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Abstract: Driven by the improvement of the smart grid, the
active distribution network (ADN) has attracted much attention
due to its characteristic of active management. By making full
use of electricity price signals for optimal scheduling, the total
cost of the ADN can be reduced. However, the optimal day-
ahead scheduling problem is challenging since the future electri-
city price is unknown. Moreover, in ADN, some schedulable vari-
ables are continuous while some schedulable variables are dis-
crete, which increases the difficulty of determining the optimal
scheduling scheme. In this paper, the day-ahead scheduling
problem of the ADN is formulated as a Markov decision process
(MDP) with continuous-discrete hybrid action space. Then, an
algorithm based on multi-agent hybrid reinforcement learning
(HRL) is proposed to obtain the optimal scheduling scheme. The
proposed algorithm adopts the structure of centralized training
and decentralized execution, and different methods are applied
to determine the selection policy of continuous scheduling vari-
ables and discrete scheduling variables. The simulation experi-
ment results demonstrate the effectiveness of the algorithm.
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1. Introduction

With the rapid development of science and technology,
the load demand of users continues to increase and the
requirements for environmental protection are getting
higher. Therefore, it is necessary to improve the traditional
distribution method of uniformly generating electricity
from large power plants and then flowing to the load
nodes through the superior grid, because this method has
the problems of high supply pressure during peak hours
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and large power loss during transmission. These problems
can be solved by introducing the distributed generation
(DG) units and battery energy storage systems (BESS).
Meanwhile, the energy consumption can be reduced by
interrupting some unnecessary load on the user-side. The
traditional distribution network can no longer achieve the
purpose of active management. Therefore, active distribu-
tion network (ADN) is proposed, which can actively
manage the DG units, the BESS and the user-side.

In practical applications, optimal scheduling is the key
point of active management of the ADN. Many resear-
ches have focused on the BESS and user-side due to their
controllability and flexibility of scheduling. For example,
the mixed-integer conic programming (MICP) is applied
to the scheduling of energy storage [1]. In [2—4], electric
vehicles were regarded as the BESS, and then different
optimization algorithms were used to obtain the optimal
charging or discharging scheduling. The similar algori-
thms are also applied to demand response of the user-
side [5-7]. The basic idea of these methods is to formulate
the scheduling problem as a mixed integer nonlinear pro-
graming (MINLP), and then the optimal policies are
explored through different optimization algorithms. For
example, in [8], the MINLP was linearized to mixed integer
linear programing (MILP), and the branch and bounded
method was used to observe the optimal solution. The
authors of [9] directly applied the teaching & learning
based optimization (TLBO) algorithm to obtain the optimal
value of the MINLP. These scheduling methods have all
been verified to be effective, but only considered from a
single aspect of the BESS or the user-side, which may
lead to poor performance in other aspects. Therefore,
many scheduling approaches for the overall architecture
of the ADN have been proposed. For instance, the studies
in [10] proposed a multi-stage optimization approach for
the scheduling of the ADN. In addition, the ADN was
regarded as a whole for modeling, and then different opti-
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mization methods were used to obtain the optimal
scheduling scheme. The authors of [11] directly used the
general algebraic modeling system (GAMS) to solve the
formulated MINLP problem. The rolling optimization
method and the robust optimization method were applied
in [12] and [13], respectively. The intelligent algorithms
were also used by many scholars to solve the overall pro-
gramming problem of the ADN, such as the particle
swarm optimization (PSO) algorithm in [14], the grey
wolf algorithm in [15] and the hybrid algorithm based on
dynamic programming (DP) and the genetic algorithm
(GA) in [16].

The above-mentioned optimization methods are carried
out on the basis of the established model, so there exists
the problem of excessive dependence on the model. How-
ever, in the actual day-ahead scheduling problem, the
electricity price and residential load cannot be known in
day-ahead and fluctuate dynamically within a certain ran-
ge, so it is difficult to establish an accurate model. There-
fore, reinforcement learning (RL) is introduced. It does
not require a model and obtains the optimal solution
based on the interaction between the agent and the envi-
ronment. A lot of related work has been done in literature.
For the charging scheduling of the BESS, Q learning was
used in [17] and deep Q network (DQN) was used in [18].
These two methods regarded the selection of charging
behavior of the BESS as a discrete variable, and then the
RL methods for the Markov decision process (MDP) with
discrete action space were applied. In practice, the charge
or discharge capacity of the BESS can be any value
within the maximum range, that is, treating it as a conti-
nuous variable can obtain a better scheduling scheme. Si-
milarly, the authors of [19,20] applied DQN in user-side
demand response. For the scheduling of DG units, the
double DQN (DDQN) was proposed in [21]. Although
RL has not been widely applied to the day-ahead scheduling
of the ADN, the autonomous household energy manage-
ment of smart homes with independent generators can be
extended to the whole ADN. In [22], a deep neural network
(DNN) was built and its parameters were trained to obtain
the optimal solution for scheduling. The studies in [23]
proposed an algorithm that combined DNN and Q learning
to improve the optimization performance. DQN was
applied in [24,25] and deep deterministic policy gradient
(DDPG) was applied in [26-28]. In addition, the RL algo-
rithm has been combined with other methods to achieve
better results. For example, fuzzy reasoning was introduced
into RL in [29].

