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Abstract: This  review  article  aims  to  give  a  comprehensive  re-
view of periodic orbits in the circular restricted three-body problem
(CRTBP),  which  is  a  standard  ideal  model  for  the  Earth-Moon
system  and  is  closest  to  the  practical  mechanical  model.  It
focuses the attention on periodic  orbits  in  the Earth-Moon sys-
tem. This work is primarily motivated by a series of missions and
plans  that  take  advantages  of  the  three-body  periodic  orbits
near  the  libration  points  or  around  two  gravitational  celestial
bodies. Firstly, simple periodic orbits and their classification that
is usually considered to be early work before 1970 are summa-
rized,  and periodic orbits  around Lagrange points,  either  planar
or  three-dimensional,  are  intensively  studied  during  past
decades.  Subsequently,  stability  index  of  a  periodic  orbit  and
bifurcation analysis are presented, which demonstrate a guideline
to find more periodic orbits inspired by bifurcation signals. Then,
the practical techniques for computing a wide range of periodic
orbits and associated quasi-periodic orbits, as well as constructing
database  of  periodic  orbits  by  numerical  searching  techniques
are also presented. For those unstable periodic orbits, the station
keeping  maneuvers  are  reviewed.  Finally,  the  applications  of
periodic  orbits  are  presented,  including  those  in  practical  mis-
sions, under consideration, and still  in conceptual design stage.
This review article has the function of bridging between engineers
and researchers, so as to make it more convenient and faster for
engineers  to  understand  the  complex  restricted  three-body
problem  (RTBP).  At  the  same  time,  it  can  also  provide  some
technical thinking for general researchers.
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1. Introduction

L1/L2

There  is  a  growing  need  for  space  missions  that  utilize
orbits in the cislunar space. In the past five years, several
periodic  orbits  in  the  Earth-Moon system have  been  uti-
lized, such as Artimes [1] in  Lagrange points, dis-
tant  retrograde  orbit  (DRO)  of  asteroid  redirect  mission

L1

(ARM)  [2,3],  Lunar  Orbital  Platform-Gateway  (LOP-G)
[4– 8]  in  near-rectilinear  halo  orbit  (NRHO),  transiting
exoplanet survey satellite (TESS) [9–12] in a 2:1 resonant
orbit in the cislunar space. Wind’s [13–18] original mission
is  to  orbit  the  Sun at  the -Lissajous  orbit  and also  the
first  mission to utilize distant  prograde orbit  (DPO) con-
cept.  These missions brought new elements to aerospace
engineering.

The limitations of many technical areas, including mis-
sion design capabilities, have hampered the thorough ex-
ploration of space. Therefore, there is a need for more in-
novative research in orbital dynamics design and its com-
plex computational methods. The increased complexity of
the  dynamical  model,  including  perturbation,  provides
numerous mission orbits for mission design. An in-depth
study of these mission dynamics can contribute to scienti-
fic discovery and promote space exploration.

It has been historically proven that an effective method
for  acquiring  new  sciences  in  the  solar  system  requires
simultaneous consideration of the motion of the spacecraft
associated with  the  Sun,  Earth,  and Moon.  For  example,
the International Sun/Earth Explorer (ISEE-3) mission of
National Aeronautics and Space Administration (NASA)
provides valuable information on solar flares and Gamma-
ray bursts [19]. In addition, the Genesis spacecraft moni-
tored solar wind particles within two years [20].  The or-
bital  shape  used  by  the  ISEE-3  and  Genesis  spacecraft
facilitates  the  collection  of  scientific  data  and  communi-
cation relays with the Earth.

The  basic  models  of  the  above  missions  take  into  ac-
count the gravitational effect of the Sun, Earth, and Moon,
which  is  based  on  the  three-body  problem.  The  three-
body problem has always been the focus of mathematics
and  scientific  research.  On  the  other  hand,  the  periodic
orbits  provide  more  insights  to  understand  the  complex
dynamical  system  of  the  restricted  circular  three-body
problem.  The  dynamics  is  chaotic  and  periodic  orbits
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show  order  with  different  degrees  of  stability.  Since  the
seminal work published by Poincare [21] in 1892, signi-
ficant attention has been paid to finding periodic solutions.
(Actually,  Poincare  believed  that  periodic  orbits  are  the
only  way  to  understand  complex  three-body  problems.)
Early  research  quickly  narrowed  the  study  to  periodic
solutions for planar problems and identified many periodic
orbit families. However, in 1920, Moulton [22] considered
the three-dimensional problem, in which study he focused
on the “oscillating satellite” near the collinear equilibrium
point, and the ultimate goal was to calculate the periodic
solution of the satellite.

From the  1930s  to  the  1960s,  the  three-body  problem
seemed  to  have  been  more  or  less  forgotten.  Since  the
1960s, with the launch of the American Apollo program,
research  hotspots  shifted  from  the  initial  celestial  dyna-
mics  to  the  orbital  dynamics  of  the  Earth-Moon  system.
The study of restrictive three-body problems has become
the focus of attention.

L2

In 1966, Farquhar began to study the collinear translation
point  and  explored  the  spacecraft  oscillating  at  the 
point of the Earth’s Moon to provide services for the back
of  the  Moon  using  communication  satellites  [23–25].  In
NASA’s research, the proposed solution involved a sate-
llite that oscillates back and forth on the Earth and lunar
motion planes. A solution of this type is unsatisfactory be-
cause  the  satellite  periodically  passes  behind  the  Moon
and cannot be seen from Earth. Therefore, an out-of-pla-
ne solution was sought to solve this problem.

Breakwell  et  al.  [26]  summarily  calculated  the  energy
consumption required fora continuous controller that for-
ces  equal  frequencies,  thereby  ensuring  an  out-of-plane
periodic  solution  that  can  always  be  seen  from  Earth.
Therefore,  the concept  of  “halo orbit”  was advanced.  In
fact,  this  study  of  bounded  motion  near  the  collinear
Lagrangian point opens up a new direction for spacecraft
mission  design.  Breakwell  et  al.  [27]  gave  higher-order
periodic  approximation  solutions  to  the  restricted  three-
body problem (RTBP), which makes it easy to calculate a
halo  orbital  numerical  solution.  A  naturally  occurring
solution  was  characterized  by  a  specific  relationship
between  in-plane  and  out-of-plane  amplitudes.  Unstable
resident operations were required.  Owing to the inherent
instability  of  this  type  of  orbit,  orbit  maintenance  was
required.

In the last century, most of the deep-space exploration
missions  were  carried  out  in  Sun-Earth  system,  mainly
based on scientific observation. Since the U.S. President’s
Vision  for  Space  Exploration  [28]  announcement  in  Ja-
nuary 2004,  preparations  have been under  way for  auto-
nomous  and  manned  activities  on  the  lunar  surface.  For
the  development  of  the  trajectory  design  options  for  a

return  to  the  Moon,  incorporation  of  the  gravity  effects
for not only the Moon, but also the Earth and Sun, offers
very useful  information for  space craft  motion in  the vi-
cinity of the Moon. The results allow flexibility for mis-
sion  design  and  ultimately  will  facilitate  exploration  of
Mars.

At  present,  the  development  of  the  near-Earth  space
mission  has  reached  its  end,  and  research  on  the  Earth-
Moon system is the most urgent task for humans to fly be-
yond near Earth space to deep space. The research on sys-
tem  dynamics  of  the  Earth  and  Moon  has  also  shifted
from the initial theoretical research to engineering requi-
rements.

Recently, NASA intended to build the Gateway as part
of the since-cancelled Asteroid Redirect Mission [29,30].
An  informal  joint  statement  on  NASA-Roscosmos  coo-
peration was announced on 27 September 2017 [31]. Tra-
veling to and from cislunar space (lunar orbit) would faci-
litate advancing the knowledge and experience necessary
to  journey  beyond  the  Moon  and  into  deep  space.  The
project LOP-G would initially enter a NRHO around the
Moon [32], which is a type of periodic orbit of the RTBP.

The  periodic  orbits  are  closely  related  to  the  type  of
above space missions,  and the  dynamics  of  the  RTBP is
the key to the study of the Earth-Moon system. It is nec-
essary to have a systematic understanding and research of
a periodic orbit. The implementation of the NASA LOP-G
will  push  the  dynamics  of  the  Earth-Moon  system  stu-
dies to a climax. Meanwhile, the National Priority Project
of  the  Chinese  Academy  of  Sciences  will  support  the
Earth-Moon space exploration research in 2022.

This review is to present periodic orbits in the circular
restricted three-body problem (CRTBP). A pair of celestial
bodies include a primary and a minor body, and a spacecraft
is  considered  a  massless  body.  In  the  existing  literature,
the  body  pair  include  Earth-Moon,  Sun-Earth,  and  Sun-
planet, planet and its satellite. The examples of figures in
this  paper  are  all  those  in  the  Earth-Moon  system.  This
work of  the  article  has  the  function  of  bridging between
engineers and researchers, so as to make it more conveni-
ent  and  faster  for  engineers  to  understand  the  complex
RTBP. At the same time, it can also provide some technical
thinking for general researchers. 

2. CRTBP and periodic orbit
 

2.1    CRTBP

The  CRTBP  provides  an  autonomous  approximation  of
the Earth’s lunar dynamics, enabling understanding of its
underlying dynamic structure.  The ephemeris  model  is  a
higher-fidelity  simulation,  and  the  CRTBP  dynamic
model is a reasonable approximation of the higher-fidelity
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dynamics model in the Earth-Moon system. In the appli-
cation of the CRTBP, the movement of massless spacecraft
under  the  influence  of  the  gravitational  pull  of  the  Earth
and  the  Moon  is  considered.  Assume  that  the  two  main
gravitational objects are mass points and make a circular
motion  around  their  common  barycenter.  The  motion  of
the  spacecraft  is  then  described  in  a  rotating  coordinate
system relative to the Earth and the Moon. By convention,
the parameters in the CRTBP are dimensionless, and the
dimensionless  masses  of  the  Earth  and  the  Moon  are
equal to  and , respectively, where the parameter

 is equal to the ratio of the lunar mass to the total mass
of the system.

x

z
y

x

In  rotation  coordinates,  the  axis  is  along  the  vector
between the primaries, pointing to the small primary; the
 axis is parallel to the Keplerian primary orbital angular

velocity vector; and the  axis forms a Cartesian coordinate
with the  and z axes. Then, the motion equations of the
third body are written as

ẍ = 2ẏ+ x− (1−µ)(x+µ)
r3

1

− µ[x− (1−µ)]
r3

2

ÿ = −2ẋ+ y− (1−µ)y
r3

1

− µy
r3

2

z̈ = − (1−µ)z
r3

1

− µz
r3

2

(1)

r1 r2where  and   are  the  relative  distances  between  the
third body and two primaries, respectively. The equations
are non-dimensional, and the characteristic quantities are
the total mass, distance between the primaries, and mag-
nitude of the system angular velocity.

L1 L2 L3

L4 L5

JC = 2U−v2 U(x,y,z)= (x2+y2)/2+(1−µ)/r1+

µ/r2+µ(1−µ)/2 v

There are five relative equilibrium points  in the CRT-
BP system, including three collinear points , , and ,
and two equilateral points  and . The collinear points
located  along  the  Earth-Moon  line  and  the  equilateral
points  form  equilateral  triangles  with  the  two  primaries.
The  CRTBP uses  a  Jacobi  constant  energy  integral  such
that , where 

 is the pseudo-potential function and  is
the velocity magnitude relative to the rotating frame. 

2.2    Mathematical  modelling  of  periodic  orbits  in
CRTBP

It is necessary to briefly introduce the concept of periodic
orbits and quasi-periodic orbits in the CRTBP. In general,
the periodic motion of a dynamic system repeats the same
motion  at  equal  intervals  of  time,  including  the  motions
that are repeated in a relative sense. Now have an Earth-
Moon  rotating  coordinate  system  and  let  the  system  of
differential equations [33] be written as

dxi

dt
= Xi (x1, x2, · · · , xn) , i = 1,2, · · · ,n (2)

xi = φi (t)
φi

which  possesses  a  particular  solution, ,  if  the
functions  have the property that

φi (0) = φi (T ) .

φi

φi (t) =
φi(t+T ) φi t

T xi = φi (t)

In other words, when the initial value of  is the same
as  its  value  at  an  epoch T  and  consequently 

,  then  the  functions  are  periodic  in  with
period ,  and  is a periodic solution of the dif-
ferential equations.

x (t)
ε > 0 E (ε)
α T α⩽T ⩽α+E (ε)

A continuous function  is almost periodic if, given
, there exists an  such that for every real number

 there is a  that satisfies  and for which

|x(t+T )− x (t)| ⩽ ε. (3)

x (t) ε = 0 T

ε

When  is a periodic function,  and  becomes
the  period.  An  almost  periodic  function,  therefore,  is
“periodic”  with  an  “error” .  A  special  class  of  almost
periodic  functions  is  called quasi-periodic,  which can be
seen in  Farquhar  (1973)  [34]  in  the  RTBP.  In  general,  a
quasi-periodic orbit is preferable to a periodic one, owing
to the larger number of parameters that characterize quasi-
periodic orbits [35]. 

