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Adaptive spectral affinity propagation clustering
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Abstract: Affinity propagation (AP) is a classic clustering algo-
rithm. To improve the classical AP algorithms, we propose a
clustering algorithm namely, adaptive spectral affinity propagation
(AdaSAP). In particular, we discuss why AP is not suitable for
non-spherical clusters and present a unifying view of nine fam-
ous arbitrary-shaped clustering algorithms. We propose a strategy
of extending AP in non-spherical clustering by constructing cate-
gory similarity of objects. Leveraging the monotonicity that the
clusters’ number increases with the self-similarity in AP, we pro-
pose a model selection procedure that can determine the number
of clusters adaptively. For the parameters introduced by extending
AP in non-spherical clustering, we provide a grid-evolving stra-
tegy to optimize them automatically. The effectiveness of Ada-
SAP is evaluated by experiments on both synthetic datasets and
real-world clustering tasks. Experimental results validate that the
superiority of AdaSAP over benchmark algorithms like the classical
AP and spectral clustering algorithms.
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1. Introduction

Much data has been collected with the rapid development
of sensing and storage technology in the past years. How
to extract knowledge from these data is an essential topic.
To understand these data, we usually organize them into
meaningful groups. Clustering is a technique that makes
objects inside a cluster more similar than those between
clusters [1]. As an efficient unsupervised learning method,
clustering has been used in numerous fields, e.g., image
segmentation, face recognition, video summary, text min-
ing, web analysis, genome analysis, social community
detection, and marketing segmentation [2,3].

Different kinds of clustering algorithms [4,5] have
been proposed. These algorithms can be divided into two
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categories: spherical clustering and non-spherical cluster-
ing algorithms, according to the shape of the distribution
of data within a cluster. Spherical clustering means that
these data are ball shaped in space in a cluster. Non-
spherical clustering means the shape of data within the
cluster is uncertain. If a clustering algorithm can handle
both spherical and non-spherical distribution data, it is
called an arbitrary-shape clustering algorithm. Affinity
propagation (AP) clustering is an extremely successful
one [6] as a spherical clustering algorithm. AP is also
suitable for both structured and unstructured clustering
data. It takes a collection of pairwise similarities as input.
Unlike traditional exemplar-based algorithms, for exam-
ple, the k-centers algorithm [7], the AP algorithm treats
all objects as potential exemplars and usually results in a
better clustering result [6,8]. Considering the problems
caused by the parameter preference in the AP clustering
algorithm. Li et al. [9] proposed the adjustable preference
AP (APAP) algorithm, which can automatically adjust
the value of each element preference during the iteration
process. For solving the non-spherical cluster problem,
Fan et al. [10] used the density distributions and structures
of data to define an adaptive AP clustering algorithm,
which adopts a nearest neighbor searching strategy. Now
AP clustering has been widely applied in text mining
[11,12], gene expression analysis [13,14], social network
analysis [15,16], etc. Meanwhile, many improved AP
algorithms have been developed, such as the semi-super-
vised AP [17,18], the hierarchical AP [19], the incremental
AP [20], and the fast AP [21,22].

Though AP has achieved remarkable success, it also
suffers from some bottleneck problems in practical appli-
cations:

(i) AP cannot be used to discover clusters with non-
spherical shapes, which limits the applications of AP in
many real-world clustering tasks, such as image segmen-
tation, location-based search, graph partition, and com-
munity detection. The shapes of underlying clusters in
these tasks are often much more complicated than what
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AP can deal with.

(i1) It is difficult for users to control the clusters’ num-
ber. A parameter called preference p needs to be specified
by users, which controls the clusters” number. The only
prior knowledge of preference p is that the clusters’ nu-
mber increases the value of p. However, users usually
need to tune p many times to get the desired number of
clusters. On the other hand, p cannot be determined auto-
matically. In our opinion, p should be able to vary its
value automatically and stop at a suitable value. The clus-
tering result can be better.

(ii1) Our extension of AP from the above two perspec-
tives may introduce other parameters. The proposed AP
clustering method in this paper should be able to find the
appropriate parameter values adaptive.

This paper proposes a clustering algorithm named adap-
tive spectral AP (AdaSAP) to improve the classical AP
clustering algorithms from the following aspects:

(i) We study how to extend AP clustering in the non-
spherical clustering problem.

(i1) Leverage the monotonicity of preference p, which
is able to determine the number of clusters automatically.
The clusters’ number (or the proper value of p) found by
our procedure can well reflect the structure of the studied
dataset.

(iii) An evolutionary process is proposed, which can
tune the new parameters AdaSAP adaptively.

This paper also has two main theoretical contributions.
First, it provides an overview of existing famous arbi-
trary-shaped clustering algorithms and points out the
essential of arbitrary-shaped clustering it; second, it pro-
vides a general strategy to determine the clusters’ number,
which is a long-standing problem in the clustering field.
From the practical perspective, this paper improves the
state-of-the-art AP clustering algorithms, and many prac-
tical clustering tasks can benefit from the proposed
AdaSAP algorithm.

The rest of the paper is organized as follows: Section 2
briefly describes the classical AP clustering algorithm
and Laplacian eigenmaps (LE), and provides a unifying
view of the existing famous arbitrary-shaped clustering
algorithms. In Section 3, we propose the AdaSAP algori-
thm. In Section 4, we discuss how to determine the num-
ber of clusters automatically in AdaSAP. In Section 5, ex-
perimental results are presented. In Section 6, we conclude
our work and future work.

2. Related work

This section presents foundations and related work for
further discussions. We also present a unifying view of
the existing arbitrary-shaped clustering algorithms.

2.1 AP clustering

AP is an exemplar-based clustering algorithm. The algo-
rithm’s objective is to maximize the sum of all the simi-
larities of the cluster’s inner objects and the cluster’s
exemplar. The exemplar set is the microcosm of the
entire dataset [23]. How to find good exemplars is a
formidable combination’s optimization problem.

The AP algorithm considers all data points as potential
exemplars initially. It treats each data point as a network
node. Two kinds of messages, responsibilities and avail-
abilities, pass on each edge of the graph.