It is worth noting that these papers have formulated the
optimal scheduling problem as an MDP with fully conti-
nuous action space or fully discrete action space, and then
the appropriate RL methods have been applied to obtain
the optimal solution. Obviously, these formulations are

idealized. In practice, some schedulable variables are
continuous, such as charging or discharging capacity of
the BESS and the interrupted load of the user-side. While
some schedulable variables are discrete, such as the num-
ber of the operating DG units. Therefore, a new RL algo-
rithm is required to obtain the optimal solution of the
MDP with continuous-discrete hybrid action space. In the
literature, the methods for the MDP with hybrid action
space are mainly divided into two categories. One is to
discretize the continuous action space, so that this problem
is transformed into the MDP with fully discrete action
space. For example, fuzzy rules were used in [30] to dis-
cretize the continuous variables. However, this method of
approximation through discretization made the control
accuracy decrease a lot. The other is to make the discrete
action space continuous. The algorithm based on the
multi-agent DDPG proposed in [31] was applied to obtain
the optimal solution, and then performed inverse dis-
cretization to obtain the discrete controllable variables.
This method greatly increased the complexity of the
action space. Therefore, a more reasonable method is to
apply two different algorithms to update the selection
policies of discrete actions and continuous actions [32].
The authors of [33] proposed an algorithm called p-DQN
that combined DQN and DDPG, where DQN was used to
select discrete actions and DDPG was used to select con-
tinuous actions. Afterwards, some papers proposed
improved algorithms on the basis of the p-DQN according
to the practical problem, such as multi-pass DQN (MP-
DQN) in [34] and deep multi-agent parameterized Q-net-
works (Deep MAPQN) in [35]. However, these algorithms
are applied to the problems with parameterized action
space, that is, continuous actions are the parameters of
discrete actions. For the parallel structure of discrete
action space and continuous action space proposed in this
paper, when the dimensionality of the discrete actions
increases, the complexity of the algorithm will increase
exponentially. To the best of our knowledge, the applica-
tion of RL in the optimal day-ahead scheduling problem
of the ADN with hybrid action space has not been
reported in the literature.

In this paper, the optimal day-ahead scheduling of the
ADN is formulated as an MDP with continuous-discrete
hybrid action space. The objective of this problem is to
obtain the optimal scheduling scheme to minimize the
total cost of the ADN. A novel RL structure is proposed
to determine the optimal scheduling scheme. The main
contributions of this papers are as follows:

(1) A multi-agent hybrid RL (HRL) based algorithm is
proposed for the MDP with continuous-discrete hybrid
action space. In this algorithm, the advantage actor-critic
and DDPG are applied for the selection of discrete
schedulable variables and continuous schedulable vari-
ables, respectively. Moreover, the HRL adopts the structure
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of centralized training and decentralized execution. Due
to the parallel relationship between the actor networks,
when the dimensionality of discrete actions increases, the
complexity of the algorithm will not increase signifi-
cantly.

(i1) The objective function is designed as the sum of
the costs of different aspects of the ADN. The optimal
scheduling scheme which is obtained based on this objec-
tive function can reduce the total cost of the ADN in one
day and alleviate the supply pressure on the superior grid
during peak hours.

(iii) In the proposed method, Gaussian distribution is
applied to the establishment of the forecasting models,
which can effectively increase the robustness of the fore-
casting models.

The rest of this paper is organized as follows. The
problem formulation is presented in Section 2. After that,
the forecasting model and the multi-agent HRL-based
algorithm are introduced in Section 3. In Section 4, simu-
lation results based on actual application scenarios are
presented to demonstrate the effectiveness of the proposed
algorithm. Finally, conclusions are drawn in Section 5.

2. Problem formulation

The optimal day-ahead scheduling problem proposed in
this paper is aimed to minimize the total cost of the ADN.
The framework of the ADN is shown in Fig. 1. The red
arrows in the figure indicate the electricity exchange
between each single aspect and the ADN. It can be seen
that the cost of the ADN mainly includes the cost of elec-
tricity exchanged with the superior grid, the BESS, the
user-side, and the DG units.

Superior grid

User-side

Fig.1 Framework of ADN

This section is mainly divided into four parts. First of
all, to simplify the optimization process, this paper makes
some appropriate assumption according to the actual sce-
narios in Subsection 2.1. Afterwards, in Subsection 2.2,
the objective functions which cover the four aspects of
the ADN are introduced in detail. In Subsection 2.3, the
constraints of some parameters are explained. In Subsec-
tion 2.4, this problem is formulated as an MDP with discrete
time steps of one hour. The specific descriptions are as
follows.