2.3    Preliminary analysis by Poincare method

Σ

Σ Σ

Σ

Poincare methods are commonly used to analyze periodic
or  quasi-periodic  orbits.  It  is  useful  to  employ  Poincare
methods to analyze more complete picture of the available
libration  point  orbits  at  a  particular  energy  level  in  the
RTBP, and for potential design options. Through the use
of  a  Poincare  map,  an n -dimensional  continuous-time
system is  reduced  to  a  discrete-time  system of  (n−1)-di-
mensions.  By  additionally  constraining  the  Jacobi  cons-
tant C ,  the  problem is  reduced to  (n−2)-dimensions  and,
thus,  the  map  for  the  CRTBP  is  represented  in  four-
dimensional (for three-dimensional space). To generate a
planar  Poincare  map,  a  surface-of-section, ,  is  defined
such that  is transverse to the flow. A commonly used 
is  one  that  represents  a  surface-of-section  corresponding
to crossings of the x-y plane. To compute the map, trajec-
tories are integrated and crossings of  are recorded and
displayed [36].

Consider  the  map  in Fig.  1 as  projected  into  the x-y
plane,  produced  to  resemble  the  maps  demonstrated  by
Folta  [36].  For  the  selected  value  of C ,  several  periodic
orbits  exist  (see Fig.  3),  including  a  planar  Lyapunov
orbit (green, as shown in Fig. 2), an axial orbit (see Fig. 4)
a  vertical  orbit  (dark  blue,  as  shown  in Fig.  6),  and  the
northern  and  southern  halo  orbits.  In  the x-y  projection,
the  halo  orbits  share  the  same  crossings of  the  map;  the
northern halo is featured in magenta in Fig. 1. 
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Fig.  2      L1/L2 Lyapunov orbit  families  in the Earth-Moon rotating
coordinate frame
 

The first  step  of  Poincare  methods  is  to  find a  conve-
nient  Poincare  section Σ .  This  can  be  either  a  section  in
time  or  space.  It  is  assumed  for  visualization  purposes
that the section is taken in phase space. The main concern
when  choosing  the  plane  of  the  section  is  ensuring  that
the velocity vector of the quasi-periodic orbit is as trans-
verse to the plane of section as possible. This reduces the
possibility that the integrated points will not return to the
Poincare section. Thus, a good candidate for the Poincare
section  is  the  plane  perpendicular  to  the  velocity  of  the
halo-orbit section. However, for the RTBP, a simple section
on the ecliptic plane is also suitable. The Poincare section
method can help guess the initial solutions of periodic or
quasi-periodic orbits, and the precise solution can conve-
niently  be  computed  by  using  the  multiple-shooting  me-
thod [37]. 

2.4    Methodologies and fundamental techniques
 

2.4.1    Differential corrections

Usually, when calculating a periodic orbit, one must first
give an approximate first order linear or guessed approxi-

mation  initial  solution.  Obviously,  the  evaluation  of  the
approximate solution plays an important role in analyzing
the properties of the periodic orbit around the equilibrium
point  within  a  certain  accuracy  requirement.  However,
the periodic orbit obtained by such an approximate solution
is  not  the  exact  periodic  solution  of  the  actual  restricted
three-body model, so it cannot meet the accuracy require-
ments  of  the  actual  space  mission  orbit.  Therefore,  the
analytical approximate solution method must be combined
with  the  numerical  method  of  differential  correction  to
obtain  an  accurate  initial  value  that  satisfies  the  require-
ments  of  the  periodic  orbit.  In  this  way,  the  problem  of
solving  the  orbital  periodic  solution  is  transformed  into
the problem of determining the initial value that satisfies
the requirements of the periodic orbit; that is, the value of
a certain moment determined by the linear approximation
solution is used as the initial value of the periodic orbital
guess. Through the method of differential correction, the
initial  value  satisfying  certain  precision  requirements  is
obtained through iteration as the initial  value solution of
the periodic orbit.

x = φ(t, t0;
x0) t1

xd x (t1)
t1 δx1

In  general,  differential  correction  can  be  implemented
using the Newton method. The reference orbit 

, assuming  that  the  expected  state  value  at  time  is
, deviates from the actual state value  on the refer-

ence orbit at time  as , that is,

x (t1) = φ(t1, t0; x0) = x1 = xd −δx1. (4)
δx0

x0 t1 xd

Suppose it is necessary to make a correction to  for
the initial value , so that the state value of  is , that
is,

φ (t1, t0; x0+δx0) = φ (t1, t0; x0)+
∂φ (t1; x0)
∂x0

δx0+O
(
δx2

0

)
= xd +O

(
δx2

0

)
. (5)

F (x) = φ (t1, t0; x)− xd,

x0

x
F (x) = 0 x0

F (x0) = φ (t1, t0; x0)− xd , 0 δx0

F(x0+δx0) = φ (t1, t0; x0)− xd = 0.

Defining the function  related to
the initial value ,  the problem translates into using the
Newton iteration method to find the appropriate  value
that  satisfies .  For  a  given  reference  value ,
only  is  needed  to  find ,
which  satisfies  Expan-
ding with a Taylor series,

F(x0+δx0) = φ (t1, t0; x0+δx0)− xd =

F (x0)+DF (x0)δx0+O
(
δx2

0

)
= 0.

δx0 = −DF−1 (x0) F (x0)
δx0 =Φ(t1, t0)−1δx1

Ignoring the high-order small quantities, the differential
corrections  are  obtained,  that  is,

. 

2.4.2    Single and multiple shooting methods

Several techniques have been developed for the computa-
tion  of  periodic  solutions.  Single  and  multiple  shooting
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x0 T φ(x0,T,γ)

methods are the most widely used techniques in existing
software  packages  for  the  continuation  of  periodic  solu-
tions.  A  single-shooting  technique  solves  the  nonlinear
system for the unknown  and .  is computed
with  an  initial  value  solver.  Since  ordinary  differential
equation  systems  resulting  from  the  discretization  of
parabolic  partial  differential  equations  are  very  stiff,
implicit techniques should be used. The nonlinear system
is usually solved by using the Newton’s method.  This is
an iterative method. At each iteration step, the dense linear
system [38,39][

φx− I φT

sx sT

] [
∆x0

∆T

]
=

[
φ(x0,T,γ)− x0

s(x0,T,γ)

]
(6)

s x
is solved, e.g., using Gaussian elimination with pivoting,
where  is  a  phase condition and subscript  ‘ ’  and ‘T  ’
denotes  differentiation,  and  the  variables  are  updated
according to {

x0← x0+∆x0

T ← T +∆T .

τ φ (x0)
x0

x0

X f =

φ (x0)
x0

x0

This  means,  in  single  shooting,  that  the  system  over
time  represented  by  originated  with  initial  state

 is  uncovered  by  integrating  the  differential  equations
of the system with a standard explicit propagator. Gener-
ally,  is  adjusted  with  an  update  scheme  such  as  the
Newton’s method,  to  yield  the  desired  final  state 

.  Thus,  for single shooting, all  the problem sensiti-
vities are associated on the initial state . This methodo-
logy for producing trajectories relies on an accurate initial
vector  and  is  sometimes  difficult  for  numerical  con-
vergence when the dynamics are sensitive to small adjust-
ments in the initial state [40].

The  single  and  multiple  shooting  methods  could  be
implemented  in  solving  an  optimal  control  problem.
Ultimately,  single  and  multiple  shooting  achieve  the  sa-
me  result.  The  multiple-shooting  segments  are  introdu-
ced strictly for  numerical  reasons since the single shoot-
ing  algorithm  tends  to  fail  when  the  time  domain  incr-
eases  [41].  However,  a  multiple  shooting  scheme  offers
better  access  to  the  design  space,  especially  when  the
dynamics are sensitive, as often occurs in chaotic, nonlinear
systems.  Since  sensitivities  are  distributed  across  the
entire trajectory, a multiple shooting algorithm accommo-
dates a larger convergence radius than an equivalent single
shooting  method  [40].  The  extension  to  the  multiple
shooting  method  is  obtained  by  dividing  the  entire  time
domain into sub-intervals and applying the simple-shoot-
ing procedure within each sub-interval. 

2.4.3    Continuation method

A family of periodic orbits can be computed by continua-
tion and differential corrections. The periodic orbit family

of the RTBP is continuous. When the individual periodic
orbits are computed, they can be used as the initial  orbit
to  generate  other  new  orbits  by  using  the  continuation
method, by extending certain parameters. It is possible to
quickly calculate all the periodic orbits, which are sought
beyond  the  range  of  validity  of  the  approximations  near
the initial orbit [42,43]. Apply the continuation method to
study the continuation of periodic orbits of the three-body
problem [44–46]. 

3. Periodic orbits and their classification
 

3.1    Classifications of periodic orbit before the 1960s

The  RTBP  is  one  of  the  most  famous  problems  in  the
modern history of  astronomy and mathematics.  The pio-
neers  in  the  history  of  the  problem  include  Newton,
Lagrange,  Jacobi,  Poincare,  Darwin,  Moulton,  and  other
famous  mathematicians.  The  main  contributions  are  as
follows.

Most of the dynamical analysis of the three-body prob-
lem mechanics was developed by Newton (1643–1727) in
1687. Newton’s predecessor, Euler (1707–1783), was the
first  to  simplify  the  problem  by  assuming  the  infi-
nitesimal  mass  of  the  third  body,  thus  introducing  a
“restricted ”  three-body  problem.  Euler  is  also  the  first
person  to  model  the  dynamics  in  a  rotating  reference
frame. Jacobi (1804–1851) first integrated the three-body
problem model. Lagrange (1736–1813), at the same time,
accompanied  by  Euler,  identified  five  equilibrium  solu-
tions or liberation points. The Sun-Jupiter Trojan asteroid
was correctly predicted by his solution. Almost 100 years
later,  Poincare (1854–1912) proved the non-integrability
of  the  three-body  problem.  His  work  eventually  became
the basis of the modern dynamic system theory. The peri-
odic orbit obtained by numerical analysis was first studied
by Darwin (1845–1912) [47].

The  aforementioned  research  was  carried  out  during
the 19th century. Contributions of the 20th century consist
mainly of amplifications of Darwin’s work [48,49]. In the
early  1920s,  various  scholars  began to  study the  method
of  solving  the  periodic  orbit  of  the  three-body  problem
and classifying the periodic orbits. Owing to the complexity
of the problem, the research in this period mainly focused
on the study of planar RTBPs.

Noteworthy,  to correlate the Floquet  theory and bifur-
cation  analysis,  see  the  details  below,  the  concepts  of
families/classifications  of  periodic  solutions,  which  are
based  on  the  definition  by  Goudas  [50],  are  those  that
share a common hodograph. A hodograph is a continuous
carve in phase space that  consists  of  points belonging to
different  periodic  solutions.  In  particular,  the  Floquet
multipliers also change continuously. 
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3.1.1    Classifications of the Poincare problem

One of  the  many significant  contributions  of  Poincare  is
the  proof  that  there  are  periodic  orbits  in  the  three-body
problem,  and  there  are  countless  periodic  solutions.
Poincare divided the three-body problem’s periodic solu-
tions into three categories. These three categories are the
limiting  problems  of  the  two  uncoupled  Kepler  proble-
ms [21], namely, the following:

(i)  The first  kind — two circular  motions in the same
plane.

µ = 0
µ , 0
µ , 0

n1 n2

T

µ

In the first  kind, the problem for  is extended by
the  method  of  analytic  continuation  to .  Research
emphasis  becomes  periodic  orbits  for .  Direct  and
retrograde periodic orbits are demonstrated by this meth-
od. This problem is also used to analyze the characteristics
of planets that have almost zero eccentricities and inclina-
tions. In the limits at which the masses vanish, the orbits
become  circular,  which  is  the  singularity  of  the  secular
Hamiltonian.  If  the mean motions  and  are  the fre-
quencies of the two circular Keplerian motions, the limit
solution has period . The use of the method of analytic
continuation  to  establish  the  existence  of  these  orbits  is
synonymous  with  employing  Poincare’s restri cted  prob-
lem, which treats “small” values of . Poincare’s problem
is of primary interest in the dynamics of the solar system.

Hill’s inter mediate orbit used in his study of the Lunar
problem is the most famous example of a period solution
of the first  kind. In his description of Hill’s result,  Poin-
care  corrected  the  incorrect  guess  by  Hill  regarding  the
global continuation of his solution.