There are N ={x;,x,,---,x,} sample points clustering,
and point x; and point x; are two of the sample points.
Responsibility 7(i,j) indicates how strong point x; wants to
choose candidate exemplar x; as its exemplar. According
to [6], r(i,j) is computed as

r(i, j) «<s@, j)— max {a(i, j) + 5@, ),
i,j,j'E{l,Z,“',n}. (1)

Availability « (i, j) means how well-suited it is for obje-
ct x; to choose object x; as its exemplar. It is computed as

a(i, j) — min {0,r(j, )+ > max{0,r(", )i,

[REIN]

i’j’j’6{192"",n}' (2)

According to (1) and (2), the responsibilitiy and avail-
ability values are continuously updated through an itera-
tive process until convergence. The clustering result e =
(é1,8,-++,8,) 1s

éi :argmax {a(l, ]) + r(i9 ,])}7
J

i;j’e{l»Q"""n}' (3)

2.2 LEs

The generic problem of manifold learning is as follows:
For a set {x;,x,,--*,x,} of n points in X’ in dimension /,
the goal of manifold learning is to find the intrinsic
dimension m of the manifold M. Then a set of points
{yi,2,--+ .y} in X" (m <) can represent them well in
term of the local relationships.

In order to preserve local relationships between points,
LEs first construct an adjacency graph with weights
G=(V,E,W). G represents the completely connected
graph. V corresponds to objects X is the set of points. E
is the set of edges, the element ¢, is the edge of objects i
andj. And W is the set of weights on the edges, the
weight of the edge e; is w;, which is equivalent to (or
increases with) s;. And then map the graph G into a low-
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dimensional manifold [24]. Many methods have been
proposed to construct graph G. They guarantee that the
closer the two points are, the greater their edge weight is.

When mapping G to a low-dimension space, we need
to make the connection points as close as possible.
Y =[y,¥2,--+,y.]" is the low-dimensional graph repre-
sentation. In this process, we need to minimize the objective
function with appropriate constraints.

min Z W=y’ wi.
i

By derivation and transformation [24], we need to mini-
mize

Eznyi—ymzwuztdYTLY)

ij

where y; = [y!,y?,-+,y"] is the m-dimensional represen-
tation of the ith vertex. L = D — W is defined as the Lapla-
cian matrix. Furthermore, it is reduced to find

argmin tr(Y'LY)
st.Y'LY =1

2.3 A unifying view of the existing arbitrary-shaped
clustering algorithms

Particularly for unstructured data, Belkin et al. thought
those arbitrary-shaped clusters cannot be separated [24].
They discussed the intrinsic consistency of spectral em-
bedding methods and kernel principal component analysis
in 2004 [25]. Their work bridges three main fields, which
are spectral clustering, kernel methods, and nonlinear
dimension reduction together. Fig. 1 presents the relation-
ships between the five studied algorithms.

Nonlinear dimensionality
reduction

[24]
Spectral
clustering Arbitrary-shaped
clustering
[26]
Kernel

K-means

Fig.1 Relationships among the five studied algorithms

Another important category of arbitrary-shaped cluster-
ing algorithm is a density-based one. We discuss the

649

mathematical similarity of three typical density-based
clustering algorithms as follows:

First, densinty-based spatial clustering of applications
with noise (DBSCAN) [27] describes the density based
on the data point neighborhood. To find arbitrary-shaped
clusters, DBSCAN uses the iterative method to cluster.
Mean-shift was proposed in 1975 [28] for non-parametric
density gradient estimation. Then Cheng applied mean-
shift on clustering [29] in 1995. Comaniciu et al. [30]
applied mean-shift as a clustering method, and the work
makes the method well-known.

Density peaks clustering (DPC) is a recently proposed
density-based clustering algorithm published in Science
in 2014 [31]. At first, it finds some particular objects
called density peaks. It then assigns each remaining
object to a density peak along a density gradient descent
direction. A density peak in DPC is the object with the
highest density in a relatively large scope. Such an object
is called a density peak. Two indicators are the local
density ¢ and the minimum distance J.

We know that ¢ in DPC equals |N,(x;)] in DBSCAN.
In addition, when we use the kernel function to estimate o
of an object, the indicator ¢ is in fact the density f{x) in
mean-shift [32]. That is, the three definitions can be alter-
natively used in the three density-based arbitrary-clustering
algorithms. Based on the estimated density of an object,
DBSCAN defines a relationship of two objects as density-
connected, which can be explained from our unifying
view that, if two objects as density-connected, then cate-
gory similarity s’ (i, j) = 1; otherwise, s’ (i, j) = 0. In mean-
shiftand DPC, an object i is assigned to its nearest neighbor
with even higher density. If two points have the same
ending point (or density maximum point),
s'(i,j) = 1; otherwise, s’ (i,j) =0. Therefore, the main
difference between DBSCAN with mean-shift and DPC
lies in the label propagation manner. From the perspective
of density estimation and category similarity construction,
they are essentially very similar. Table 1 compares the
three density-based arbitrary clustering algorithms, where
¢ 1s a similarity threshold (or cutoff distance), #(-) can be
an activation function or a kernel function.

local

Table 1 Comparisons of three density-based arbitrary clustering
algorithms
Method Density estimator s'(Z, =1
DBSCAN Z;: 1(sij = &) Density-connected
Mean-shift ZJ: 1(sij = &) Same ending point
DPC Z/: 1(sij = &) Same density peak
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The last arbitrary-shaped clustering algorithm studied
in this section is the Chameleon algorithm, which is an
agglomerative hierarchical clustering algorithm using dy-
namic modeling [33]. It consists of three phases: (i) using
K-nearest neighbors to generate a sparse adjacency graph
G’ according to the similarity matrix .S; (i) dividing the
sparse adjacencygraph into many sub-graphs by the gra-
ph partitioning algorithm, a sub-graph can be seen as an
initial sub-cluster in agglomerative clustering; (iii) re-
combining sub-clusters agglomerative to generate the dep-
rogram. Chameleon is a heuristic clustering algorithm, so
it is difficult to reason the mathematical equivalence of
Chameleon with other arbitrary-shaped clustering algo-
rithms. Even though the mechanism behind Chameleon is
still strictly with our unifying view, assume that C;, C;,
and C, are three sub-graphs at the leaf level. In the proce-
dure of agglomeration, C; is first combined with C;, and
then the three sub-clusters are merged together. From the
viewpoint of the category similarity, the dynamic modeling
process in Chameleon is, in fact, a procedure of category
similarity construction, while the category similarity of
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two objects is also determined by the local (or key) feature
similarity.