2.1 Assumptions

(1) The electricity consumption during the transmission
is zero.

(1) The maximum interruptible load cannot exceed 30%
of the total residential load at the current hour.

(iii) The difference in dissatisfaction of individual
users is ignored, and the interruption of residential load is
carried out uniformly by the ADN.

2.2 Objective function

The objective function of this optimal scheduling problem
is to minimize the total cost of the ADN, which is defined
as

min Cyg = Cgg + Cpess + Cup + Cng (1)

where Cgg denotes the cost of electricity exchanged with
the superior grid, Cppss indicates the sum cost of the
BESS internal loss and the transmission of charging or
discharging, Cyp represents the cost of user dissatisfaction
caused by interrupting the residential load, and Cpg is the
operating cost of the DG units.

In particular,

23
Cor = ) (@ue(D) CouelD) = (D) Coa(1) - Pee(®)  (2)
t=0

where ¢ denotes every hour of the day, a,, and a, are
0—1 variables. For time ¢, a,,(f) = 1 represents the ADN
purchases electricity from the superior grid and @, () = 1
represents the ADN sells the surplus electricity to the
superior grid. It is worth noting that @, (f) + a.(f) < 1.
cour() represents the total amount of electricity purchased
and c(¢) represents the total amount of electricity sold.
Pge(t) represents the electricity price per megawatt
(MW).

23
Cusss = ) (@oss (B() = B X 20%0) + (1B(1)-

=0

Bmax X 80%')) + Plr(ach(t) : Cch(t)"-
@y(t) - ¢q(1))) + u(B; — Bay) (3)

where a5 represents the loss factor of the BESS aging.
B(t) denotes the electricity of the BESS at time ¢. When
B(t) is in the range of 20%—80% of the maximum
capacity of the BESS B,.., the aging cost of the BESS is
low. However, when it exceeds this range, the aging cost
of the BESS will increase. P, indicates the transmission
price of the charging or discharging process. @, and a,
are 0—1 variables. For time ¢, a,(f) = 1 means the BESS
is charging and a,(f) = 1 means the BESS is discharging.
Similarly, a.,(t)+a,(f) < 1. cq(t) and c¢,(f) represent the
amount of charge and discharge, respectively. B; denotes
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the initial electricity of the BESS at the beginning of the
day and B,, denotes the remaining electricity of the
BESS at the end of the day. u indicates the coefficient
relationship between the reduced electricity of the BESS
in the day and the extra cost of the BESS.

23
Cyp = Z(ﬂdis YA 0)) 4
=0

where ¢y (f) denotes the amount of interrupted residential
load according to the current electricity price. The cost of
user dissatisfaction is proportional to the square of the
interrupted load. By is the coefficient that represents the
relationship between the cost of user dissatisfaction and
the square of the interrupted load. This parameter can be
set according to the preference of the user-side.

23

Cng = Z Ccag(D), (%)
=0
Cler 0)=0
cap( ={cy,, o)=1, (6)
cig, o(t) =2

where o(f) represents the number of operating DG units
at time . ¢g,, ¢, and cj, denote the sum of the generation
cost and the maintenance cost of the DG units when the
number of operating DG units is 0, 1 and 2, respectively.

2.3 Constraints

(1) BESS constraint:

0 < B(1) < B (7)
(i1) Transmission electricity constraints:

O < Cch(t) < Cnax>» (8)

O < Cd(t) < Cimax> (9)

where ¢, represents the maximum charging or discharg-
ing electricity within one hour.
(iii) Load interruption constraint:

O < CIL(t) < Imax (10)

where I, represents the maximum interruptible load
within one hour.

24 RL

The RL is a theoretical framework for simulating the ran-
domness policy and the received reward of the agents in
an environment where the state has Markov properties.
The framework is constructed based on a set of interactive
objects, namely agents and environment. This paper takes
the decision makers of the scheduling scheme as the
agents, and the influencing factors of the scheduling

scheme as the environment. Therefore, the optimal
scheduling problem is formulated as an MDP, and then
the objective is achieved through interactive learning
between the agents and the environment. The specific
descriptions are as follows.

(1) State:

s, ={P._1,P,L,_\,L,h;, B} (11)
where P,_; and P, denote the electricity price in the pre-
vious hour and the current hour. L, and L, denote the
total residential load in the previous hour and the current
hour. &, represents the current hour. B, indicates the elec-
tricity of the BESS in the current hour. The above state
variables provide a reference for the decision-making of
policies.

In addition, this paper proposes an additional state vari-
able Ex,, which represents the amount of electricity
exchanged between the ADN and the superior grid,
denoted as s,. This additional state variable will not
affect the decision of the next actions, but it can be helpful
to evaluate the current selected actions. Therefore, s, is
entered into the critic network but not into the actor net-
works.