(ii)  The  second  kind  —  two  elliptical  motions  in  the
same  plane  with  resonant  frequencies,  and  perihelia  in
conjunction  or  opposition  and  initial  mean  longitudes
both equal to zero.

e , 0, i = 0

The second kind of problems are generated from ellip-
tical  two-body  orbits  in  the  plane  of  the  primaries.  The
inclinations are  still  zero,  but  the eccentricities  are  finite
( );  in  the  limit,  one  obtains  elliptical  motions
with the same direction of semi-major axes and conjunc-
tions or oppositions at each half-period.

(iii) The third kind — two circular motions in different
planes with resonant frequencies.

µ = 0
µ , 0

In  the  third  kind,  eccentricities  are  small,  but  inclina-
tions  are  finite,  and  the  limit  motions  are  circular  but
inclined.  Here,  they  face  a  bifurcation  problem;  indeed,
they start  from the degenerate  and completely integrable
situation  in  which  families  of  periodic  solutions  of  the
reduced  problem  that  exist  for  are  expected  to
break for  and give rise to isolated periodic solutions.
More precisely, they start from a resonant torus of dimen-
sion  2,  corresponding  to  motions  along  two  Keplerian

ellipses.

R

Poincare  noticed  that,  provided  one  makes  the  ansatz
that at some time the bodies are in symmetric conjunction,
the dominant term of the expansion in eccentricities of 
is nothing but the reduced secular Hamiltonian [51]. 

3.1.2    Classifications of Moulton’s analysis

Moulton’s classification  method  originated  from  the
“Periodic Orbit” published by Moulton et al. in 1920 [22,
52]. The main study was the analytical methods for perio-
dic  motion  near  the  five  equilibrium  points.  A  power
series  method  was  proposed  to  make  a  third-order
approximation of the solution near the triangular equilib-
rium point.  His  solution is  similar  to  what  is  now called
the vertical orbit [53]. There are three types of finite perio-
dic  solutions  near  the  collinear  points  that  Moulton
proved.  The  linearized  motion  near  the  collinear  La-
grangian  point  and  the  differential  equations  relative  to
the equilibrium point are of the forms:

−̇
ξ = A

−
ξ (7)

−
ξ= [ξ,η,ζ, ξ̇, η̇, ζ̇]where  and  A  is  a  constant  matrix.  The

solution for the linear variational equations can be written
as follows:

ξ = ξ0 cos (wxyt)+
η0

α
sin (wxyt) (8a)

η = η0 cos
(
wxyt

)−αξ0 sin
(
wxyt

)
(8b)

ζ = c1 cos (wzt)+ c2 sin (wzt) (8c)
ωxy

L1,2,3

ωz z

where  is angular velocity of the x-y plane in rotating
reference  frame  for  the  collinear  lagrangian  points 
and  is the angular velocity in the  direction. Equation
(8) will have periodic solution in three cases:

ξ = η = 0 ζ(i)  and  is the form in (8c).
ξ = 0 η,ζ(ii)  and  are the forms as (8b), (8c).
ξ,η ζ

ωxy ωz

(iii) ,  and  are  the  forms  as  (8a),  (8b),  and  (8c),
respectively, and  and  are commensurable.

a,b c
L2 L1 L3

Moulton [22] proved that (8a), (8b) and (8c) can have
finite  periodic  solutions  in  three-dimensional  space,  and
gave  corresponding  numerical  results.  These  numerical
calculations  depend  on  approximate  analytical  solutions
near the equilibrium point. However, due to the limitations
of  the  computing  tools  of  the  time,  Moulton  speculated
that  the  solution  of  the  third  three-dimensional  space
could  not  be  calculated  numerically  and  proceeded  with
the analysis of planar orbits. In [33], 14 different classes
of periodic orbits in the three-body problem were identi-
fied; classes , and  are defined as retrograde periodic
orbits around , , and , respectively. 

3.1.3    Classifications of Stromgren’s families

In  the  early  1930’s,  the  classical  analyses  by  Sundman
and  Wintner  concerning  numerical  experimentation  in
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connection  with  the  problem  of  three-body  were  high-
ly  praised,  but  the  most  outstanding  example  showing
the  importance  of  numerical  undertakings  is  Stromgr-
en’s [54,55 ]  work  performed  between  1913  and  1939.
The  possible  forms  of  motion  of  a  third,  indefinitely
small  mass,  in  the  same  plane  as  the  two  finite  bodies,
were to be investigated. A starting point for the research
was  found  initially  in  certain  known  theorems  of
Lagrange that were adapted to the restricted problem.

Starting  partly  from  the  theorems  of  Lagrange  and
partly  from  other  considerations,  Thiekle,  Burrau,  and
subsequently Darwin [48] (in the work “Periodic Orbits”)
found  a  number  of  periodic  solutions  of  the  restricted
problem. The main object of Stromgren’s research was to
investigate  the  entire  field  of  the  restricted  problem sys-
tematically  for  simple  periodic  solutions,  and in  practice
this object falls into two parts: the discovery of new peri-
odic  solutions  and  the  classification  of  old  and  new
results in such a systematic way that the entire material is
presented  as  a  comprehensive  survey  of  the  possible
forms of periodic motion.

0.1 < µ ⩽ 1/2The  most  complete  work  in  the  range 
was  performed  by  Stromgren  and  his  associates  in  Co-
penhagen. Darwin’s [48,49] and Moulton’s [22] contribu-
tions  offer  excellent  commentaries  and  extensions  of
Stromgren’s work, but do not represent the completeness
and  precision  achieved  by  the  group  at  the  Copenhagen
Observatory.

L2

The  classification  of  Stromgren’s [55 ]  families  of
orbits is based on the seven special points existing in the
plane of the restricted problem: the five points of equilib-
rium and the two points of the primaries are located. Fur-
thermore, while Stromgren discusses motions around ,

L3Szebehely [33] referred to motion around  and compared
the  two  systems  further.  In  as  much  as  in  what  follows
the notation of the reference system, these aforementioned
translation devices become important only when the read-
er  wishes  to  study  the  original  papers  prepared  by  the
Copenhagen Observatory.

y
m1 L3

m2 L1

L1 m2 L2

L2 m1 L3 L4 L5

L4

µ = 1/2

Owing  to  the  symmetry  with  respect  to  the  axis,
motions associated with  and  are the mirror images
of  the  motions  taking  place  around  and  ,  respec-
tively.  The  expression  “motion  around ”  is  widely  and
loosely  used  in  the  literature.  When originally  infinitesi-
mal  elliptical  orbits  around  the  collinear  points  become
finite  and,  in  fact,  have  large  amplitudes,  the  word
“around ”  becomes  meaningless.  The  proper  use  of
“around” is guaranteed when it is restricted to the gener-
ating orbits. In this sense, they speak about seven special
points and infinitesimal periodic generating orbits around
them if these orbits exist.  Because of the symmetry con-
ditions in the Copenhagen problem, they have , , 
(or , ,  and ),  and  (or  )  as  the  only  centers.
The  last  point  ( )  is  not  surrounded  by  infinitesimal
periodic orbits for , the fact of which leaves three
special  points.  There  are  no  direct  infinitesimal  periodic
orbits around the collinear points,  only retrograde orbits,
and there are direct and retrograde periodic orbits around
the  primaries.  Consequently,  the  following  families  of
periodic  orbits  were  established by Stromgren,  using  his
classification  and  the  previously  defined  meaning  of
“around” [33]. All of the families are shown in Table 1,
and  some  families  are  shown  in  the  following  figures
respectively. In Table 1, the acronym ‘RS’ represents ref-
erence system, ‘FS’ represents fixed system.

 
 

Table 1    Classifications of Stromgren’s families

Family Around Direction in RS Direction in FS Symmetric Interpretation
a L3 Retrograde Inexistence x axis Lyapunov, Halo
b L1 Retrograde Inexistence x axis Lyapunov, Halo
c L2 Retrograde Inexistence x axis Lyapunov, Halo
d L4 — — — Inexistence for μ = 0.5
e L5 — — — Inexistence for μ = 0.5
f m1 Retrograde Direct x axis Earth orbit
g m1 Direct Direct x axis Earth orbit
h m2 Retrograde Direct x axis DRO
i m2 Direct Direct x axis DPO
k m1,m2 Direct Direct x axis See [33]
l m1,m2 Retrograde Direct x axis See [33]
m m1,m2 Retrograde Retrograde x axis See [33]
n — Retrograde — Asymmetric See [33]
o — Retrograde — Asymmetric Asymptotic
r — Retrograde — y axis Asymptotic
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Fig.  3      Multiple  families  of  periodic  orbits  in  the  Earth-Moon
rotating coordinate frame
  

3.2    Classifications of periodic orbits after the 1960s
 

3.2.1    Classifications of Hill’s case

µ = 1/2
0 ⩽ µ ⩽ 1/2

µ

µ

The  general  features  of  the  solutions  of  Hill’s prob-
lem [56] can also be extended to study the plane-RTBP.
The characteristic of Hill’s problem has the limiting case
of  the  plane-RTBP  when  the  mass  of  the  second  body
tends toward zero.  In a series of Henon’s work [57−60],
the  entirety  of  the  solutions  of  the  plane-RTBP  were
explored  for  a  particular  case  that  supposing  that  the
masses of the first and second bodies are equal ( ).
Henon [61] considered the range  and that the
case  being small or zero covers most practical applica-
tions,  of the Earth-Moon system being almost 0.012 of
the RTBP.

a c

L2 L1 f g
m2

g′ g
g1

It  was  shown  that  there  were  five  families  in  Hill’s
case, and Henon retained the nomenclature used in 1965a
[57] and due to Stromgren [55]: families  and  originate
in the Lagrangian orbits around the Lagrange equilibrium
points  and ; families  and  begin, respectively, as
the retrograde and direct satellites of the second body ;
and family  branches  off  family ,  at  the  critical  orbit

.  Again,  it  cannot  be  completely  excluded  that  other
families  of  simple-periodic  symmetrical  orbits  exist  and
have  escaped  their  systematic  search,  but  it  is  not  very
likely. 

3.2.2    Classifications of three-dimensional
periodic orbits

The three-dimensional  problem gradually  attracted scho-
lars ’  research  interests  after  the  1960s.  During  the  20th
century,  researchers  have  been  trying  to  find  periodic
solutions because they are the core of the study of under-
standing  the  non-integrable  three-body  problem.  At  the
same time, many planar periodic orbital families are ana-
lyzed and calculated. With the dramatic increase in com-
puting  power,  three-dimensional  periodic  families  were
emerging. Halo orbits are the closest to actual space mis-

sion  design.  Although  it  is  proved  that  there  are  many
three-dimensional  periodic  orbits,  it  is  very  difficult  to
calculate by grid search.
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L2*Moon
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Pitchfork bifurcation

Cyclic-fold bifurcation
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Fig. 4    Axial periodic orbit family bifurcated form planer orbit in
the Earth-Moon rotating coordinate frame

Owing  to  the  development  of  computer  technology,  a
larger  range  of  three-dimensional  periodic  orbits  can  be
calculated numerically. In the 1960s, Goudas [50] calcu-
lated  19  periodic  orbital  families  based  on  the  RTBP
model,  most  of  which  had  symmetry.  Goudas  extended
Moulton’s study  of  relevant  periodic  orbits  [22]  but  did
not  find  the  new  familiar  halo  orbits.  At  the  same  time,
the stability of periodic orbits is studied, and it is proved
that the orbits of collinear Lagrange points are very unsta-
ble.  Later,  Bray  [62]  considered  the  large-scale  three-
dimensional  orbit  problem  again,  because  it  could  not
continue to be linearized. They try to approximate analyti-
cal solutions as much as possible and use numerical com-
puting to their advantage.

A comprehensive review of the restricted problem dur-
ing this period was given by Szebehely [33] in 1967. For
the  related  work  that  details  more  recent  progress  and
potential  future  investigations  into  the  problem,  the
reader is referred to Marchal [63].

(i) Axial and vertical orbits

av

L3 L1

L2 µ = 1/2
µ = 0.000 95

Axial  orbits  are  so  named  because  the  family  appears
to rotate about  the x-axis  from the bifurcating Lyapunov
orbit. Vertical orbitals are called vertical because of their
small  amplitude  motion  in  the z  direction  [47].  These
families  obtained  numerical  results  near  the  collinear
Lagrange  points  in  1966  [62].  In  this  way,  the  study  of
three-dimensional orbits can be coplanar, and more atten-
tion is paid to out-of-plane perturbation and its influence
on stability [64−67]. The “vertical stability index”  was
evaluated  for  planar  orbit  family.  When  the  vertical  sta-
bility index of the planar orbit is 1, it is a vertical critical
orbit. It marks the bifurcation of planar and three-dimen-
sional  periodic  orbits.  Henon  identified  vertical  critical
orbits  families a,  b ,  and c  which are  around , ,  and

, respectively, for mass ratio .  The Sun-Jupiter
ratio  was  explored  by  Kazantzis  [68].
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The  three-dimensional  symmetric  periodic  orbits  were
classified by Goudas (1963) [50] as follows:

i) ‘Type A’ symmetric with respect to the x-z plane;
xii) ‘Type B’ symmetric with respect to the  axis;

iii) ‘Type C’ both previous symmetries.