Fig. 2 summarizes all the above discussions. It can be
known that kernel principle component analysis (PCA),
LE, locally linear embedding (LLE), kernel K-means [34],
and spectral clustering [35] are equivalent from the math-
ematics perspective, which were presented by [24—26].
DBSCAN, mean-shift, and DPC are consistent both in
terms of density estimation and label propagation. The
only difference lies in the label propagation manner. Such
consistency has not been discussed ever before. This
presents the three on the same ground. From an even high-
er level, though some algorithms are proposed as heuristic
clustering algorithms, it is difficult to get the consistency
of these algorithms with others. We can still find two key
principles: (i) in whichever algorithm, a category similarity
matrix S¢ is constructed either explicitly or implicitly;
(i1) larger feature similarities s;; play a significant role du-
ring the construction of §¢, which means that the distant
similarity information is not necessary for arbitrary-
shaped clustering.

Nonspherical clustering

algorithms

'

Procedure consistency

|

Mathematical equivalence

Procedure consistency
:

Mathematical
equivalence
& [

| | | o
|’@} dﬁ Qoo @\ S "\‘}\ & O ‘%Q\ @] @Q)\)@
P S S S IO, S & L
& \f{» L& E P & &S 3 & 3 »
%’QCF’ \\Q &06 & ‘@'& %Qa?\ Q @@ C?‘

Nonlinear dimensionality
reduction

Centroid-based

F'_/

Density-based Linkage-based

Fig. 2 Hierarchy of nine studied algorithms

Based on the unifying view of arbitrary-shaped clus-
tering algorithms, a general framework of arbitrary-
shaped clustering is proposed in Fig. 3. All the studied
nine arbitrary-shaped clustering algorithms can be well
explained by the framework. Spectral clustering for un-
structured data starts with feature similarity matrix §
which represents the similarity matrix which also be
called affinity matrix, where s;; is the similarity between
x; and x;. A popular similarity measure is computed by
negative distances of objects as follows: s;; = (max(D)—
d;;)/(max(D) —min(D)). kernel K -means mapping col-
lected data X to X' by kernels if we select proper kernels,
the mapping in kernel K-means is equivalent to that in
the spectral method. Density-based clustering algorithms
first compute the density of each object by its neighbor-
hood, which is essentially an operation on sparse graph

G', as G' reflects the relationship of neighbor objects.
We usually obtain G' from the complete graph G, usually
using the methods include the K-nearest neighbor (KNN)
or similarity greater than ¢ (¢-NN) as a condition, where
¢ is the minimum value of similarity. Then the three den-
sity-based arbitrary-shaped clustering algorithms imple-
ment label propagation, where two objects having larger
category similarity shares the same cluster label. Cha-
meleon constructs G' according to feature similarity .§
and constructs category similarity matrix S¢ using a
dynamic process. Recently, Wang et al. [36] proposed a
spectral cluster algorithm based on message passing
(MPSC) with a density sensitive similarity measurement.
After that Wang et al. [37] proposed an improved den-
sity-based adaptive p -spectral clustering algorithm. To
the best of our knowledge, this is the first effort that
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adopts label propagation by spectral clustering to extend
AP in arbitrary-shaped clustering.

Structured data Unstrctured data

Collected data X \ 4

Representation

'Distance measure

Distance matrix D

¢ Similarity measure

Feature similarity S

v

Complete graph G

v KNN, e-NN

Sparse graph G’

v Embedding

New representation ¥

+ \ 4

Category similarity S°

Classical algorithms
Label propagation

\ 4

Clustering result &

Fig. 3 A general framework of arbitrary-shaped clustering algo-
rithms

3. Methodology

As a centroid-based clustering algorithm, the classical AP
clustering algorithm can only find spherical clusters. This
section discusses how to extend AP in the discovery of
clusters with complex shapes. Firstly, a toy example illus-
trates this paper’s core idea; then we point out the essen-
tials of arbitrary-shaped clustering.

After that, we propose an algorithm named arbitrary-
shaped AP, which combines the spherical clustering with
the AP clustering algorithm based on message passing of
the category label. Furthermore, we also solve the problem
of how to set the parameters in AP clustering. First, we
introduce a method for determining the parameter p of
AP to obtain the better clusters’ number. Second, we use
a parameter grid to optimize the parameters both & (the
number of nearest neighbors) and d (the dimensionality in
the lower dimensions) while constructing the sparse
graph G'.

3.1 Motivation

Fig. 4 is a toy example, which illustrates the motivation
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of this paper. In Fig. 4(a), the 15 points in a two-dimen-
sional space can be divided into two clusters. Points 4
and B are exemplars of the two clusters. Point C should
be assigned to exemplar B since point C is closer to point
B than to point 4, denoted by s(B,C) > s(A,C) if similar-
ities are computed by spatial distance. However, such an
assignment does not take the propagation of the cluster
label into account. Intuitively, we often infer that if (i)
points 4 and D are with the same cluster label and (ii)
points D and E also belong to the same cluster, then
points 4 and £ should have the same cluster label. That is,
whether points 4 and E should be divided into the same
cluster is determined by min (s(A,D),s(D,E)) rather
than s(A, E). According to such inference, point C should
be assigned to exemplar 4 finally, which is accordant
with our intuition.

E o6 c

Do° °% o Eg0°
0 4 00

Ae ° 090 B®

o) o5 D o, 00

0o o) 0 0

Op ©O
(a) Dataset A (b) Dataset B

Fig. 4 Motivation of nearby propagation

In most of the existing literature, the clustering algorithm
is directly implemented on a computed or provided simi-
larity matrix, where the similarities used mainly reflect
the distances of objects in the original feature space.
However, what is desired in clustering is how properly
two objects should be divided into the same cluster. This
measure is called category similarity in this paper. For the
convenience of distinguishing, the original similarity is
called feature similarity. Take Fig. 1(b) for example, the
feature similarity is s(A,C) < s(B,C), while the category
similarity is s°(A,C) > s‘(B,C), if the propagation of the
cluster label is taken into account. It can also be observed
that local feature similarity plays an important part in
computing category similarity. For example, s°(A,C) is
mainly determined by min (s(A,D),s(D,E)) rather than
s(A, E). Therefore, the key of arbitrary-shaped clustering
is to use category similarity instead of feature similarity,
where the category similarity of two objects is constructed
according to local feature similarities of the two objects,
which can reflect not only the closeness of two objects,
but also the connectivity of them. Based on the idea of
category similarity, we extend the classical AP algorithm
with the spectral algorithm.