The additional state variable Ex, can be calculated as

Ex,=L+C,—1,-D, (12)

where C, denotes the charging or discharging electricity
of the BESS. The value of C, is positive for charging and
negative for discharging. The amount of electricity
change is expressed by the absolute value of C,, while C,
is zero means that the BESS is neither charging nor dis-
charging in the current hour. /, indicates the interrupted
load of the user-side. D, denotes the amount of electricity
generated by the DG units. When the calculated value of
the variable Ex, is positive, it means that the ADN pur-
chases electricity from the superior grid. Otherwise, it
means that the ADN sells the surplus electricity to the
superior grid.

(ii) Action:

a,={C,1,0,} (13)

where O, indicates the number of operating DG units.
Among the action variables, C, and I, are continuous
variables, and they can be any value within the restricted
range. While O, is a discrete variable which can only be
selected from the discrete action space A, ={0,1,2}.
Therefore, the action space of this optimal scheduling
problem is a continuous-discrete hybrid action space.
(iii) Policy:
n(a, | s)) = P(a; | s,) (14)

where nm(a, | s,) reflects the conditional probability distri-
bution of each action a, according to the state s,.
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(iv) Reward:
ry= _Ctntal- (15)

Reward is the feedback from the environment to the
agents after the agents execute the actions. The agents use
it to evaluate the performance of selected actions. Finally,
the maximum value of cumulative reward can be
obtained through interactive learning between the agents
and the environment. Therefore, the minimum value of
the total cost can be obtained. Each parameter in the cal-
culation formula of C,; has a certain corresponding rela-
tionship with the state or action parameters. Therefore,
the optimal value of the parameters in C, can be deter-
mined by the decision-making of policies, and then the
optimal day-ahead scheduling scheme is determined.

(v) Return:

23
G=Ri+yRy+ 7Ry +-+-= > ¥Ru, (16)
k=0
where G is return, which represents the cumulative
reward of the day after being weighted by the discount
factor. y is the discount factor between 0 and 1. When y
is close to 0, the agent is shortsighted. When vy is close to
1, the agent is foresighted.
(vi) State-action value function:

K
0.(s,a)=E, Zyk~rr+k|st=s,ar=a (17)
k=0

where Q,(s,a) denotes the state-action value function

which evaluates the performance of the obtained schedul-

ing scheme. The objective of the day-ahead scheduling

problem is to obtain the optimal policy =z, i.e., a

sequence of actions for the user-side, the BESS and the

DG units, to maximize the state-action value function.
(vii) State transition:

See1 = f(s1,a,) (18)
where s,,; ={P,, Pis1,L;, Ly, sy, Biay ) represents the next
state, which can be expressed as function of s, and «,.

With the aforementioned definitions in RL framework
and constraints in Subsection 2.3, the remark is created.

Remark 1 The constraints proposed in Subsection 2.3
are accomplished by restricting the value of the action

variables.
For BESS, the electricity of the BESS B,,, is obtained

by
B =B, +C,. (19)
Thus as long as C, is restricted to satisfy —B, < C, <
B..x — B;, the constraint of the BESS can be accom-
plished. At the same time, the value of C, needs to be

guaranteed that —cp.x < C; < cnax 1n order to satisfy the
constraint of transmission electricity. Furthermore, in or-

der to satisfy the constraint of load interruption, the ac-
tion variable /, needs to take a value between 0 and 1,,,,.

3. Multi-agent HRL for optimal scheduling
of the ADN

It is difficult to determine the optimal day-ahead schedul-
ing scheme in the case that the future electricity price and
residential load are unknown. Moreover, through the
problem formulation, the scheduling problem is trans-
formed into the problem of an RL with continuous-discrete
hybrid action space. Therefore, how to obtain the optimal
solution of the MDP with hybrid action space is a more
important but difficult point in this paper. In view of the
above difficulties, first of all, the values of electricity
price and residential load fluctuate within a certain range
with a 24-hour cycle, so the neural networks are used to
fit the forecasting models of electricity price and residential
load. Then, to obtain the optimal solution of the MDP
with hybrid action space, a multi-agent HRL algorithm is
proposed in this paper. The details are as follows.

3.1 Forecasting model

Electricity price and residential load are both time-related
variables. However, in actual application scenarios,
to avoid the security risks of grid caused by sudden
changes in electricity price or residential load, the previous
values are usually used as reference for limiting the current
value. Therefore, the current value is determined by both
the previous values and time. The relationship between
them is expressed as follows:

P :f(Pt—l’Pnt)y (20)

Lt+l = f(Lt—l,Lnt)- (21)

Then the neural networks are used to fit unknown vari-
ables. In order to increase the robustness of the forecast
models, the input variables are sampled from N(V,,0.1%),
V., denotes the actual values of electricity price or resi-
dential load.