L2

It  is  notable  that  the  vertical  critical  orbits  themselves
can  be  far  from  the  equilibrium  point.  The  out-of-plane
stability of the planar orbits was evaluated by Henon and
did  not  involve  the  three-dimensional  families.  Vertical
critical  orbits  can  exist  far  from  the  equilibrium  point.
Robin [69] then added the theory of planar tridimensional
orbits and analyzed their symmetry. The three-dimensional
and  planar  projections  of  the  Earth-Moon  axial  and
vertical  orbit  families  are  shown  in Fig.  5 and  Fig.  6,
respectively.
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Fig. 5    Three-dimensional and planar projections of the axial orbit
families in the Earth-Moon rotating coordinate frame
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(ii) Halo orbits
The  name  “halo ”  for  these  orbits  were  first  used  by

L2

|av| = 1

Alv Clv Blv L2

L1 L3

L1

L1 L2

Farquhar in 1968 [23]. Some researchers have advocated
deploying  relay  satellites  from  the  Apollo  missions  in
Earth-Moon  halo orbit. A halo orbit is an ideal location
for  a  lunar  communications  and  control  center  [70].
Examining  the  vertical  stability  index  ( )  for  the
families a, b and c, it is shown that some critical orbits of
the families have x-z plane symmetry property. Generated
from plane periodic orbits, the three-dimensional families

, ,  and  from Zagouras [71] are,  in fact,  the ,
, and  halo families, respectively, in the Sun-Jupiter

system. The authors do detect some stable orbits in the 
family,  but  the  families  are  only  partially  computed  and
the  stable  orbits,  now  known  to  exist  in  the  other  two
families,  were  not  observed.  The  three-dimensional  and
planar projections of the Earth-Moon  and  halo orbit
families are shown in Fig. 7 and Fig. 8, respectively.
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(iii) DROs
DROs are a family of  periodic orbital  solutions of  the

motion  equation  in  CRTBP,  and  its  motion  direction  is
opposite to that of the second gravitational body, which is
derived  from  the  numerical  exploration  of  the  Hill  limit
case of CRTBP [61]. In this paper, the results of extending
Henon vertical critical orbits to a three-dimensional finite
family were given in [72,73].

L1 L2 L3

0 ⩽

Bifurcation families of orbits exist, and it is proved that
three-dimensional  orbits  can  actually  be  connected  to
multiple planar families of orbits. The infinitesimal perio-
dic  oscillations  around  the  collinear  Lagrange  points  are
continued  along  the  families a,  b ,  and c  of  plane  DROs
around , , and  [71]. DROs can be extended to the
study of the stability of plane periodic satellite orbits with
respect to perturbations perpendicular to the plane for 
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µ ⩽ 1,  which  allows  a  determination  of  the  three-dimen-
sional  stability  of  the  orbits  [74].  The  distant  retrograde

orbit family of the Earth-Moon system is shown in Fig. 9.
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(iv) NRHO

xmax

x,y≪ z≪ 1

The  near-rectilinear  orbits  were  first  proposed  by
Breakwell  [27]  in  1979,  towards  which  the  halo  family
tends  as  decreases  are  amenable  to  an  analytical
approximation used in the Sun-Earth system [75].  In the
Earth-Moon  system,  the  position  is  measured  from  the
Moon and starts by supposing that . In 1984,
using a three-dimensional method of regularization origi-
nally  developed  by  Howell  [76],  it  was  applied  to  the
restricted  problem  and  used  to  develop  approximations

L1 L2

for  “almost  rectilinear ”  halo  orbits  near  the  collinear
points. A thorough numerical investigation of halo orbits
was also completed [77]. More study on the “almost rec-
tilinear ”  halo  orbits  in  the  later  years  and  these  orbits
were named NRHOs [47,78].  The three-dimensional and
planar  projections  of  the  Earth-Moon  and   NRHO
families are shown in Fig. 10 and Fig. 11, respectively.

(v) Butterfly orbits

L2

The family of butterfly orbits are bifurcated from a six-
day  NRHO and exhibit characteristic similar to NRHO.
These orbits present a butterfly shape, and the lunar south
pole remains in view for significant intervals of time [78].
Robin and Markellos [69] studied butterfly orbits near the
Moon  in  the  Earth-Moon  system.  The  butterfly’s orbital
movement  looks  like  a  figure  eight;  such  orbits  allow
observation of the Moon’s south pole in most of the time,
due to the spacecraft’s slow motion at the far Moon point.
The three-dimensional and planar projections of the Earth-
Moon butterfly orbit families are shown in Fig. 12.

(vi) N-periodic orbits

ξ

Henon named a family of periodic orbits H5 [60,61], in
which  the  study  of  families  of  periodic  orbits  in  Hill’s
problem was initiated. Because of computer limitations at
the  time,  essentially  only  simple-periodic  symmetric
orbits were considered in H5, that is, orbits that intersect
the  horizontal  axis  in  two  points  only  and  which  are
symmetric with respect to that axis.
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ξ

Then  the N -periodic  orbit  was  defined  by  Henon  as
such  an  orbit  if  it  intersected  the  axis  2N times.
Research definition of the study was extended to double-

periodic  and  triple-periodic  symmetric  orbits.  The  three-
dimensional and planar projections of the Earth-Moon of
the 5-period family orbit families are shown in Fig. 13.
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(vii) Resonant orbits
The motion of objects in the solar system is extremely

complex but with high regularity. According to Newtonian
motion  mechanics,  the  gravitational  interaction  between
physical  forces  causes  this  law  of  motion.  One  of  the
interesting phenomenon is resonance orbitals. In the case
of periodic motion, resonance occurs when there is a simple
numerical relationship between orbital periods [79]. Reso-
nance orbits can have different phenomena such as mean
motion,  Laplace,  secular  and  Kozai  resonance.  The  phe-
nomenon of orbital-orbital resonance, where the period in
question represents the orbits of two or more objects, will
be described below.

p q
p : q

p

Consider  two  objects  A  and  B  of  arbitrary  mass  and
describe  their  possible  resonant  motion  relations.  In  the
two-body Kepler motion, the motion period of object B is

 and the motion period of object A is , so the orbital-
orbital resonance is defined by the parameter . In the
case  of  the  Earth-Moon  system,  object  A  represents  the
Moon  and  object  B  represents  the  spacecraft.  When  the
spacecraft  just  completed  orbits  around the Earth,  and

qthe  Moon  needs  to  complete  orbits  around  the  Earth,
the  spacecraft  and  the  Moon  formed  orbital  resonance.
For  example,  a  spacecraft  with  a  1:3  resonance  with  the
Moon  completed  one  orbit  around  the  Earth,  while  the
Moon completed three cycles around the Earth.

p : q

p : q

p
q

In a multi-body dynamic system, the ratio of  reso-
nance  to  the  period  of  the  resonant  object  is  not  exactly
equal.  When  the  dynamics  model  is  affected  by  more
than one gravitational force, the time of one full flight of
the  affected  object  is  not  always  constant.  However,  for
the  resonance  in  the  CRTBP,  for  example,  in  the
Earth-Moon CRTBP model,  the  time of  spacecraft  com-
pleting the Earth’s  circle is infinitely close to that of the
Moon completing the  circle. The ratio of orbital periods
is  not  rational,  but  an approximate  rational  fraction.  The
orbit  is still  closed when viewed in a rotating coordinate
system [79].

The planar of the 1:1, 1:2, 1:3, 1:4, 2:1, 2:3 and 3:2 re-
sonant orbit families in the Earth-Moon system are shown
in Fig. 14 and Fig. 15, respectively.
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4. Stability and bifurcation of periodic orbits
 

4.1    Stability of periodic orbit

X(x0, t)
ζ

x0

The study of the characteristics of periodic orbits focuses
on  their  stability.  A  periodic  orbit  is  said  to  be
stable when a small  change, ,  in the starting conditions

 does not lead to an appreciably different orbit. If, how-
ever,  the  particle  describing  a  periodic  orbit  drift  away
when slightly perturbed, then this orbit is said to be unsta-
ble.

The linear  and nonlinear  problems revolve  around the
behavior of the dynamical system at and in the neighbor-
hood  of  the  equilibrium solutions.  The  process  of  linea-
rization  presents  no  difficulty  at  the  Lagrangian  points,
nor  does  the  analysis  of  the  linear  system’s stability,  in

principle, lead to any complications. The well-known the-
ory  of  the  orbital  stability  of  these  linear  differential
equations  is  reviewed below to  improve the precision of
their  application to nonlinear systems.  The interpretation
of  Lyapunov’s ideas  and  the  work  by  LaSalle  and  Lef-
schetz, Cesari, and Coddington and Levinson is followed
in  part  and  the  anticipated  nonlinear  problems  discussed
by Szebehely [33].

Two standard methods to evaluate the stability of peri-
odic  orbits  were  discussed  by  Szebehely.  The  first,
Poincare’s approach, is the evaluation of the characteristic
exponents by the integration of the variational equations.
The problem of characteristic exponents was discussed by
Whittaker  [80]  and  followed  Poincare’s [21 ]  (also  see
Ince  [81]  and  Cesari  [82]).  The  second  approach  is  the
use  of  Darwin’s [48 ]  equation  of  normal  displacement,
the derivation of which was given by Birkhoff [83]. Other
forms  were  given  by  Message  [84].  A  discussion  of  the
relation between the second-order equation for the normal
displacement  and  the  fourth-order  variational  equations
was  given  by  Wintner  [85].  The  variational  equations
using the Thiele-Burrau regularizing variables were given
by  Rosenthal  [86].  The  physical  picture  is,  of  course,
weakened  by  the  fact  that  the  method  of  characteristic
exponents  and  of  normal  displacements  is  inherently  a
linearized  process,  which  often  furnishes  only  necessary
conditions for stability. The mathematical problem is the
solution  of  Hill’s differential  equations.  In  actual  prob-
lems,  the  nature  of  the  characteristic  roots  is  of  interest
only, and Floquet’s method is available [87]. No attempt
is made here to review the problem of stability in celestial
mechanics or the solutions of the restricted problem.

Goudas’s [50]  method  proposed  in  1963  and  Henon’s
work in 1965 are the significant studies of periodic orbit
stability  in  the  RTBP.  The  significance  of  characteristic
exponents goes beyond the stability problem, and it is not
inconceivable  to  expect  that  the  organization  of  families
of  periodic  orbits  is  greatly  enhanced  by  values  of  the
characteristic  exponents  as  shown  by  Henon  [57–60],
who  also  settled  the  linear  stability  question  of  the
Copenhagen problem.

Henon  evaluated  the  linear  stability  characteristics  of
the  periodic  orbit  families  of  the  Copenhagen  category.
Henon defined the horizontal stability parameters’ a, b, c,
d to  analyze  the  stability  of  the  periodic  orbits,  not-

 

−0.5 0 0.5 1.0
x

(a) 2:1 resonance

−1.0

−0.5

0

0.5

1.0
y

Pe
rio

di
c 

tim
e/

d

Moon
Earth L1 L2

24.93

26.44

26.88

27.08

27.19

27.25

y

(b) 2:3 resonance

−2 −1 0 1 2
x

−2

−1

0

1

2

Pe
rio

di
c 

tim
e/

d

MoonEarth

L1 L2

74.57
78.22
80.12
81.00
81.45
81.65
74.57
78.22
80.12
81.00
81.45

(c) 3:2 resonance

−1.0 −0.5 0 0.5 1.0
x

−1.0

−0.5

0

0.5

1.0

y

Pe
rio

di
c 

tim
e/

d

MoonEarth
L1 L2

102.59

52.80  

53.62 

54.10  

54.42 

54.62 

n n
Fig.  15      Planar  of  the  resonant  orbit  families  in  the  Earth-Moon
rotating coordinate frame (ratio of  ∶ )

626 Journal of Systems Engineering and Electronics Vol. 33, No. 3, June 2022



c
a = cos(πc)

ing that Darwin’s [49] stability index  is connected with
Henon’s parameter by the equation . Some of
Henon’s major conclusions are the following:

( f ) (g) (I)
(m)

(i)  The  classes  of  the  Copenhagen  problem  may  be
organized  in  two  groups  according  to  linear  stability
behavior. In the first group are class , class , class ,
and  class ,  and  so  this  group  contains  the  direct  and
retrograde satellite orbits and superior planetary orbits. In
the  second group are  all  the  other  classes.  Only  the  first
group  contains  stable  orbits  in  any  appreciable  number;
the members of the second group are almost all unstable.

a = a (C) C

∂C/∂a
−1 < a < 1

(ii) Preparing plots of the relation , where  is
Jacobian constant, only the first group seems to show va-
lues  of  appreciably  different  from  zero  in  the
range of stability, .

a (C) .
(iii) Collision orbits show no special behavior, and they

are found on the unstable parts of the curves 
a (C)(iv)  Henon  determined  the  function  numerically

for class (I) of the Copenhagen category. These synodically
retrograde  orbits  are  direct  orbits  in  the  fixed  system.
Henon also analyzed the stability of all  other families of
periodic. 