3.2 Arbitrary-shaped AP clustering

The extension of the classical AP algorithm in arbitrary-



652 Journal of Systems Engineering and Electronics Vol. 33, No. 3, June 2022

shaped clustering is guided by the framework shown in
Fig. 3. In the proposed arbitrary-shaped AP clustering
algorithm, we construct a sparse adjacency graph G’
according to feature similarity matrix §; then we map the
sparse graph into a low dimensional space by LEs; third,
we construct the similarity matrix of objects in new space,
which is category similarity S¢ that reflects both closeness
and connectivity of two objects; last, classical AP is
implemented on S¢ to get a non-spherical clustering result
c. Algorithm 1 presents the proposed spectral affinity
propagation (SAP) clustering algorithm.

Algorithm1 SAP

Input:{x;,x,, -, x,}

Output: ¢ = {c|, ¢, ,¢,)

Steps:

1: Compute feature similarity matrix S;

2: Construct the adjacency graph G" according to S;

3: Choose the weights of the edges between nearby
vertices;

4: Map the weighted graph G’ into a low-dimensional
space;

5: Compute category similarity matrix $¢ in the new
space;

6: Passing messages by (1) and (2) according to S°;

7: Repeat Step 6 till convergence, and get the final
clustering result.

On the one hand, the proposed SAP is an extension of
classical AP in non-spherical clustering. On the other
hand, it can also be seen as an improvement of existing
spectral clustering algorithms by replacing K-means par-
tition with AP partition. A methodology-level significance
of SAP is that category similarity, which is constructed
by larger feature similarities, is essential to arbitrary-
shaped clustering, which can reflect not only the closeness
but also the connectivity of two objects. Based on the
constructed category similarity matrix, most of the sphe-
rical clustering algorithms can be extended to handle
clusters with complex shapes.

3.3 Model selection and parameter optimization

The proposed SAP extends the classical AP in arbitrary-
shaped clustering problems, making AP able to be used to
discover clusters with complex shapes. This section dis-
cusses how to determine the clusters’ number and optimize
the parameters in SAP.

3.3.1 Determining number of clusters

Determining the number of clusters is a long-standing
problem. Essentially, it is a balance of model accuracy
and model complexity. The best balance may be different
for different datasets, which means there is no generic

solution for such kind of problem. In supervised learning,
the balance can be adjusted by model validation. How-
ever, such a validation procedure cannot be implemented
due to a lack of teaching signals in unsupervised problems
like clustering. Because of the difficulty analyzed above,
there is still no convincing method of determining the
number of clusters in current literature. In most cases, the
clusters’ number k is specified by users when we use K-
means and K-medoids.

In AP clustering, the clusters’ number £ is not required
any longer. Alternatively, a parameter called preference p
needs to be specified in advance, which is used as a
shared self-similarity s(i,i) = p. An observation is that
the clusters’ number k increases with the value of p. In
general, preference p is set as the median of the input
similarities [6]. In fact, the influence of p on £ is also
related to the objects’ number N. Therefore, we use p°
(preference coefficient) as an input to avoid the influence
of the objects’ number.

p =mean (S)—p°N. “4)

where § is the normalized similarity matrix, which ranges
from O to 1.

The automatic selection of parameter p¢ in this paper is
motivated by the following common sense: Imagine we
are observing a number of collected data objects
N ={x;,x,,---,x,}. Move the objects from near to far,
and our observations go from clear to increasingly
blurred. We call this going from a fine granularity to a
coarse granularity. Clustering results also vary with
observation distance. The number of clusters varies from
n to 1, where n means each object is treated as a cluster,
and 1 means all the objects are viewed as one cluster.
Though different users may prefer different observation
granularity, the most stable number of clusters reflects the
most probably observed structure of the studied datasets.
Algorithm 2 presents the proposed adptive affinity propa-
gation (AdaAP) algorithm, which can determine the value
of p¢ adaptively.

Algorithm 2 AdaAP

Input: S, a

Output: c ={c;,cs, -+ ,¢,}

Steps:

1: Initialize p° = 0,p=mean(S)—p°N, p;=[-1, Ko =[]

2: Run classical AP on § with preference p;

3: Get clustering result &, k = lunique (é)| P =[P5pe],
K = [Kok];

4: If max K <N, p°=min (P°)—a, p=mean (S) — p°N,
P; =P¢,K, =K, go to Step 2;

5: If min (K) > 1, p° =max (P°) + @, p=mean (S)—p°N,
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P; = P°,K, =K, go to Step 2;
6: (k,I) = mode K, p¢ = mean PI
7: Get final clustering result C with p=mean(s)—P<N

We improve the classical AP clustering to make it able
to capture non-spherical clusters and to determine the
number of clusters adaptively. In the transformed space,
message passing is implemented to identify the exemplars.
Similar to the classical AP algorithm, the computational
complexity is O(N2 ), where N is the number of data
objects. Our method also supports sparse message pass-
ing: if we reduce the number of similarity pairs from N
to M and retain only the key similarity pairs, the comple-
xity of the proposed method is O(M).

In Algorithm 2, o is the step length of p°. We first
decrease p° from a moderate value to a minimum value,
which leads to the maximum number of clusters equal to
N; then increase p° from the moderate value to a maximum
value, which leads to a clustering result with only one
cluster. During this process, k is the most stable k value,
which is obtained by mode(-) operation on K. So k is
viewed as the true number of clusters. P¢ is The mean of
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P(I) is used as the most proper p¢ value for this dataset.
stands for the serial numbers of K=k.

Fig. 5 is a toy example to illustrate how AdaAP deter-
mines the clusters’ number automatically. The synthetic
dataset is shown as Fig. 5(a), which consists of 200 points
from four clusters. According to AdaAP, we change the
value of p¢ from minimum to maximum; the clusters’
number decreases with p©, as shown in Fig. 5(b). Fig. 5(¢c)
is a part of Fig. 5(b). It can be known that the most stable
number of clusters is four, the second stable number of
clusters is two, which means the most suitable number of
clusters for this dataset is four, the second choice of the
clusters’ number is two. It can be known that AdaAP can
find the correct number automatically. The result is very
intuitive.