3.2 Multi-agent HRL algorithm

The multi-agent HRL algorithm adopts an actor-critic
architecture since this basic architecture can be applied to
both continuous and discrete action spaces. In addition,
for the policy selections of different aspects, the multi-
agent HRL algorithm adopts an architecture of centralized
training and decentralized execution in order that each
single aspect can obtain the optimal scheduling scheme
independently. Consequently, the architecture of the
multi-agent HRL algorithm contains several parallel actor
networks for execution and a single critic network for
training, which is shown in Fig. 2.
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Fig.2 Architecture of multi-agent HRL algorithm

In order to learn stochastic policies more effectively,
different RL algorithms are adopted for policy selection
of continuous and discrete actions. Decision making of
discrete action policies is mainly based on the advantage
actor-critic, and there is a one-to-one correspondence
between the discrete action variables and the discrete
actor networks. However, the different continuous action
variables are only determined by one continuous actor
network based on the DDPG algorithm. The lines with
arrows indicate the information flow between the decen-
tralized actor networks, the centralized critic network,
and the environment. To begin with, each actor network
perceives the state s,, and then executes the discrete
actions dyy,, dgy, -+, gy and the continuous actions a,,,
Qe *++, Aoy As the result of these actions, the state is
transformed from s, to s,,; and additional state s,,, and
reward r, are generated, which are transmitted together to
the single critic network to evaluate the decision-making
of policies.

For a certain discrete actor network, its output is the
action probability density function 7, (aauls,), which rep-
resents the probability of each discrete action being
selected under the state s,. Then the specific discrete
action is obtained through sampling. Therefore, the state
value function V(s;) is generally used to evaluate the poli-
cy, and then optimize the discrete actor network parame-
ters 6, by increasing the probability of good action being
selected. However, as for continuous actor network,
according to the DDPG algorithm, its outputs are deter-
ministic action values a. and the currently selected
actions are evaluated by the state-action value function
O(s;,a.). Based on the above analysis, a state-action
(continuous) value function is proposed to approximate
the expected return G, if the policy 7, is executed. The
function is defined by Bellman equation [36]:

O(Sts Sar> Q) =E 7, [7 (81, Sars ery Q)+
YO(Sis15Sars1 Ty, (s )] (22)

where s, represents the additional state defined in the RL

framework. a. and a, represent all continuous actions
and all discrete actions respectively. 8 refers to parameters
of all actor networks. , (s.;) denotes the continuous
actions a.,,; generated by the continuous actor network
based on the state s,,,.

The method of temporal-difference (TD) learning is
used to update the value of Q(s;, S, d):

Q(st’ Szlhact) — Q(st’ suhact)+
11 +YO(Sta1s Sars1s Aern1) = O(Sp, Sar@c)]  (23)

where @ denotes the update rate. The update objective of
the TD method is 7.1 +YQ(Si415 Sars 15 Gerer)-
Then TD error 6, is defined as

01 = Tt + YO(S1a1, Sarst> Gerer) — OCSt, Sar Qer)- 24)

In order to evaluate the policy of continuous actions 7,
and the policy of discrete actions =, the performance
objectives are defined.

For continuous actor network, the performance objec-
tive J(m,,) is defined as

J(my,) = E[Q(S:, Sars g, (51))] (25)
where 6. represents the parameters of continuous actor
networks.

The optimal policy of continuous actions 7, is the policy
that maximizes J(,) [37]:
m;, = argmax J(wy,). (26)
For a certain discrete actor network, first of all, define
an advantage function:

A(S1s Sars Aers Aaie) = O(Sts Sars et Aair) — QS Sars Aer) (27)

where O(s;, sq4,a.) is a baseline function that has nothing
to do with discrete action ay,. Subtracting this baseline
function can reduce the variance but does not change the
gradient itself. As defined in [38], d"(s) is a discounted
weighting of encountered states. Then, proof is as fol-
lows:

E[Vﬁd,ln 7T9d, (adit|st9 sat)Q(sh Sats az:t)] =
Z dﬂad, (sh Sat) Z Vé}d,nﬁm (aditlsh sat)Q(sm Sats azrt) =

StsSar Aait

Z d™a (Sr, sm)Q(sn Sars acr)VQ(,, Z Ty, (adirlsr, Sat) =

StsSar Qdit

Zdﬂe‘h(snsat)Q(Sh sahact)vﬂml =0. (28)

StsSar

Thus the performance objective J(my,) [39] is defined
as

-](77:6.1,) = E[ln Ty, (adit|sn adi)A(sn Sars Acts adit)] (29)
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where 6, represents the parameters of discrete actor net-
works.
Similarly, the optimal discrete policy ; is the policy
that maximizes J(7,,):
m,, = argmax J(m, ). (30)
As for the calculation of the advantage function A(s,,
Sa» Aer, Agir), 1t 18 troublesome to use two sets of parameters
to approximate Q(S;,Sq,de,aq:) and Q(s;, Su,d;) respec-
tively, so the TD error is usually used directly to approxi-
mate the advantage function. It can be proved that ¢,
defined in (24) is an unbiased estimate of A(s;,Su,d,

Agir):

E[0,151 Sars Gers air] =
E[71 +YO(S1s15 Sar15 Aere1 )=
QCS1s Sars Aer)| Sty Sats Aers Aair] =
Elr1 +yOCSii15 Sars1>Aers OISt Sars Ger> Qair]—
OCS1s Sars Aer) = O(S15 Sars Oty Agie)—
OCS1s Sars Aer) = A(Sys Sar Aers Agi)- (31

However, it can be seen from the definition that the
value function Q(s,, s.;,a.;) is a recursive equation. There-
fore, it is impossible to calculate the value of Q through
recursion every time in practical applications, so the single
critic network is used to approximate the value of Q:

QH,‘ (S,, Sats acr) =~ Q(Sts Satsacz‘) (32)

where 6, denotes the parameter of critic network. The
result is the approximate value of Q obtained through 6,,.

