the internal mechanism of failure
propagation and self-reparation of UAS is investigated.

As can be seen from the simulation results, the larger
the percentage of failed agents, the longer the recovery
duration. While when the percentage of failed agents is
close to 50%, the system is no longer able to recover.
Note that, all the swarms of different sizes have the same
tipping point. Once the proportion of failed agents
exceeds this point, the swarm system will collapse com-
pletely without the ability to recover. These findings can
be used to predict the failure of UAS and to design reco-
very measures in a stereo way.

In addition, our findings also show the swarm size can
affect the lowest performance level, the duration of self-
repair, and the final performance level. The larger the
swarm, the greater the RL when the percentage of failed
individuals is below 30%. The reason is that when P <30%
the swarm with a large size recovers to a lower steady-
state and needs a longer recovery duration than a smaller
swarm. However, larger swarms may recover to a higher
steady-state than smaller swarms when the percentage of
failed agents exceeds 30%. For example, in our simula-
tion, the new steady state of the large swarm such as 200
or 500 agents is higher than smaller swarms. The above
findings reveal that there may be an optimal number of
individuals when deploying UAS.

Moreover, it is found that the swarm system is more
sensitive to temporal degree failure and agents with a
high degree are able to influence more other agents. This
finding can be helpful for developing more efficient failure
or protection strategies for UAS.

For future research, we plan to improve the swarm
models to simulate newly designed collective behaviors
based on realistic missions. In addition, failure analysis of
UAS under malicious manipulation such as communica-
tion manipulation is an interesting topic.

Data availability statement

The data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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