Algorithm 2 presents how to run AP clustering without
predefined parameters, which can find the most stable num-
ber of clusters automatically. In fact, Algorithm 2 varies
the clusters’ number from 1 to N by changing p¢. If a user
specifies the clusters’ number, Algorithm 2 can also find
the corresponding p° value by a bisection procedure.

7 200 6
K,=2,5=0.33
6 5 K,=3, 5,=0.04
5 g 150 g K=4, 5,=0.54
b7 % 4
3 =
4 *k =) ]
o
3 o) 3
°© S
) 2 £2
ok Z 50 z
1 1
E
0 0 0
0 2 4 6 -0.05 0 0.05 0.10 0.15 0.20 0 0.05 0.10 0.15 0.20
X P pe
(a) Four clusters (b) P¢ values (c) Results of clusters

Fig. 5 AdaAP determining number of clusters

3.3.2 Optimization of parameters

In Algorithm 1, there are two other parameters that need
to be specified by users. Step 2 uses two types of adjacency
graphs constructed by € -neighborhood and KNN sepa-
rately. We need to specify either ¢ or K for constructing
an adjacency graph. In Step 4, we embed the con-structured
adjacency graph into a low-dimensional space. The di-
mension of the new space d needs to be determined by
users. What’s more, the two parameters have a great
impact on the final clustering result. Therefore, we propose
a grid-evolving strategy to select the most suitable param-
eters. Assume that the KNN graph is employed, combine
Algorithms 1 and 2, and we get the final AdaSAP as
shown in Algorithm 3. Algorithm 3 first uses a parameter
grid to generate many parameter pairs and finds the best
parameter pair (k*,d*) by evaluating the clustering result;
then it shrinks the parameter grid toward (k*d*), and

finds a new optimal parameter pair around (k*d*). It
repeats the above procedure until the nearby grid’s margin
is equal to or smaller than 1. Initially, the ranges of £ and
d are set [1,N], and g can be 2, 5, or 10. It can be viewed
as a bisection grid when g=2. 5 controls the extent of
shrinking.

Algorithm 3 AdaSAP

Input: {x;,%, "+ ,X,,}
Output: c = {c,,c5,+*,¢,}
Steps:

1: kmin =

N-1 N-1

_9dmin = 17r= _;

1,8=
8
2: Define gxg parameter grid G with G(,j) =
(kinin + (i = D, dwin + (= 1)y);
3: For each parameter grid, implement Steps 1-5 of
Algorithm 1;
4: Get clustering result by Algorithm 2 on the new
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similarity matrix;
5: Evaluate the g x g clustering results, and get the
parameter pair (k*, d *) with the best clustering
result;
6: Redefine parameter grid G’ with (k*, d*) as grid cen-
ter, Ko = Ky =(Kmax = Kunin) /17 s = i = (@inax = diin) /715
7: Repeat Steps 3—6 till &, —k . <npxgor d, —
d

! <1 g, output the clustering result with optimal
kandd.

4. Computational experiments

We first evaluate the performance of the adaptive spectral
AP clustering algorithms by computational experiments.
Then compared with the classical AP clustering, the
AdaSAP method has at least two advantages: (i) It can
deal with clusters with complex shapes, while the original
AP method can only discover spherical clusters; (ii) The
number of clusters can be determined automatically by
AdaSAP or specified by users. Thus, the experimental
part is organized as follows: (i) testing of AdaSAP on the
discovery of non-spherical clusters; (ii) testing of
AdaSAP on automatic determination of the clusters’ num-
ber; (iii) comparison of AdaSAP with baseline algorithms
by real-world clustering tasks.

4.1 Evaluation criteria

The performance of the clustering algorithm is usually
evaluated by the internal dispersity, which means the sum
of similarities between objects and their exemplars. We
use it as an evaluating criterion in this paper.

However, this paper aims to discover complex-shaped
clusters. In such a clustering problem, one should not
only take the closeness of objects into account but also
consider the connectivity between objects, which cannot
be reflected by the internal dispersity. We also use cate-
gory-label based measures to evaluate the algorithms’ eff-
ectiveness. By comparing the clustering result with the
actual category label, these measures can evaluate differ-
ent clustering algorithms’ performance scientifically and
reasonably.

The first category-label based evaluation criterion is

normalized mutual information (NMI) [38] defined as

NMI = L) (5)

VH(c)H(C,)
where ¢, stands for the real cluster tag and ¢, stands for
the tag of the result clustering. /(c,,¢,) denotes the mutual
information between ¢, and ¢,. H(-) represents information
entropy.
Accuracy is a more direct category-label based criteria
defined as follows:

PEHIED)
1

Accu= 4 — (6)
n

where for the objectx;, x{is the real label, and x{ is the
result clustering label. If i=j, a(i, j)=1; otherwise, a(i, j)=0.
Function f(-) labels the clustering tag by comparing the
actual label and marking it as the most faithful label or
not.

The third evaluation criterion is covering, which is
mainly used to evaluate clustering algorithms in image
segmentation tasks. According to [39], it is defined as

1
Convering(S 'result - Sresull) = N Z |R| : R%ax O(RvR')

RES requnt
(7
where the standard segmentation is S, and the segmen
tation result is S,... O(R,R’) is the overlap between two
regions R and R’, |R| indicates the number of pixels in the
region R, and N stands for the number of pixels in the
whole image.

4.2 Experiments on the synthetic dataset

We validate the effectiveness of the AdaSAP algorithm
by experiments on the synthetic datasets. We first test the
ability of SAP in discovering non-spherical clusters by
four synthetic datasets, then illustrate how AdaAP can
determine the clusters’ number automatically.

4.2.1 Testing SAP in discovering non-spherical clusters

A lot of synthetic datasets have been generated to test
the ability of clustering algorithms in discovering clusters
with complex shapes. Among these datasets, the concen-
tric circles in [2,40], two moons in [41,42], and spirals
in [2,40] are the most frequently used synthetic datasets.

We combine the synthetic datasets mentioned above
together and generate four new datasets with even more
complex cluster shapes: (i) dataset includes 900 data
points distributed around three concentric circles (3C);
(ii) dataset includes data points distributed on a circle and
two rectangles (1C2R); (iii) the dataset is made up of a
circle and two moons (1C2M); (iv) the dataset is made up
of a circle and two spirals (1C2S), and they are knotted in
a three-dimensional space.