Algorithm 1 shows how to train the network parameters
0 of the overall architecture of the mutli-agent HRL algo-
rithm. The inputs are the real electricity price and resi-
dential load of the previous day. After the HRL algorithm
training is completed, the trained network parameters 6
are output, including the single critic network parameters
6,, the continuous actor network parameters 6., and the
discrete actor networks parameters 6.

Algorithm 1 Multi-agent HRL algorithm

Input: Electricity price, residential load
Output: Network parameters 6
1: Randomly initialize the estimated network parameters
0.
2: Initialize the target network parameters 6 = 6.
3: for Epoch=1:51000 do
4: Obtain the initial state s, and the initial additional

state s, .
5. for Time t=t;:23 do
6: Select continuous actions a,, and discrete
actions ay,.

7 Execute actions a,, and a,,, observe reward r,
and transition to the next state s,,; and the next
additional state s, .

8: Store transition (;, Sa, Gers Qars iy Sie1s Sare1) 10
experience pool D.

9: while Epoch > 1000 do

10:  Draw minibatch of transitions F = {(s;, S,;,d.;s
@qjsTjs a1 Sap)V 2y from D.

11: Calculte the target state-action (continuous)
Value yj — rj + ‘yQ(SjJrl s Saj+l 5 E@( (Sj+l); Hw)'
#F

. 1
12: Calculte the loss function L(6,) = NZ[y,—
Q(Sjs Sajvacj;gw)]z'

J=1

13: Update the critic network parameters
ew — 9w - lcv(?.\ L(ew)
14: Calculte the performance objectives

1 #F
1(71/'9() = N Z Q(sjs sajs 77:8( (Sj))s
=1

H#F
T = 5 30 7 sy 5051
15: Update the actor network parameters
Oc — 0. =1,V (=J(115.)),00 — 6, —1,V, (= (my,)).
16: Update the target network parameters
0 —10+(1-1)6.

17: end while
18: end for
19: end for

First of all, the estimated network parameters 6 are ini-
tialized randomly. Then the target network parameters 6
are initialized to the same value as 6. After that, the storage
of state transition pairs and the update of network para-
meters are performed in the loop of 51000 epochs. Each
epoch starts at a random hour ¢ of the day. This random-
ness can improve the robustness of the neural network to
avoid overfitting, so that the optimal scheduling policy
can still be obtained when the forecasted electricity price
is slightly deviated. Then the initial state s, and the initial
additional state s, are obtained. At each time step, the
exploration and exploitation of discrete actions a,, are
based on the randomness of selecting actions according to
the probability distribution of discrete actions. As for the
exploration and exploitation of continuous actions a,,,
Gaussian noise is added to the decision-making process
of a,, to change it from a deterministic process to a random
process, and then a, is obtained by sampling from this
random process. Then the actions a., and a,, are executed
to complete the state transition and the reward r, of envi-
ronmental feedback is observed, and thus a sequence of
state transition pairs are formed and stored in experience
pool D. While epoch > 1000, the experience pool is full,
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and then these state transition pairs in the experience pool
are used to update the parameters 6. Specifically, N state
transition pairs are drawn from experience pool as sam-
ples. As a reference objective for optimization, the target
state-action (continuous) value y; is calculated as

yj < rj+YQ(sj+laSaj+la77:?{(sj+l);éw) (33)

where 6, represents the target critic network parameters,
w5, (1) denotes the target continuous actions ., gener-
ated by the target continuous actor network with the
parameters 8, .

Therefore, with the minibatch samples, the loss function
is calculeted as

1 #F
L(Hw) = N ZD’J - Q(sja Sajaacj;gw)]z (34)
=1

which denotes the mean square error between the target
state-action (continuous) value y; and the state-action
(continuous) value Q(s;, S, a.;;6,) approximated by the
estimated critic network parameters 6,. Then, along the
gradient direction that minimize the loss function, the
parameters of the critic network are updated as

ew — gw - lcVHWL(Ow) (35)

where /. indicates the learning rate of the critic network
parameters and V, L(6,) denotes the gradient of L(6,)
drop.