4.2    State transition matrix and stability index

φ(x0, t)

x0 t
Φ

φ(x0, t) x0

Let  represent the solution that results from nume-
rically integrating the system differential equation (1) star-
ting with the initial state  and using the time variate .
The state transition matrix  describes how the solution
flow  changes  with  respect  to  the  initial  state ,
and is defined [40] as

Φ =
∂φ(x0, t)
∂x0

. (9)

Φ̇

x0 t

The state transition matrix can be computed by numeri-
cally integrating the matrix differential equation  since

 and  are independent.

Φ̇ =
∂φ̇

∂x0
(10)

φ(x0, t0) = x0,It is worth noting that at the initial time, 
and therefore  the  initial  conditions  of  the  state-transition
matrix are

Φ0 ≡
∂x0

∂x0
= I

Iwhere  is  the  identity  matrix.  In  addition,  the  stability
index  was  defined  by  Breakwell  and  Brown  [27].  The

UXX

U x y z
Φ

Φ(tF ,0)
M

T
M =Φ(T,0)

(λi,1/λi)
Φ(tF ,0) M

vi = 1/2(λi,1/λi)

symmetric matrix  of the second partial derivatives of
 with  respect  to , , and  ,  were  evaluated  along  the

orbit. The state transition matrix of  at a re-crossing of
the x-z  plane is used to assist the convergence toward an
orbit  with  a  second  perpendicular  crossing  of  the x-z
plane, i.e., a periodic orbit. Stability is determined by the
eigenvalues  of  the  full  cycle  transition  matrix ,
also called the monodromy matrix ,  which is the state
transition  matrix  after  one  full  orbital  period ,  or

.  Two  of  the  eigenvalues  are  always  1.  The
other  four  are  in  reciprocal  pairs .  The  6×6
matrix  can be reduced to a 4×4 matrix  to pro-
duce  the  four  critical  eigenvalues  [27].  Two  stability
indices have been defined as the arithmetic mean of each
pair, . The stability indices can be calcu-
lated directly [88] from

v =
1
4

[
tr(M)+ /−

√
8+2tr (M2)− tr(M)2

]
where  tr(·)  is  the  trace  of  the  matrix.  Stability  requires
real values of v  between −1 and +1. It  means that,  if  the
stability index is less than or equal to one, the orbit is sta-
ble, and if the stability index is greater than one, it indicat-
es that the orbit is unstable. The larger the stability index
is, the faster the dynamics deviates from the orbit, that is,
the faster the orbit diverges. In general, the stability index
is  directly  related  to  the  orbit  maintenance  cost  and  in-
versely  proportional  to  the  transfer  cost.  In  general,  the
stability  index  increases  as  the  orbital  distance  from  the
Moon increases.

p/q = 1 : 1,1 : 3,2 : 3
p/q = 1 : 2

p/q = 2 : 1 3 : 2

In  this  paper,  the  stability  of  the  main  periodic  orbit
families  of  the  Earth-Moon  system  is  analyzed. Fig.16
and Fig.  17 show the stability index analysis  diagram of
each  periodic  orbit  family.  It  can  be  concluded  from
Fig. 16 that axial family, vertical family, butterfly family
and  halo  family  are  all  unstable  periodic  orbit  families.
NRHO  family,  DRO  family,  DPO  family  all  have  parts
that are stable. It  can be concluded from Fig. 17 that the
families  of  resonance  ratio  are  un-
stable,  and  the  family  of  resonance  ratio  is
partially stable, while most of them are unstable. Families
of  resonance  ratio  and   are  all  stable.
These results of the stability analysis can provide a good
reference value for choosing the Earth-Moon space orbit
of the mission. 
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Fig.  16      Stability  index  of  the  axial,  vertical,  halo,  DRO,  DPO,
NRHO  and  butterfly  periodic  orbit  families  in  the  Earth-Moon
system
 
 

4.3    Bifurcation of periodic orbit

Many families of periodic orbits, especially three-dimen-

sional  ones,  exist,  but  they  are  extremely  difficult  to
locate and compute, and a random numerical search will
never  be  successful.  Thus,  study  of  the  bifurcations,  in
which  several  families  come  together,  which  is  critical
and used as the basis of the study, is required.

A  bifurcation  is  a  break  in  the  structure,  or  behavior,
along a set of solutions. The bifurcation points that coin-
cide with a change in the order of instability of the original
solution encompass the traditional definitions of bifurca-
tions.  The  bifurcations  can  be  classified  as  traditional
bifurcations (see Fig.18), which occur with order of insta-
bility change in the original  family and other type bifur-
cations.  The  other  types,  including n -period  bifurcation,
quasi-periodic  bifurcation  and  modified  secondary  Hopf
bifurcation, occur without a change in the order of insta-
bility along the original.
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Fig. 17    Stability index of the resonant orbit families in the Earth-Moon system

ZHANG Renyong.: A review of periodic orbits in the circular restricted three-body problem 629



−1 −1

−1

1 1

1

Re Re

Re

(a) Tangent bifurcations (b) Period-doubling bifurcations

(c) Torus bifurcations

Im Im

Im

Fig. 18    Bifurcation occuring when two pairs of eigenvalues move
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rotating coordinate frame

A change in stability  properties  indicates  the presence
of  a  bifurcation  and  represents  an  intersection  between
one or  more different  families  of  solutions.  The families
of  solutions  considered  in  this  analysis  are  periodic  orb-
its  and/or  invariant  tori.  Each  type  of  bifurcation  corre-
sponds  to  a  distinct  type  of  stability  change,  i.e.,  the
change  in  the  eigen-structure  is  different  for  different
types of bifurcations. For a given mass parameter μ, there
are  15 different  types  of  traditional  bifurcations  possible
in the RTBP [40]. The traditional bifurcations are classified
as either common or rare.

The three common bifurcation types are fold (a kind of
tangent),  period-doubling,  and  torus  bifurcation  [40].
Rare bifurcations are the trifurcations, or the intersections
of  three  different  families  of  periodic  orbits,  which  are
characterized as a combination of fold.

The characteristics  of  the three types of  traditional  bi-
furcations are as follows:

(i)  Tangent  bifurcations,  which  occurs  when  a  pair  of
eigenvalues move to (or from) the unit circle from (or to)
the positive real axis. There are three types of this bifur-
cations  defined  for  periodic  solutions:  cyclic-fold,  pitch-
fork,  and  transcortical.  The  cycle-fold  bifurcation  repre-
sents only a change in stability of the family and no new
periodic  solutions  exist.  The  only  qualitative  change  is
the order of instability. The pitchfork bifurcation signals a
change  in  stability  along  the  original  family,  as  well  as
the appearance of a new family of periodic solutions. Of
course,  this  implies  that  a  hodograph corresponding to  a
new family of periodic orbits necessarily crosses the ori-
ginal hodograph. The stability of the new family at the bi-
furcation  point  must  be  equivalent  to  the  stability  of  the
original family across the intersection of the hodographs.
However,  while  there  is  a  change  in  stability  along  the
original family,  there is  no change along the new family
as it passes through the intersection point.

L1

(ii) Period-doubling bifurcations, which occurs when a
pair of eigenvalues move to (or from) the unit circle from
(or to) the negative real axis. The stability characteristics
of  the  original  family  change  as  the  eigenvalues  split  at
−1.  Periodic  orbits  that  are  members  of  the  new  family
have  periods  that  are  twice  the  length  of  the  period  that
corresponds  to  orbits  from the  old  family,  but  the  orbits
along the new family do not undergo a stability change at
the  bifurcation  point.  The  three-dimensional  and  planar
projections  of  the  Earth-Moon  period-doubling bifur-
cations orbit is shown in Fig. 19.
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(iii)  Torus  bifurcations,  also  called  Hopf  bifurcation,
which  occurs  when  two  pairs  of  eigenvalues  collide  on
the  unit  circle,  but  off  the  real  axis,  and  thus  branch  off
the unit circle into the complex plane. Consequently, the
order  of  instability  of  the  family  changes  by  two  at  this
type of bifurcation point. In general, these collisions yield
a  new  family  of  invariant  tori  about  the  single  original
periodic  solution  [89],  indicating  the  presence  of  new,
higher-dimensioned solutions. Both fold and period-dou-
bling bifurcations initially appear to be special cases of a
torus  bifurcation.  For  a  more  thorough  discussion  of
bifurcations, see [90].

v

|v| = 1

The bifurcation point is relative to the vertical stability
index . Hennon [57] has satisfactorily studied the inter-
section and existence of bifurcation of families of periodic
orbits, as well as the conditions for the appearance of va-
rious types of branching points. In the three-dimensional
version  of  this  problem,  only  a  few  numerical  exa-
mples  of  such  bifurcation  points  were  given  by  [71,91]
and  [77].  Markellos  [92]  focused  on  detecting  three-
dimensional  asymmetric  periodic  orbits  and  determined
the  typical  three-dimensional  asymmetric  periodic  orbits
of the bifurcating families. The bifurcations of families of
plane-asymmetric  periodic  orbits  with  families  of  space-
asymmetric  periodic  (three-dimensional)  orbits  occur
when  the  stability  index .  Whenever  the  stability
properties  change  across  a  family,  a  bifurcation  orbit  is
identified. The bifurcation signals the intersection of two
or more families of periodic orbits [93].

µ

Intersections  of  families  of  three-dimensional  periodic
orbits  that  define  bifurcation  points  were  studied  by
Papadakis and Zagouras [93]. The conditions of existence
for bifurcation points were discussed and an algorithm for
the numerical continuation of such points was developed
for different  values. Extensive investigation of periodic
motion  and  bifurcations  in  the  Sun-Earth/-Moon  system
for  the  collinear  Lagrangian  points  in  the  Earth-Moon
vicinity were completed by Howell and Campbell in 1999
[94].  A  number  of  bifurcations  and  intersections  repre-
senting the existence of  other  three-dimensional  families
were identified and various orbits were numerically com-
puted as members of these intersecting families.

Typically,  particular  solutions  were  discovered  by
numerical grid searches through phase space, and a third
dimension would clearly make the search unmanageably
large.  Once a  significant  number  of  periodic  orbits  were
available, many authors described not only their periodic
solutions, but also methods of determining the stability as
well  as  a  methodology  for  revealing  an  entire  family  of
solutions generated from a single starting point. Addition-

ally, families of such planar periodic solutions, as well as
their stability, were often mapped out for the entire spec-
trum of possible primary mass ratios. In the early 1960s,
in  contrast  to  the  two-dimensional  trend,  Goudas  and
Kazantzis  numerically  determined  tens  of  seemingly
unrelated  doubly-symmetric  three-dimensional  periodic
orbits  and  analyzed  their  stability  [95].  It  was  later  dis-
covered that the planar problem could be used to predict
at  which  points  three-dimensional  periodic  solutions
would bifurcate out of the plane. Isolating these so called
“vertical  self-resonant  orbits ”  became  the  method  of
choice for ultimately determining the more difficult three-
dimensional orbits [66,69,96]. Similar to the planar case,
families of these three-dimensional orbits were computed
and mapped for different mass ratios of the primaries. In
the 1970s, Markellos applied the mechanism for predicting
and  calculating n -period  bifurcating  solutions  from a  fa-
mily  of  particular  one-period  solutions  for  the  planar
RTBP  [97].  He  used  this  information  to  compute  many
new two- and three-dimensional orbits.  In the 1980s and
most of the 1990s, the search for new particular solutions
in the CR3BP was limited. 