The clustering results of four studied algorithms are
shown in Fig. 6. AP is just suitable for discovering spheri-
cal clusters. The sub-figures in the left column show that
the original AP cannot cluster these datasets correctly. In
AdaSAP, the data points are first mapped into a new
space by LEs, and then AP clusters the data points under
the new space. The distances between two objects in the
new space can reflect the closeness and the connectivity
of objects in the original space. Therefore, AdaSAP can
discover clusters with complex shapes. A similar method
is spectral shapes, as shown in the sub-figures on the right
clustering [34]. However, the objects in the new space are
clustered by K -means, which makes spectral clustering
fail to get the correct clustering result if the initial centers



TANG Lin et al.: Adaptive spectral affinity propagation clustering

are not correctly set. The sub-figures named spectral
K-means (SKM) in the second column illustrate the in-
correct clustering results suffered by spectral clustering.
Different from spectral clustering, AdaSAP uses AP to
cluster data points under the new space. The initial exem-
plar set is not required in AdaSAP. Therefore, it can
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always get the correct clustering result. Although the
DPC algorithm can find the cluster center automatically
and realize the efficient clustering of arbitrary shape data,
the results also are not good in these datasets. The sub-
figures named DPC in the third column illustrate the clus-
tering results.
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To test the robustness of the algorithm, we add rand-
om noise to the experimental data 1C2S. In the follow-
ing experiment, we add 1%, 3%, and 5% random noise
to the experimental data, respectively. Then we use the
AdaSAP algorithm to cluster the datasets containing

(c) DPC

Fig. 6 Computational experiments on four synthetic datasets

(d) AdsSAP

noise, and the experimental results are shown in Fig. 7.
Experimental results show that there is no effect of
the experimental results even the data contain different
noise. It also proves that the algorithm has strong robust-
ness.
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Fig. 7 Clustering results by the noise datasets
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4.2.2 Testing AdaAP in determining number of clusters

Fig. 5 presents a toy example to illustrate how AdaAP
works. This section validates the effectiveness of AdaAP
by more synthetic datasets. Fig. 8(a) shows the original
dataset. In Fig. 8(b) and Fig. 8(c), we move the left two
clusters leftward gradually. Fig. 8(d)-Fig. 8(f) show
how the clusters > number varies with p¢ in this case.
Fig. 8(d) demonstrates that the most appropriate num-
ber of clusters for the original dataset is four. According

Journal of Systems Engineering and Electronics Vol. 33, No. 3, June 2022

to Fig. 8(e), the probability of K=4 decreases, while the
probability of K=2 increases, but the most proper number
of clusters is still four. Fig. 8(c) moves the two left
clusters apart from the two right clusters in a further step,
so it is very likely for us to view the left two clusters
as one cluster and the right two clusters as the other
one. Fig. 8(f) suggests that K=2 is the first choice of
the clusters’ number, while K=4 becomes the second
choice. It is unlikely to choose another value (rather
than two and four) as the true number of clusters.
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Fig. 8 Computational experiments on four synthetic datasets

In Fig. 9, we generate synthetic datasets in another way.
The upper right cluster is moved far apart from the other
three clusters in Fig. 9(b), while the lower right cluster is
further moved away in Fig. 9(c). Therefore, the most
proper number of clusters for dataset in Fig. 9(b) is two,

while K=4 is the second choice; the most suitable number
of clusters for dataset in Fig. 9(c) is three. According to
Fig. 9(e) and Fig. 9(f), AdaAP selects K=2 and K=3 as
numbers of clusters for the two datasets, which are accor-
dant with our observations.
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Fig. 9 AdaAP determining number of clusters automatically in another way to modify datasets

4.3 Experiments on public datasets

The performance of AdaSAP was evaluated by experi-
ments on publicly available datasets. The website in [43]
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provides several kinds of clustering datasets. We choose
the four most popularly used shape sets from this website.
Fig. 10 presents the four studied datasets named Aggrega-
tion, Compound, Flame, and Spiral.
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Fig. 10 Computational experiments on four public datasets

Aggregation consists of seven clusters. Two of them
are connected. The compound has five clusters in total.
One cluster is surrounded by another. The Flame dataset
has two clusters. The Spiral dataset consists of data points
scattered along three separate spirals. It can be known
that most of the clusters have complex shapes, so arbi-
trary-shaped clustering algorithms usually test their per-
formance with the four public datasets. Additionally, the
data points’ real class label is also provided to compare
different clustering algorithms by Accuracy and NMI.

On the one hand, the AdaSAP algorithm can be seen as
an extension of AP in arbitrary-shaped clustering, so we
select classical AP as a benchmark algorithm. On the
other hand, AdaSAP can be seen as an improvement of
spectral clustering as both the two algorithms construct a

new similarity matrix leveraging LEs, so we choose spec-
tral clustering SKM algorithm as the other benchmark
method. On each dataset, the three algorithms are first
compared by Accuracy, and then by NMI, the clustering
result of SKM is affected by the initial exemplar set.
Therefore, we repeat SKM clustering on each dataset 100
times. Fig. 10 presents the box-plots of Accuracy and
NMI achieved by each clustering algorithms. It can be
known that AdaSAP achieves the highest Accuracy and
NMI on the four datasets. The performance of AdaAP is
unanimously inferior to AdaSAP on all the datasets,
which suggests that AdaSAP can achieve better clustering
results than AdaAP when there exist non-spherical clus-
ters. However, the highest clustering performance
achieved by SKM is equal to that achieved by AdaSAP.
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In most cases, the clustering performance of SKM is
lower than that of AdaSAP. Therefore, replacing K-
means by AP to cluster objects in a new space is a fea-
sible way to improve the existing spectral clustering algo-
rithms’ performance.

4.4 Experiments on image segmentation task

Image segmentation plays a vital role in computer vision. It
can be formulated as a data clustering problem [44,45]. In
this kind of method, every pixel is treated as an object. The
clustering algorithm is employed to divide the pixels into a
certain number of clusters. Pixels with the same category
label are segmented in the same region. In image segmenta-
tion, the shapes of clusters are usually very complex.

Some images from the Berkeley segmentation dataset
[46] (BSDS) are used in this paper. The dataset contains
so many color images, including humans, sceneries, ani-
mals, buildings, flowers, etc. All the images are in a size
of 321x481(or 481x321). Besides the images, five
ground-truth segmentation of each image is provided.