Then, based on the above definition of the performance
objectives of the continuous actor network and discrete
actor networks, the performance objectives of these mini-
batch samples are calculated as

1 #F
J@) = 57 D Q50 m(5)). (36)
j=1

|

)= ;[In 70, (@S Saps @i, 00,1 (37)

Similar to the update of the critic network parameters,
the parameters of the actor networks are updated as

017 — 01: - lav(i (—J(ﬂ'a ))’ (38)

Oy = 04— 1.V, (=J(m,,)), (39)

where [, indicates the learning rate of actor network
parameters. Different from the update of the critic network
parameters, the update of the actor network parameters is
along the gradient direction that maximizes the perfor-
mance objectives.

The update of the target network parameters adopts
soft update, that is, the parameters of the target networks
will be updated every step but the update rate is very

small. The update is according to the following formula:
0 —10+(1-1)0 (40)

where T denotes the update rate.

Remark 2 Due to the structure of parallel distributed
actor networks, the computational complexity of the pro-
posed multi-agent HRL algorithm is O(n. +n,), where n,
and n, represent the number of agents with continuous
action space and discrete action space. When the number
of agents increases, the computational complexity of the
proposed algorithm increases linearly, while the computa-
tional complexity of the previous algorithms [33] in-
creases exponentially.

4. Experimental results

In this section, the effectiveness of the proposed algorithm
is verified through simulation results. This section is
divided into two parts. Subsection 4.1 introduces the
experimental setup in detail. Then, the simulation results
and discussion are presented in Subsection 4.2.

4.1 Experimental setup

The proposed algorithm is a price-based scheduling me-
thod, so the evaluation of its performance is based on real-
world hourly electricity price. However, the settings of
the BESS and DG units are hypothetical based on the ac-
tual situations. If the proposed algorithm is applied to the
real-world scenarios, it only needs to adjust some coeffi-
cients according to the local actual conditions. In this
experiment, some parameters are set as follows. The B,
and ¢ do not exceed 3000 MW and 210 MW, respec-
tively. The @y is set to 0.08. The P, is 0.14 k/MW. The
coefficient y is set as 0.5.

In the algorithm structure, each actor network consists
of an input layer, an output layer, and a hidden layer with
32 hidden neurons. While the critic network contains an
input layer, an output layer, and two hidden layers in
which the number of hidden neurons are 64 and 32,
respectively. In addition, the settings of some hyperpa-
rameters in this algorithm are presented in Table 1.

Table 1 Hyperparameters in the algorithm

Parameter Value

Learning rate of the actor networks /, 0.001
Learning rate of the critic network /. 0.01
Update rate of the target networks 7 0.01
Discount factor y 0.99

Capacity of the experience pool 10000
Batch size 128

Remark 3 The hyperparameters in this algorithm are
set by referring to [26]. Among them, the learning rate of
the actor networks /, is an order of magnitude lower than
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the learning rate of the critic network /.. Then these
hyperparameters are adjusted according to the neural net-
work structure and the actual training results of this expe-
riment.

4.2 Simulation results and discussion

(i) Performance of the forecasting models: The past
real data of electricity price and residential load are used
to train the neural network for 5000 epochs, and thus the
forecasting models are obtained. Then the real electricity
price and residential load at 23 o'clock on the previous
day and 0 o'clock on the day are input into this model.
After continuous state transitions, the forecasted electricity
price and residential load for the next day are output. The
comparison between the forecasted values and the real
values are presented in Fig. 3.
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Fig. 3 Comparison of the forecasted values and true values

As shown in Fig. 3, though there exist slight deviations
between the forecasted values and the real values, the
deviations are within a reasonable range. Therefore, it is
effective to use the value of the current hour, the value of
the previous hour and the current time ¢ to fit the forecast-
ing models. Accordingly, as long as the value of the last
hour of the previous day and the first hour of the day are
known, the day-ahead forecast can be carried out.

(ii) Performance of the day-ahead scheduling algorithm:
The multi-agent HRL algorithm proposed in this paper is
used to perform day-ahead scheduling experiments in a
simulation scenario, where the scheduling of the ADN is
limited to the charge or discharge of the BESS, the inter-
rupted load of the user-side and the number of operating
DG units. In order to reduce the influence of different
magnitudes of the schedulable variables on the determi-
nation of the scheduling scheme, the schedulable variables
are normalized. The optimal day-ahead scheduling sche-
me obtained after 50000 epochs training are shown as
follows.