4.4    Out-of-plane  bifurcation:  from  planar  to  three
dimensions

However, there remain many unanswered questions. First,
the full power of bifurcation theory has yet to be applied
to  the  three-body  problem.  For  instance,  while n-period
bifurcations  have  been  used  to  predict  new  particular
solutions  in  the  planar  problem,  they  have  not  yet  been
applied to the three-dimensional problem (n-period bifur-
cations  are  scarcely  mentioned  in  traditional  texts  on
bifurcation theory) [98–101]. Since many of the bifurcat-
ing three-dimensional families never degenerate into planar
trajectories, they may not, in fact, have been analyzed to
any  extent,  except  in  a  few  isolated  cases.  To  date,  all
three-dimensional  families  without  at  least  one  known
planar  member  can  only  be  determined  by  a  grid  search
in  a  three-dimensional  phase  space  or  by  a  systematic
evaluation  of  three-dimensional n -period  bifurcating  so-
lutions.  In  this  effort,  the  bifurcation  method  is  used  to
determine a large number of solutions [89,94].

Papadakis  et  al.  [93]  studied  bifurcations  of  families
near the triangular Lagrangian points. In 1999, Howell et
al.  [94]  completed an extensive investigation of  periodic
solutions and bifurcations in the Sun-Earth/-Moon system
for  the  collinear  Lagrangian  points  in  the  Earth/Moon
vicinity. Dichmann et al. [102] obtained numerical results
for  connections  between  the  Lyapunov,  halo,  axial,  and
vertical orbits in the vicinity of the collinear points in the
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Earth-Moon system using AUTO (a software for continu-
ation  and  bifurcation  problems).  In  2003,  Doedel  et  al.
[103] further applied AUTO to successfully map periodic
solutions near the collinear points to those in the vicinity
of  the  triangular  points  [104].  Their  study  also  included
numerical results for axial and vertical orbits in the vicinity
of the triangular points.

Grebow  [47]  gave  strategies  for  predicting  initial
guesses for solutions, based on first-order linear approxi-
mations, and locating bifurcations along a manifold were
offered.  Many  different  types  of  orbit  families  were  ge-
nerated,  including  planar,  axial,  and  vertical  families  of
orbits near all five Lagrangian points. A general assessment
of the stability of these solutions is also summarized. The
exact  location  of  the  bifurcation  orbits  can  be  computed
using continuation and a method of bisections [91,105]. 

4.5    Multiplicity bifurcation: from simple to
multi-period

Unlike  the  common  bifurcation  with  order  of  instability
change in original solution, which is discussed in Subsec-
tion  4.3,  other  types  of  bifurcations  do  not  change  the
order of instability of the original family. This kind of the
bifurcation is classified as rare which has three types. The
first  type  of  bifurcation  occurs  when  the  eigenvalue  on

λn = 1 (n >
2)

L2

the unit circle passes through an nth unit root, 
 and is an integer [100,101]. The three-dimensional and

planar projections of the n-periodic are plotted in Fig. 20.
These  bifurcation  values  help  to  locate  new,  different-
quality, n-periodic solutions [89]. The second type is the
generalization of the n-period branch, which is represented
here as a quasi-periodic branch. They produce new quasi-
periodic  solutions  that  appear  on  the  annulus  around the
original periodic solution. This quasi-period type of bifur-
cation  seems  to  appear  more  frequently  than  the  second
Hopf bifurcation; it is significantly different from the se-
condary Hopf because it does not trigger stability changes,
which  means  eigenvalue  collision  does  not  occur  on  the
unit  circle.  The three-dimensional  and planar projections
of  the  quasi-periodic  are  plotted  in Fig.  21. Finally,  the
third  type  of  bifurcation  is  generated  by  collisions
between two pairs of eigenvalues (excluding +1 and −1)
on  the  real  axis,  which  split  into  complex  planes.  In  the
last case, the order of instability does not change, but the
transfer of eigenvalues from real to complex constitutes a
qualitative change in the nature of the solution. The perio-
dic  orbit  of  the  third  type  bifurcation  did  not  plot  here.
The three-dimensional and planar projections of the Earth-
Moon  n -periodic  orbit  and  quasi-periodic  orbit  are
shown in Fig. 20 and Fig. 21, respectively.
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5. Practical computation techniques of
periodic orbits

In  the  20 century,  periodic  orbit  solutions  have attracted
interest because they are a key component in understand-
ing behavior in the non-integrable three-body problem. It
is  also  the  most  critical  technical  problem  that  human
beings  must  solve  in  deep-space  exploration.  Several
straightforward  methods  for  computing  periodic  orbits
are presented here.

In general, investigations concerning families of perio-
dic  orbits  approach  the  problem  in  various  ways  [94]:
generation of families of periodic solutions from a single
arbitrary orbit (both two- and three-dimensional); compu-
tation  of  three-dimensional  orbits  from  planar  solutions;
definition of a “family” based on mass ratio as the para-
meter  of  interest;  and  the  construction  of  links  between
families  by  investigation  of  the  relationships  between
families of planar orbits. All of the above approaches for
periodic solutions are based on the following methodolo-
gies:  analytical  solution  using  the  two-body  approxima-
tion; analytical solutions near equilibrium points; bifurca-
tion  approach  of  computation;  sweeping  of  computation
areas; and Poincare method. 

5.1    Organization of existing numerical results

Numerical methods for the computation of many different
types  of  periodic  solutions  have  evolved  in  the  last
60  years  owing  to  the  increasing  speed  and  accuracy  of

modern  computers.  Moreover,  once  a  single  periodic
solution is determined, neighboring solutions in the same
family are computed using a continuation method over an
additional constraint parameter; this method is extrapolated
to determine complete families of periodic orbits [78].

However, these calculations relied heavily on analytical
approximations  based  on  assumptions  concerning  the
structure of generating solutions near equilibrium points.
Thus, it was practically impossible to determine arbitrary
three-dimensional solutions. Nevertheless, there has been
an  enormous  amount  of  information  published  on  perio-
dic solutions since the early studies [94].

Definitions  of  the  members  of  certain  families  are
often  questionable  and  quite  arbitrary,  designed  only  to
satisfy  the  discoverer’s theorem  about  his  orbits.  In  the
following,  the  existing  incomplete  material  of  numerical
results  of  periodic  orbits  in  a  systematic  fashion  was
firstly  attempted  to  organize.  Then  detail  the  existing
methodologies  for  periodic  solutions.  Naturally,  certain
classifications  or  groups  of  orbits  and/or  computation
approaches  may  have  been  missed  because  of  limited
capacity.

µ = 0(i) Numerical studies of the case  are surprisingly
rare;  after the early work of Hill,  Kelvin,  and Jackson, a
systematic  search  for  periodic  orbits  was  made  only  by
Matukuma  [106−108]  and  co-workers  with  the  help  of
desk computers.

The  first  complete  set  of  numerical  results  was  publi-
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µ = 1/2

µ = 1/11

µ = 0.5 0.2

shed by members  of  Copenhagen Observatory under  the
direction of Stromgren during the period 1913–1939. The
mass  parameter  for  the  work  has  the  value  of ,
indicating that the primaries are equal. Prior to this under-
taking, Darwin, from 1897 to 1910 using , com-
puted several systematic but incomplete families of perio-
dic orbits.  At around the same time (1900–1917), Moul-
ton’s school  performed  analytical  and  numerical  work,
using in the latter mostly  and .

The  above  three  undertakings  all  use  values  of  the
mass  parameter  between approximately  0.1  and 0.5,  and
the majority of these computations took place prior to the
1930s.  All  three  aimed  at  establishing  sets  of  periodic
orbits,  mostly  by  numerical,  but  also  by  analytical.  For
these  reasons,  the  Stromgren-Darwin-Moulton  results
will form the first group of investigations to be presented.

µ � 0.012(ii) The second category is characterized by .
The  value  of  the  mass  parameter  is  approximate  to  the
Earth-Moon system. The first systematic investigation of
periodic  orbits  for  the  Earth-Moon  system can  be  found
in  the  work  of  Egorov  [109].  A  more  complete  and,  in
certain aspects, more extensive work appeared later [110]
by Broucke.  Rather special  types of periodic orbits  were
studied by Newton, Huang [111], and Arenstorf [112].

Therefore, the contributions in the second category are
all  concerned  with  the  Earth-Moon  model  and  corre-
spondingly  with  a  value  of  approximately  0.012.  They
establish families  of  periodic  orbits  and appear  in  the li-
terature  during the  period 1957–1963.  The orbits  of  this
group  are  best  represented  by  the  description  “periodic
lunar orbits”.

µ �
µ �

(iii)  Periodic  orbits  around  the  triangular  Lagrangian
points  comprise  the  third  category.  Such  orbits  are  dis-
cussed  in  considerable  detail  as  continuations  of  the
infinitesimal elliptic orbits in Szebehely [33] (Chapter 5).
The  two  values  of  the  mass  parameter,  for  which  such
families  are  treated  here,  are 0.012  14  (Earth-Moon
system) and  0.000 953 8 (Sun-Jupiter system).

µ �
(iv)  The  fourth  category  contains  non-periodic  orbits

computed  for  the  previously  mentioned  value  of 

0.012.  The  practical  implications  of  these  orbits  are  sig-
nificant in space activities. Those investigations resulting
in families of orbits will be our primary focus. Our scope
is  painfully limited by this  restriction,  but  it  is  neverthe-
less believed that no other approach is feasible. The pre-
viously mentioned work by Egorov [109] is the first refe-
rence,  followed  by  Thuring  [113],  Buchheim  [114],  and
Szebehely [115] et al., among others. These orbits will be
referred to as lunar trajectories since either the entire family
or at least some of its members can be used for Earth-to-
Moon missions.

0.1 ⩽ µ ⩽ 0.5

(v)  The  fifth  category  contains  non-periodic  orbits
computed for purposes of stellar dynamics. The values of
the mass parameter used are in the same range as for the
Copenhagen  group,  namely ;  however,  the
orbits are not periodic and are highly specialized. Propo-
nents  of  these  undertakings  are  Kuiper  [116],  Kopal
[117], Abhyankar [118], and Gould [119], among others.
This  category  is  designated  “applications  to  binary  sy-
stems”.

(vi)  The  next  category  contains  three  special  topics:
asymmetric  and  symmetric  periodic  orbits  in  the  sun-
Jupiter system computed by Message, asymptotic periodic
orbits  at  the  collinear  Lagrangian  points  established  by
Deprit  and Henrard [120],  and a  three-fold analytic  con-
tinuation  of  a  second-kind  periodic  orbit.  These  are  pre-
sented under the title “additional periodic orbits”.

0 ⩽ µ ⩽ 1

(vii) The final category is the modern three-dimensional
method.  Farquhar  first  used  the  name  “halo”  and  advo-
cated using spacecraft in these orbits. Then, “almost recti-
linear” halo orbits, also called NRHOs, near the collinear
by  Howell  [76],  were  investigated.  Retrograde  periodic
orbits were studied by Zagouras [71] and Benest [121] for

. Meanwhile, the relevant database generation is
based on a grid search that incorporates a new discretiza-
tion  scheme  centered  around  fundamental  periodic  orbit
families,  and a  robust  differential  corrector  implemented
with  a  full  second-order  trust  region method,  which was
investigated by Restrepo [122,123].  The previous contri-
butions are summarized in Table 2. 

 

Table 2    Previous contributions of the circular restricted three-body problem and periodic orbits

Reference title Principal contributor Year General description μ
n-body problem Newton 1687 Solution to the n-body problem Optional

Circular restricted Euler 1772 Formulation Optional

Three-body problem

Lagrange 1772 Equilibrium solutions Optional
Jacobi 1836 Jacobi constant Optional
Hill 1877–1878 Motion of the Moon 0

Poincare 1892–1899 Existence of periodic orbit Optional

Copenhagen category
Darwin 1897–1910

Families of periodic orbits
1/11

Moulton 1900–1917 1/5,1/2
Stromgren 1913–1939 1/2
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5.2    Two-body approximation (two/three
dimensional)

µ = 0

µ = 0

x (t)
µ > 0
x (t)

The  distinguishing  characteristic  of  the  problem  with  a
small mass ratio is that it is in the neighborhood of 1 with
a  known  analytical  solution:  the  case ,  or  the  two-
body  problem referred  to  rotating  axes.  One  of  the  app-
roaches in the search for periodic orbits in Broucke’s [88]
study  was  to  use  the  initial  conditions  for  the  two-body
problem to find good approximations of the initial condi-
tions  for  the  periodic  orbits  in  the  three-body  problem.
Theoretically,  it  should  be  possible  to  start  from  the
known solution for  and make an analytical continu-
ation  study  for  positive  values.  This  method  has  been
effectively  used  by  many  authors,  notably  by  Poincare
[21] among  the  earlier  workers,  and  by  Wintner  [124],
Barrar  [125],  and  Arenstorf  [112]  in  more  theoretical
investigations.  Then,  the  existence  of  periodic  solutions

,  deriving  Keplerian  motion  of  equations  of  motion
for  the  plane-RTBP  for  small  were  shown,  which
are near the generating solutions  belonging to arbitrary
integers.