In this paper, the segmentation of an image is accom-
plished by three main steps: (i) Convert an image into
many objects. For example, an image in a size of 321x
481 can be converted into 1536 (32Xx48) objects, each
object is a patch with 10x 10. (ii) Cluster these patches
into several groups. All three clustering algorithms men-
tioned are implemented. (iii) Refine the clustering result

from the patch level to the pixel level, which is realized
by assigning each pixel a category label according to its
most similar patch.

In the second step, we have to compute similarities
between patches. The similarity is computed based on
both color and spatial features. The feature of the ith
patch is F; = (F},F{), where 4 is a coefficient which bal-
ances the importance of the two different features.
F: = (f", f) is the location of the ith patch on the image.
For the sake of simplicity, we use a relatively simple
color feature scheme in this paper. F¢ = (f, f%, f) is the
average of each patch under the RGB space. At last, the
similarity between a patch and a pixel is computed based
on the same mechanism as a pixel can also be represented
by a quintuple vector.

Finally, segmentation of an image can be represented
by a two-dimensional label matrix §. Five ground-truth
segmentation of each image is provided in BSDS, and the
best-matched ground-truth segmentation S’ is used as the
standard segmentation to evaluate the quality of segmen-
tation §'. Two indicators NMI and covering are used to
measure the concordance between a segmentation S and
the standard segmentation S'. The experiments are imple-
mented on 20 randomly selected images from BSDS, and
the computational results are presented in Fig. 11 and
Fig. 12.

0.9
0.8 f
0.7
0.6 f
=05
Z 04
0.3+
0.2+
0.1+
\} SSEITAY ™ > O ™ S “ A > Y O 2] Q N\ N 5
S "\9& ngé@\m“@ "\P‘Q% & N o,q@ Si \@Q\ S '\P@ R @\Qoo Q@’@%@ \\%@
Picture ID
m : AdaAP; m:SKM; m:AdaSAP.
Fig. 11 Comparisons of three clustering algorithms in image segmentation by NMI
0.9
0.8
0.7
208
E0
z 04
©o03
0.2
0.1}
0
@9‘0\ o’&Q %@30 QQ6\ @""b‘ @@’ '\96) '&b\b\ o,QD’\ \Qoga %Q\b‘ oob\« v@b‘ '19@ ,\Q,\q @(\6 \Q%Q b@,« %@\ %nga
RS SN N AN S U s N N S A A O DS M SN

Picture ID

m : AdaAP; m :SKM; m:AdaSAP.

Fig. 12

Comparisons of three clustering algorithms in image segmentation by Covering



TANG Lin et al.: Adaptive spectral affinity propagation clustering

Fig. 11 demonstrates that AdaSAP achieves 17 highest
NMI values and three median NMI values among experi-
ments on 20 images. NMI achieved by AdaSAP is always
higher than that achieved by AdaAP. From the perspective
of Covering, as shown in Fig. 12 the superiority of
AdaSAP over the other algorithms is even more signifi-
cant. AdaSAP over the other algorithms is even more sig-
nificant. It wins out with 19 highest Covering values, and
with only one median Covering value. The runner-up
algorithm SKM has only three highest values in NMI and
one highest value in Covering. These experimental results
indicate that AdaSAP can well competent the image seg-
mentation task. Though the segmentation performance of
an algorithm varies on different images, which makes an
algorithm difficult to achieve consistent highest perfor-
mance on all images, AdaSAP has the best segmentation
performance on a larger proportion of the images. More-
over, it rarely gets the worst segmentation result.

4.5 Experiments on face recognition task

Three of the most popular datasets, the Olivetti Research
Laboratory (ORL) face dataset [47], the University of
Manchester Institute of Science and Technology (UMIST)
database [48], and the Yale database [49], are considered
in this subsection. Table 2 shows the description of the
three datasets.

Table 2 Description of the three datasets

Dataset Sample Image Size Class
ORL 400 Grey 112x92 40

UMLST 575 Grey 112x92 20
Yale 165 Grey 243 %320 15

The ORL dataset. Four hundred images were taken of
40 humans at different times, varying the lighting, facial
expressions (with open or closed eyes, smiling or not),
and facial details (glasses or no glasses). A dark homoge-
neous background took ten images per person with the
subjects in an upright, frontal position.

The UMIST dataset. There are 575 images of 20 per-
son. Each person shows in some poses, from profile to
frontal views.

The Yale dataset. It contains 11 images for each of 15
individuals. The images show in lighting conditions (left-
light, center-light, and right-light), facial expression (nor-
mal, happy, sad, sleepy, surprised, and a wink), with or
without glasses.

The appearance-based method [50] is used to extract
the features of face images, which is a popular method in
face recognition. In this method, a two-dimensional face
image of size w by /& pixels is expressed by a vector in a
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w X h space. According to [51], grey level normalization
is also implemented, then the negative Euclidian distance
is used to compute similarities between objects.

AP is implemented on the obtained similarity matrix to
provide benchmark performance. In AdaSAP and spectral
clustering, we first construct an adjacent graph according
to the similarity matrix and then map the adjacent graph
onto a low-dimensional manifold. In this paper, the dim-
ension of the newly constructed low-dimensional space
is set five, which means that we reduce the dimension of
the feature space from 112x92 (or 243%320 to five
before implementing the clustering algorithms.

The experimental results of three clustering algorithms
on different face datasets are presented in Table 3 and
Table 4. AdaSAP achieves the highest performance in
both  NMI and accuracy. Compared with AdaAP,
AdaSAP can find clusters with complex shapes; while
compared with SKM, AdaSAP can avoid the impact of
the initial exemplar set on clustering performance. This
experiment validates the superiority of AdaSAP over two
classical algorithms, AP, and spectral clustering.

Table 3 Comparisons of three clustering algorithms in terms of
NMI
Dataset AdaAP SKM AdaSAP
ORL 0.913 0.863 0.971
UMLST 0.565 0.729 0.774
Yale 0.637 0.618 0.680

Table 4 Comparisons of three clustering algorithms in terms of
accuracy

Dataset AdaAP SKM AdaSAP
ORL 93.00 80.26 98.00

UMLST 53.21 65.69 69.43
Yale 64.55 59.87 66.36

4.6 Experiments on real medical data

Mechanical ventilation is the most critical life support
method for intensive cate unit (ICU) physicians. Retro-
spective studies based on patient care have essential sig-
nificance for ICU physicians. The AdaSAP algorithm
was used to subdivide the patients into different sub-
groups. The real dataset of our experiment comes from
multiparameter intelligent monitoring in intensive care I1I
(MIMIC-II) [52], a publicly available critical care medi-
cine database developed by the MIT Computational Phy-
siology Laboratory.