Fig. 4 shows the hourly charging or discharging of the
BESS according to the day-ahead forecasted electricity
price. It can be seen that the optimal scheduling scheme
guides the BESS to charge when the electricity price is
low and to discharge when the electricity price is high.
Fig. 5 shows the remaining electricity in the BESS per
hour after charging or discharging. After a whole day of
charging and discharging, the electricity at the end of the
day is approximately equal to the value at the beginning
of the day, which is beneficial to the long-term scheduling
of the BESS. In addition, the electricity of the whole day
is maintained within the range of 20% to 80% of By,
which is conducive to prolonging the service life of the

BESS.
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For the interrupted load of the user-side, when it inc-
reases, the electricity cost of the user-side under the current
electricity price decreases, but the dissatisfaction cost
increases. The purpose of the algorithm proposed in this
paper is to learn the policy that can balance the electricity
cost and the user dissatisfaction cost according to the
preference of the user-side. Fig. 6 shows the relationship
between the interrupted load of the user-side and the elec-
tricity price when the user dissatisfaction factor g is
0.0017. It can be seen that when the electricity price inc-
reases, the interrupted load of the user-side increases.
Otherwise, it decreases. Therefore, the effectiveness of
the proposed algorithm is proved. Fig. 7 shows the com-
parison of the interrupted load when the user dissatisfac-
tion factor B takes different values. It can be observed
that a larger 8 corresponds to a larger interrupted load.
This is because a larger 8 means that the user-side prefers
to concern about the dissatisfaction cost rather than the
electricity cost.
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Fig. 8 shows the number of local DG units in operation
per hour according to the forecasted electricity price. As
shown in the figure, when the electricity price is in the
low-range (0.4 — 0.6 kYMW), it is more economical to pur-

chase electricity from the superior grid, so the DG units
are shut down. When the electricity price is in the mid-
range (0.6 — 0.8 k/MW), the maintenance cost of operating
the two DG units at the same time is relatively high, so
only one of the DG units is turned on, which can reduce
part of the electricity cost. When the electricity price is in
the peak-range (0.8 — 1.0 k/MW), the cost of electricity
purchase and sale is high. Therefore, the two DG units
operate at the same time to make full use of the electricity
supply of the DG units and the excess electricity will be
sold to the superior grid, which can improve the economy
of the ADN.
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Fig. 8 Hourly electricity price and the number of operating DG
units

The above-mentioned different aspects scheduling toge-
ther constitute the optimal day-ahead scheduling scheme
of the ADN. The total cost after scheduling is 8259.35,
which is a reduction of 22.68% compared with the value
of 10682.29 before scheduling. Moreover, the comparison
of the electricity exchanged between the ADN and the
superior grid before and after the optimal day-ahead sche-
duling is shown in Fig. 9. It is proved that the proposed
scheduling scheme can effectively reduce the total cost of
the ADN within a day and alleviate the supply pressure of
the superior grid during peak hours.

In order to evaluate the performance of the proposed
multi-agent HRL algorithm in solving the problems of
MDP with hybrid action space, the previous methods for
solving the problems of MDP with hybrid action space
are compared [33]. Among them, the p-DQN algorithm
adopts the same network architecture as the HRL algo-
rithm. For the DQN algorithm, the charging behavior of
the BESS is discretized into two types: charging or dis-
charging, and the load interruption behavior of the user-
side is discretized into two types: interruption or non-
interruption. Other parameters of the DQN are the same
as the HRL. When the networks start to be updated, the
scheduling scheme of the whole episode from 0 o’clock
to 23 o’clock is completed every 5 epochs, then output
the episode return to observe the entire optimization pro-
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cess of these algorithms. The experimental result of
DDPG is not included here because it fails to obtain the
optimal scheduling scheme in the application scenario of
this paper. The training results of different algorithms are
compared from the following three dimensions. The com-
parison of episode return during the training process is
shown in Fig. 10. Moreover, the comparison of the total
electricity cost reduction rate of 24 hours AR. and the
variance reduction rate of the electricity exchanged
between the ADN and the superior grid of 24 hours AR,
after the optimal scheduling are presented in Table 2. The
greater the variance reduction rate of the exchanged elec-
tricity, the stronger the ability of the algorithm to alleviate
the supply pressure on the superior grid during peak
hours. It can be seen that the performance of the proposed
algorithm is better than the previous algorithm. Therefore,
the superiority of the proposed algorithm is proved.
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Fig. 10 Episode return of the proposed multi-agent HRL algorithm
compared with the DQN and p-DQN algorithm

Table 2 Performances of different algorithms %
Algorithm AR, AR,
HRL 20.73 69.48
pDQN 17.24 53.95
DQN 9.09 48.39

5. Conclusions

In this paper, a multi-agent HRL algorithm is proposed to
solve the optimal day-ahead scheduling problem of the
ADN, where continuous schedulable variables and discrete
schedulable variables coexist. With the aiming of mini-
mizing the total cost of the ADN within a day, the optimal
scheduling problem is formulated as an MDP with con-
tinuous-discrete hybrid action space. In the proposed
approach, forecasting models are established to overcome
the uncertainty of the future electricity price and residential
load. Then, the multi-agent HRL algorithm is proposed to
learn the optimal scheduling scheme, which adopts actor-
critic and DDPG to the selection of discrete schedulable
variables and continuous schedulable variables, respec-
tively. Simulation results show that the multi-agent HRL
algorithm can minimize the total cost and alleviate the
supply pressure during the peak hours. Furthermore, the
previous algorithms are compared, which indicates the
superiority of the proposed algorithm.
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