The two-body approach was quite  fruitful  because the

µsmall mass ratio  of the problem is close to zero. If the
mass  ratio  is  zero,  the  solution  is  known because  this  is
simply the two-body problem represented in a system of
coordinates that  is  rotating with a constant  angular  velo-
city. To obtain initial conditions, the initial conditions for
the two-body problem were used and then a rotation was
applied [88]. 

5.3    Analytic solution around Lagrange points

In 1920, Moulton [22,52] was solely devoted to analytical
methods  for  approximating periodic  motion near  all  five
equilibrium points,  near  which is  the  available  lineariza-
tion.  A  power-series  method  to  develop  third-order  app-
roximations  for  solutions  near  the  triangular  equilibrium
points was employed.

Owing to the increasing speed and accuracy of modern
computers,  many  significant  studies  on  stability  and
bifurcations  for  in-plane  periodic  solutions  were  under-
taken  in  1965  [58].  The  work  established  an  important
link  between  families  of  solutions  in  the  RTBP.  At  the
same  time,  numerical  solutions  for  in-plane  periodic
motion  in  the  vicinity  of  the  triangular  equilibrium  po-
ints  [126,127]  and  vertical  orbits  near  the  collinear

Continued

Reference title Principal contributor Year General description μ

Periodic lunar
orbit

Egorov 1957

Families of periodic orbits ~0.012

Newton 1958
Broucke 1962
Huang 1962

Arenstorf 1963

Motion around
the triangular

Rabe 1961
Families of periodic orbits

~0.000 95
Rabe 1962 ~0.012

Lagrangian points Deprit 1965 — —

Lunar trajectories

Egorov 1957

Families of special
non-periodic orbits

~0.012

Thüring 1959
Buchheim 1959
Ehriche 1962

Szebehely 1964
Pierce 1965

Standish 1965

Application to
binary systems

Kuiper 1941

Families of non-periodic
orbits

0.1–0.5
Kopal 1956

Abhyankar 1959
Gould 1959

Additional periodic orbits

Message 1959 2:1 commensurability ~0.00095
Deprit 1965 asymptotic-periodic several

Szebehely 1965 1:3 commensurability 0.2–0.24
Knowles 1959 — —

Application to Earth-
Moon systems

Farquhar 1968–2017 Families of
0–0.5Howell 1984–2017 halo (NRHO) orbits

Restrepo 2017 and all planar group
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Lagrangian  points  [62]  in  the  Earth-Moon  system  were
obtained.  Furthermore,  Szebehely  [33]  published  “The-
ory  of  orbits:  the  restricted  problem  of  three  bo-
dies”; included in his study is an extensive compilation of
both analytical and numerical analyses in the RTBP.

L1 L2 L3

m1 m2

m1 m2

m1+m2

m1

m2

m1

m2

In  his  approach  in  the  search  for  periodic  orbits,
Brouck used the limiting cases of families that are known
by analytical considerations. There are nine known situa-
tions in which the existence of periodic orbits can be pre-
dicted  analytically.  Three  cases  correspond  to  the  retro-
grade  infinitesimal  elliptical  orbits  around  the  collinear
Lagrangian points , , and . Brouck [88] described
these  solutions  in  a  general  approximate  initial  solution.
The six other solutions are all of circular type and are jus-
tified  by  two-body  considerations.  In  two  solutions,  the
distance from the satellite to the main masses  and 
is  supposed  to  be  large  in  comparison  with  the  distance
from  to  ,  so  that  the  motion  can  be  considered
around the system , which may, in a first approxi-
mation,  be  considered  as  one  single  body.  In  the  other
four solutions, circular motion around one main body, 
or , is considered, and it is neglected in the other one.
The  approximation  is  valid  if  the  radius  of  the  circular
motion is small enough compared with the distance of 
to .  Taking  the  possible  motions  in  both  directions,
direct and retrograde, one has six approximated solutions.

In  1973,  Henon  [66,67]  expanded  his  analysis  to  in-
clude vertical stability of periodic solutions in the RTBP.
Farquhar  [34]  obtained  third-order  approximations  for
quasi-periodic  motion  near  the  trans-lunar  Lagrangian
point in the Earth-Moon system using a Linstedt-Poincare
method.  A  few  years  later,  Richardson  and  Cary  [128]
developed,  via  a  method  of  successive  approximations
truncated  to  the  fourth  order,  a  model  for  quasi-periodic
motion in the vicinity of the interior Lagrangian point for
the Sun-Earth-Moon system.

A  corrections  scheme  in  1977  that  quickly  computed
asymmetric  periodic  solutions  for  the  Stormer  problem
was  also  created  by  Markellos  [92].  The  scheme  proves
invaluable for obtaining solutions with no visible symme-
tries.  Furthermore,  the  scheme  was  successfully  applied
to  the  CRTBP,  and  the  stability  of  the  solutions  was
assessed using the methods developed by Henon [129].

In  1984,  a  three-dimensional  method of  regularization
originally  developed  by  Howell  [76],  was  applied  in  the
restricted  problem  and  approximations  developed  for
“almost rectilinear” halo orbits near the collinear points.
A  thorough  numerical  investigation  of  halo  orbits  was
also completed [130]. The improved approximations that
included  fourth-order  terms  were  developed  by  Zagou-
ras  [77]  and  a  correction  scheme  also  was  applied  to
obtain numerical results for vertical and axial orbits near

the triangular equilibrium points. 

6. Grid search of  planar periodic  orbits/con-
structing database

µ = 0

x0 y′0 x0

y′0

y′0

x0,0,0,y′0

A grid-search method was presented by Broucke [88], in
which the  initial  conditions  are  a  first  approximation for
periodic  orbits  in  the  RTBP  with  a  small  mass  ratio.  It
was  found  that  in  some  cases  the  periodic  orbits  corre-
sponding  to  do  not  exist  when  the  Earth-Moon
mass ratio is used, and that in other cases periodic orbits
exist  that  have  no  corresponding  orbits  in  the  two-body
problem. Broucke systematically explored some areas of
initial conditions  and  . The values of  from −4 to
4 with steps of 0.1 were explored in the earlier stages of
the  work.  Upper  and  lower  limits  for  the  values  of 
were determined in a different way. The so-called escape
or parabolic velocities were taken as approximate limits.
In other words, the initial velocity  was taken such that
the total energy (relative to the inertial axes) is negative.
Using the synodical initial conditions , the inertial
energy of the satellite may be written in the form

E =
1
2

(x0+ y′0)2−
(

m1

r1
+

m2

r2

)

y′0

where E  is  restricted  to  be  negative,  and  then  the  upper
and lower limits for  were obtained.

The  grid  search  method  was  first  introduced  in  1974
[131] as a systematic way to compute complete networks
of families of periodic orbits of non-integrable systems of
two  degrees  of  freedom,  contained  in  a  given  region  of
the relevant space of initial conditions. Since then, it has
been  used  for  the  numerical  treatment  of  a  number  of
dynamical systems, among which are, notably, the RTBP
and Hill’s problem including their variants (Markellocite
[131–133], Henon [98,134], Kanavos [135], Russell [136,
137]).

The grid-search method [138] for the three-dimensional
case  is  straightforward  but  requires  a  twofold  extension:
one  in  the  direction  of  scanning  through  two,  instead  of
one, variables; and another in the direction of applying it
to  more  types  of  symmetric  motions.  Arbitrary  three-
dimensional periodic orbit calculations are almost impos-
sible using a grid search method when considering com-
putational  complexity.  The  latter  extension  is  due  to  the
fact that two distinct types of symmetric motions are pos-
sible  and  have  indeed  been  found.  A  hierarchical  grid-
search method was developed for systematically searching
three-dimensional periodic orbits around irregular bodies
by  Yu  [37,139–142 ].  Kazantzis  [95]  presented  an  app-
roach  dealing  only  with  the  case  of  doubly  symmetric
motions and to the grid search applied for their discovery.
The  grid-search  method  applied  for  locating  the  initial
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conditions  of  doubly-symmetric  periodic  orbits  in  three
dimensions,  namely  an  orbit  of  initial  state 

, is periodic of double symmetry.
Recently, Restrepo [122] presented a broad database of

planar,  axially  symmetric  three-body  periodic  orbits  for
planets  and  main  planetary  satellites  in  the  Solar,  Sun-
Earth  and  Earth-Moon  system  that  has  been  generated
and  made  available  online.  The  database  generation  is
based on a grid search that incorporates a new discretization
scheme centered around fundamental periodic orbit fami-
lies, and a robust differential corrector implemented with
a  full  second-order  trust  region  method.  The  solutions
include  periodic  orbits  in  the  vicinity  of  the  secondary
orbits that circle the primary, and more complex solutions
that  orbit  both,  allowing  for  transitions  between  them.
Descriptive  nomenclature  was  developed,  and  a  detailed
characterization of the solutions used.

With the development of research and the improvement
of computing power, a large number of planar and three-
dimensional  periodic  solution  families  can  be  calculated
by numerical methods. However,  due to the existence of
numerous periodic orbits in three-dimensional space, it is
impossible  to  calculate  all  the  orbits  by  the  method  of
random  numerical  search,  so  it  must  be  combined  with
approximate analytical method to greatly improve the cal-
culation speed and find more periodic orbits. 

7. Stationkeeping of periodic orbit
Since  the  collinear  vibration  points  are  unstable  for  all
restricted three-body systems,  orbital  control  is  required.
The primary goal of orbital control is to maintain orbital
stability  of  a  spacecraft  near  a  nominal  orbital,  which
may be a  Lissajous reference trajectory or  a  periodic  re-
ference  trajectory.  For  the  mission  of  Lagrange  point  in
the Earth-Moon system, stationkeeping operation must be
carried out about once a week in order to keep the space-
craft  in  orbit  for  a  long  time  due  to  the  unstable  orbit
[143]. Many researchers have explored the issue of libera-
tion-point residents in the Sun-Earth and Earth-Moon sys-
tems  [144−149].  There  are  a  variety  of  approaches  to
orbit  maintenance in the Earth-Moon system, but all  can
be  generally  classified  as  “short-term ”  and  “long-term ”
stationkeeping  strategies,  which  braced  on  the  design
ideas  of  a  periodic  orbit  maintenance  strategy  mainly
including a  Target-point  approach and the Floquet-mode
approach [150]. Both use maneuvers executed at discrete
time intervals.  The analysis includes some investigations
of a number of the problem parameters affecting the overall
cost [151,152].

The target-tracking mode, as presented by Howell et al.
[153–155], which is based in Breack-well’s ideas to track
the nominal orbit, guides the detector to the desired posi-

ti ti

tion through a reasonable design control strategy. It com-
putes  correction  maneuvers  by  minimizing  a  weighted
cost  function.  The  cost  function  is  defined  in  terms  of  a
corrective  maneuver  as  well  as  position  and  velocity
deviations from a nominal orbit at a number of specified
future times . The non-final state vectors at each time 
are  denoted  as  “target  points ”.  The  target  points  are
selected along the trajectory at discrete time intervals that
are downstream of the maneuver.

The  floquet  mode,  as  developed  by  Simo  et  al.  [156,
157],  based  on  the  invariant  manifold  structure  of  the
periodic  orbit,  maintains  the  divergence  tendency  of  the
unstable orbit by maintaining the orbit [150], and then the
spacecraft  can  finally  be  guided  to  the  target  orbit.  The
Floquet module associated with the monodromy matrix is
used  to  determine  the  unstable  components  caused  by
local  errors.  Both  of  these  methods  have  been  well
applied in many complex multi-body system models. 

7.1    Short-term stationkeeping

∆V

∆V

A loose fit reduces the total  cost of the stationkeeping
corrections  for  ISEE-3.  A  precise  reference  orbit  is  not
necessary,  however,  because  the  spacecraft  is  loosely
controlled  about  the  approximate  halo  path  [151].  The
loose  fit  reduces  the  total  cost  of  the  stationkeeping
corrections. A numerical algorithm has been developed to
compute a velocity correction at any point on the traject-
ory  that  will  minimize  the  distance  between  the  satellite
orbit and the nominal halo path.

L2 L1

L2

The “short-term” approach applies to the execution of
short-term  maintenance  objectives  around  the  Lagrange
point. Farquhar [23,70] and Breakwell et al. [26,157,158]
have  conducted  extensive  studies  on  optimal  short-term
strategies, some of which are based on Floquet theory to
eliminate  unstable  error  parts.  Janes  [159]  designed  a
global  optimal  control  algorithm  for  the  Sun-Earth  syst-
em . ARTEMIS mission is in operation [1], and  and

 quasi-periodic  orbit  are  maintained  only  once  for  1−
2  revolutions  through  the  direct  optimization  algorithm
[160]. It was initially known from orbit maintenance data
that approximately 60 maintenance maneuvers were per-
formed  [161].  Scheeres  implemented  the  feedback  law
specified by the instantaneous eigenvalue and eigenvector
structure  of  the  trajectory  to  maintain  the  short-term
dynamic control method [162].