The experimental procedure is shown in Fig. 13. It
consists of three stages, namely data filtration, feature
matrix construction, and clustering. Firstly, during the
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data filtering stage, we select adult neoplastic patients
from the MIMIC-III database who are not in the perinatal
period. Secondly, we construct the feature matrix in the

feature matrix construction stage. At the clustering stage,
based on the constructed feature matrix, the AdaSAP
algorithm was used to cluster.

Data filtration

(Subject_id: 46 520 pati

MIMIC-III Critical Care Database
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Fig. 13 Experimental procedure on real medical data

4.6.1 Data filtration

MIMIC-III is a large, freely-available database comprising
deidentified health-related data associated with the
patients who stayed in critical care units of the Beth Israel
Deaconess Medical Center between 2001 and 2012. The
dataset includes “subject id”, which identifies a unique
ID for each patient; “hadm_id”, which identifies a unique
ID for each patient admission to the hospital; “icustay id”
which identifies a unique ID for each patient admission to
ICU. subject_id tells us that the database contains 46 520

patients; hadm id tells us that the database contains
58976 patients; icustay_id tells us that the database con-
tains 61532 patients. The experimental dataset was
selected from adult patients (age=18, non-perinatal
patients) within 24 h of their first ICU admission (disre-
gard multi ICU admissions afterwards). The total number
of cases is 26 761. Referring to the data provided by the
MIMIC-III database, the experts finally selected disease
diagnosis and 29 laboratory indicators from seven
aspects[53]. These laboratory indicators are shown in
Table 5.
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Table 5 29 laboratory indicators from seven aspects

Index Aspect

Indicator

1 Demographic

Age, Gender

2 Vital signs (24-hour average values on admission to ICU)

Heart rate, arterial pressure, body temperature, oxygen saturation,
respiratory rate, central venous pressure

Base excess, buffer base, hemoglobin, lactate, PCO,,

3 Blood gas PH, PO,, white blood cells
4 Incoming and outgoing Incoming, outgoing, and balance volumes
5 Patient diagnosis Simplified acute physioligy score (SAPS), sofa
Positi d irat PEEP), fracti f inspiration O, (FiO
6 Parameters related to mechanical ventilation . ositive end expiratory pressure ( ), frac 10“40 1r‘1sp1ra ion O, (FiO,),
tidal volume (VT), peak pressure, average pressure, inspiratory plateau pressure
7 Patient end results Whether or not dead in the ICU, alive days from the admission into the ICU

Due to the problem of missing important attributes in
some patient data, the cases are filtered again, the filtering
condition is that the number of missing attributes is no
more than two, and finally 10381 patient cases. According
the ICD codes of the patients’ first disease diagnosis, the
patients are divided into subgroups as shown in Fig. 14.
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However, each subgroup of patients can be further sub-
divided by related laboratory indexes. This task is a typical
non-spherical cluster task. Fine clustering of patients is
needed. The AdaSAP algorithm not only clusters arbitrary
shapes but also helps to find the optimal parameters. The
following experiment is carried out with the neoplastic
patients (ICD code range 140—239).

4.6.2 Feature matrix construction

In the feature matrix of our experiment, each row repre-
sents the data of one patient and one column of the matrix
represents an indicator. Therefore, the dimension of the
feature matrix used in this experiment is 700x29. Since
all the indicators in this experiment are equally weighted,
we normalize each indicator.

4.6.3 Clustering by AdasAP

First of all, we calculate the similarity matrix § based on

the feature matrix by negative Euclidean distance. Second,
we construct the adjacency graph G’ using the KNN algo-
rithm. In the experiment, the number of nearest neighbors
k=11. Thirdly, Laplace feature mapping for dimensionality
reduction. We got the category similarity matrix S'. the
dimension d is finally set to 10. The parameters (k,d) are
auxiliary selected by Algorithm 3. Because the dataset
has not been labeled, we use the contour coefficient to
evaluate the result of the cluster, and larger clustering
contour coefficients indicate better clustering. At last, the
typical AP algorithm is used to cluster the category simi-
larity matrix §'. the p° value is set to 0.05 according to
Algorithm 2. The patients are divided into three clusters,

as shown in Fig. 15.
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Fig. 15 Distribution of the patients among the clusters

Furthermore, we do a one-way ANOVA between
groups for each indicator. The results show that four of
the indicators are significant (P<0.05). The names of the
indicators are SAPSII, incoming, temperature, and VT.
We use the boxplots to visualize the indicators under dif-
ferent clusters, as shown in Fig. 16. The experts analyzed
the result that since the first diagnosis was neoplasm, the
patient was mechanically ventilated purely for respiratory
support. Patients with cluster 0 have the highest SAPSII
scores among the three clusters but do not have obvious
symptoms of fever. During the treatment, the incomings
of the patients are large but the tidal volumes of mechani-
cal ventilation are not high. The Cluster 1 patients generally
have high body temperatures, but the SPASII scores are
relatively not high. This type of treatment protocol has
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the characteristic of the lower input volume and higher
tidal volume. Cluster 2 patients have neither high SPASII
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scores nor significant abnormalities in body temperature
using the usual treatment strategy.
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Fig. 16 Distribution of the indicators among the clusters

5. Conclusions and future works

In this paper, we propose an AdaSAP, which improves
the classical AP clustering from the following two per-
spectives. On the one hand, we design an arbitrary-
shaped AP clustering algorithm by introducing spectral
embedding with category similarity. On the other hand,
we propose a procedure to solve a long-standing model
selection problem in the clustering field. Leveraging the
monotonicity of the number of exemplars with preference,
the proposed adaptive AP can determine the clusters’ nu-
mber automatically. Both synthetic datasets and practical
clustering tasks are used to test the performance of
AdaSAP. Experimental results validate the effectiveness
of the proposed AdaSAP.

In the future, we will explore the following directions:

(1) The AdaSAP algorithm has good support for both
structured and unstructured data, and we will explore how
our model should be applied to specific domains, such as
text clustering.

(i1) We will focus on deep clustering algorithms. Com-
bine our work with deep learning to further improve the
effect.
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