A spacecraft  is  subject to the dynamical nonlinearities
inherent in the problem when it is forced to follow a no-
minal  path  derived  with  linearized  equations  of  motion.
Such non-linearities were treated by Wie [163] as trajec-
tory-dependent,  persistent  disturbance  inputs  because
they  are  functions  of  spacecraft  position,  velocity,  and
acceleration. A disturbance accommodating control tech-
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nique,  which  was  successfully  applied  to  a  space-station
control  problem [163,164],  as  well  as  flexible spacecraft
control problems [165–167], was also successfully utilized
by Hoffman [168] to reduce fuel expenditure for the halo-
orbit  control  problem  in  an  Earth-Moon-spacecraft  sys-
tem. It was also shown that the method can be used as an
iterative  method  for  generating  a  large,  complex,  quasi-
periodic  Lissajous  trajectory  starting  with  a  first-order
reference  trajectory.  The  trajectory-dependent  nature  of
the persistent  disturbances,  however,  was not  considered
by Hoffman [168].

L1 L2

L1

L2

A variety  of  stationkeeping  strategies  were  previously
investigated for applications in the Sun-Earth system and
near  the  Earth-Moon  Lagrangian  points  [169].  To  be
operationally useful for the ARTEMIS mission, a station-
keeping  strategy  must  satisfy  several  conditions:  utiliza-
tion of high-fidelity ephemeris models, yielding of optimal
solutions,  and  applicability  to  Earth-Moon  or  
Lagrangian-point  orbits  and  any  transfer  between  them
[170]. Numerous references offer discussions of stability
and  control  for  vehicles  at  both  collinear  and  triangular
Lagrangian-point locations. Hoffman [168] and Farquhar
[70] both generated analysis and discussions for stability
and control of spacecraft in Earth-Moon collinear  and

 locations, respectively, within the context of classical
control theory and/or linear approximations. Renault and
Scheeres  offered  a  statistical  analysis  approach  [171].
Howell  [172]  addressed  the  use  of  Floquet  theory  to
select  stationkeeping  maneuvers  to  eliminate  unstable
modes  associated  with  a  reference  orbit.  Gomez  et  al.
[173]  independently  developed  and  applied  the  Floquet-
mode  approach  specifically  to  translunar  Lagrangian-
point  orbits.  Marchand  and  Howell  [174,175]  discussed
stability including the eigenstructures near the Sun-Earth
locations. Folta and Vaughn [176,177] presented an ana-
lysis  of  stationkeeping  options  and  transfers  between
Earth-Moon locations and described the use of numerical
models  that  include  discrete  linear  quadratic  regulators
and  differential  correctors.  Based  on  a  comparison  of
Lagrangian-point  orbit  stationkeeping  methods  by  Folta
et  al.  [160,178]  and the  imposed operational  constraints,
it  was  determined  that  the  optimal  continuation  strategy
offered a flexible method for maintaining the ARTEMIS
Earth-Moon Lagrangian-point  orbits.  Fundamentally,  the
optimal continuation strategy is designed to maintain the
spacecraft  in  the  vicinity  of  a  Lagrangian-point  orbit  for
1−2 revolutions downstream [36,179]. 

7.2    Long-term stationkeeping strategy

Pavlak and Howell [180] demonstrated a long-term orbit
maintenance  technique  incorporating  multiple  shooting.
Folta et al. [160,161,178,181], Woodard et al. [160], and
Sibeck  et  al.  [182]  provided  both  a  review  of  various

Earth-Moon  Lagrangian-point  orbit  stationkeeping  me-
thods,  as  well  as  detailed  operational  stationkeeping  and
transfer results for the ARTEMIS mission.

The long-term stationkeeping costs are also an important
factor  in  determining  the  feasibility  of  such  systems.  In
1971,  Farquhar’s [70 ]  investigation  of  the  use  of  halo
orbits  to maintain a  continuous communications link be-
tween a lunar ground facility and the Earth also included
an  examination  of  the  stationkeeping  costs.  Extensive
work  on  optimal  stationkeeping  strategies  using  Floquet
modes for halo orbits in the Earth-Moon system was later
completed by Simo et al. [157]. In the latter approach, the
unstable subspace that is available from dynamic systems
theory  is  used  to  develop  a  stationkeeping  strategy.  Sta-
tionkeeping analyses of Earth-Moon halo orbits were also
completed  by  Howell  et  al.  [153,155,183]  and  Go-
mez  et  al.  [150,158,184].  Scheeres  et  al.  [185]  and  Re-
nault [171] investigated the generalized optimal placement
of  statistical  control  maneuvers  applied  to  orbits  in  the
Earth-Moon RTBP. The orbits in these studies are typical
of those that might be used for lunar coverage; they also
provide an additional benchmark for stationkeeping costs
[186]. Grebow [78] adapted models created by Folta [176]
in  which the  patch points  that  define  a  Lagrangian-point
orbit from a generator are targeted in STK.

At  the  same time,  there  are  some "long-term" mainte-
nance methods, usually require the spacecraft to meet the
terminal mission constraints, and at the same time, not the
optimal  solution.  For  example,  the  approach  adopted  by
Grebow[78]  and  Folta[178]  targets  a  strictly  maintained
baseline trajectory. The "long-term" maintenance method
proposed  by  Pavlak[180]  is  flexible  and  can  maintain
mission orbit through multiple shooting. 

8. Summaries  of  applications  of  periodic
orbits

With  the  increasing  demand  for  deep  space  exploration
missions,  it  is  very  important  to  study  the  periodic  orbit
based  on  the  model  of  three-body  problem  system,
because the orbit is the core of rapid design and calculation
of practical complex multi-body dynamic mission orbits.
In the three-body problem, there are innumerable periodic
orbits in the region of space. They include orbitals and all
kinds  of  symmetry  and  variety.  In  order  to  make  use  of
these orbital types in dynamical problems without analytic
solutions, we must understand the spatial structure of the
various orbital types as well as parameterize and classify
them as much as possible. Designing practical tasks suc-
cessfully and efficiently requires a new perspective and a
more comprehensive understanding of the solution space,
which  is  imperative  and  also  a  daunting  task.  There  are
seven Lagrangian  points  in  the  vicinity  of  the  Earth:  the
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L1 L2 and  Lagrangian points of the Sun-Earth system and
the L1−L5  Lagrangian  points  of  the  Earth-Moon  system
[187−192].  Owing  to  its  unique  spatial  position  and
dynamic characteristics, the translation point can be used
not  only  as  an  excellent  position  for  space  observation
[193],  but  also  as  a  transit  point  for  interplanetary  low-
energy transfer [194–196].

A  summary  of  typical  Sun-Earth  and  Earth-Moon  sy-
stem  Lagrangian-point  missions  so  far  are  presented  in
Table  3.  In Table  3,  the  superscript  ‘1 ’  represents  Sun-
Earth system, ‘2’ represents Earth-Moon system, ‘*’ rep-
resents cancelled mission, ‘#’ represents unknown at this
time. Several conclusions drawn from Table 3 are analy-
zed as follows.

 
 

Table 3    Applications of periodic orbit missions

Mission Operator Orbit/Type Scientific objective Year Launch/Dry mass/kg References

ISEE-3 NASA, ESA L1/L2-Halo1 1st mission Solar wind, Earth’s magnetic field 1978 479/390 [206–212]
WIND NASA L1-Quasi-halo1

Solar wind/Earth’s magnetosphere monitor 1994 1 250/950 [13–17]
SOHO NASA, ESA L1-Halo1

Solar observatory 1996 1850/610 [213–217]
ACE NASA L1-Lissajous1

Energetic particles solar wind 1997 757/562 [218–220]
WMAP NASA L2-Lissajous1

Cosmic microwaves, Background radiation 2001 835/763 [221,222]
Genesis NASA L1-Quasi-Halo1

Solar wind particles samples and particles 2001 636/494 [20,175,223]
Herschel ESA L2-Halo1

Far-infrared telescope, Formation of galaxies 2009 3 400/2 800 [224–233]
Chang’e−2 China L2-Halo1

Extend mission, Visited asteroid 2010 2 480/1 180 [234–237]
GAIA ESA L2-Halo1

Galactic structure, Astrometry 2013 2029/1 392 [238–241]
LISA ESA L1-Quasi-Halo1

Gravitational wave 2015 1910/810 [242,243]
DSCOVR NASA, ESA L1-Lissajous Space weather/climate Earth observation 2015 570/307 [244–246]

Artemis NASA L1-Quasi-Halo1 1st mission Extend mission, Lunar magnetosphere 2007 128/77
[1,160,

244–248]
Que-qiao China L2-Halo2

Communication relay 2018 425/325 [249–251]
DRO China DRO Earth-Moon space exploration 2022 # #
TESS NASA 2:1Resonant2

Search exoplanets 2018 362/317 [9–12]
LOP-G NASA, Russia NRHO2

Lunar station, Space gateway # # [4–8]
JWST NASA, ESA L2-Halo1

Space telescope, Universe observatory 2021 6 500/# [3,252,253]
IXO NASA, ESA, JAXA L2-Lissajous1

International X-ray observatory # # [254,255]
Stellar imager NASA L2-Halo1

Interferometry of stellar surface # # [177,256–259]
Eddington ESA L2-Halo1

Earth-like planets, Stellar observations 2003* # [260–262]
Darwin ESA L2-Halo1

Search for life 2007* # [263]
TPF NASA L2-Halo1

Detecting planets 2007* # [264,265]

First, NASA has an absolute leading role in the number
of scientific missions, followed by ESA, then by countries
such as China, Japan, and Russia.

L1

L2

Second, the scientific missions that have been launched
or  are  currently  running  are  mainly  in  the  periodic  or
quasi-periodic orbits of the Sun-Earth system, or in the 
and  Lagrangian periodic orbits. The number of missions
in the Earth-Moon system is relatively small, but from the
recent  project  plan  it  can  be  seen  that  the  Earth-Moon
system periodic orbit missions show an increasing trend,
one that is getting closer to human life and science explo-
ration and practice in the Earth-Moon space.

Third, each Lagrangian-point mission plan is a scientific
exploration  that  is  significant  to  human  science  and  the
search for the origin of life in the universe. It is particularly
noteworthy  that  every  scientific  mission  has  had  a  long
lifetime,  from  planning  to  final  launch,  some  even  for
decades.  Owing to  the  complexity  of  the  mission design
or the huge amount of funds to be invested, it is regrettable
that  many  good  scientific  planning  missions  have  to  be
cancelled after many years of development.

Finally, the mission design and control problems of the
periodic orbits in the three-body system are very compli-
cated technically. It is even necessary to consider the four-
body  problem in  a  three-body  system with  strong  nonli-
nearity [197–199]. Earth-Moon space will be the first step
for human beings entering deep space. In the near future,
increasingly more manned space missions will be carried
out  in  Earth-Moon space.  The construction of  the Earth-
Moon space communications hub, navigation service sys-
tem, space station, science laboratory, and habitation mo-
dule will be fully considered. This will bring opportunities
in  the  deep research and application of  Earth-Moon sys-
tem periodic orbits, also including near Earth technology
research  [200–205].  At  the  same  time,  due  to  the  extre-
mely high reliability requirements of manned missions, it
also  brings  higher  technical  challenges  to  the  design,
computation,  and  control  of  periodic  orbit  missions.
Therefore,  scholars  need  more  systematic  understanding
of  Earth-Moon  system  periodic  orbit  missions,  which  is
the purpose of this article.
 

ZHANG Renyong.: A review of periodic orbits in the circular restricted three-body problem 639



9. Conclusions
Recent research and studies in the field of periodic orbits
of the RTBP are consolidated and deeply discussed in this
article. The development of the discovery and classification
of  the  periodic  orbit,  including  planar  and  three-dimen-
sional  types,  are  first  introduced  and  consolidated.  This
classification  includes  various  classes  of  problems,  such
as the Poincare problem, Moulton’s analysis, Stromgren’s
families, Hill’s case, and those of other three-dimensional
periodic  orbits.  The  computation  methods  of  periodic
orbits are also consolidated for all  families. The stability
and  bifurcation  of  periodic  orbits  are  discussed.  Some
families  of  periodic  orbits  can  be  discovered  by  their
bifurcation characteristics. In addition, a modified station
keeping method and its applications in periodic orbits of
the  RTBP  are  reviewed.  In  the  end,  the  RTBP  model  is
only an ideal theoretical model. Although it is very useful
for  human  understanding  of  the  cislunar  space,  it  is  still
different  from  the  actual  mechanical  model.  There-
fore, the orbit design research of cislunar space exploration
engineering mission oriented to the actual ephemeris will
be challenging research. 
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